([~ ~3

-

C+

ALL-IN-ONE

dummies

A Wiley Brand

John Paul Mueller

Author of Functional Programming
For Dummies

ALL-IN-ONE

4th Edition

by John Paul Mueller

dummies

A Wiley Brand

C++ All-in-One For Dummies®, 4th Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2021 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without
written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE
IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020949804

ISBN: 978-1-119-60174-6

ISBN 978-1-119-60175-3 (ebk); ISBN 978-1-119-60173-9 (ebk)
Manufactured in the United States of America

109 87 654321

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance

Introduction..................... 1
Book 1: Getting Started with C++ 7
cHAPTER 1: Configuring Your Desktop System., 9
cHapTER 22 Configuring Your Mobile Systemo i 27
cHAPTER 3: Creating Your First C++ Application. ..., 45
CHAPTER 4: Storing Datain CH+. ... i 69
cHapTER 5: Directing the Application Flow o it 105
cHapTEr 6: Dividing Your Work with Functions..........t 139
cHapTER 7: Splitting Up Source Code Files 169
cHapTER 8: Referring to Your Data Through Pointers 187
Book 2: Understanding Objects and Classes................ 225
cHAPTER 1: Workingwith Classes. ... e 227
cHAPTER 22 Using Advanced C++ Featuresooveeieeniinnniiiiiee. 269
cHAPTER 3: Planning and Building Objects.t 309
cHAPTER 4: Building with Design Patternscooiiiiiiiiiiiiine... 335
Book 3: Understanding Functional Programming 367
cHAPTER 1: Considering Functional Programming, 369
cHapTER 22 Working with Lambda Expressions. ..., 397
cHAPTER 3: Advanced Lambda EXPressions.veeeeeeennnniiiineen.. 415
Book 4: FixingProblems 427
cHAPTER 1: Dealing with Bugs. ... e 429
cHapTER 22 Debugging an Application....... ... o o i i 443
cHAPTER 3: Stopping and InspectingYourCodecoovvinne e, 457
cHAPTER 4: Traveling AbouttheStack........... ... oo ... 469
Book 5: Advanced Programming.............................. 479
cHapTeR 1: Working with Arrays, Pointers, and References 481
cHAPTER2: Creating Data Structures.t 515
cHAPTER 3: Constructors, Destructors, and Exceptions..............ccovvnn.. 541
cHAPTER 4: Advanced ClassUsage.t 571
cHapTer 5: Creating Classes with Templates. ..., 601

cHAPTER6: Programming with the Standard Library 637

Book 6: Reading and WritingFiles 681

cHaprTer 1: Filing Information with the Streams Library 683
cHapTER 22 Writing with Output Streamsot 697
cHAPTER 3: Reading with InputStreams....... ...t 711
cHAPTER 4: Building Directoriesand Contents.cooviiiiiiiiiee... 727
CHAPTER 5: Streaming Your OWN Classesttt 737
Book 7: Advanced Standard LibraryUsage 751
cHAPTER 1: Exploring the Standard Library Further 753
cHapTer 22 Working with User-Defined Literals (UDLS)ovvvvvvvennnnnns, 779
cHAPTER 3: Building Original Templatesot 795
CHAPTER 4: INvestigating BooSt.t e 817
CHAPTERS5: BOoOStingupaStep.ot e 849

Table of Contents

INTRODUCTION ... e 1
ABOUt ThISBOOK. ... 1

Foolish ASSumptions.t i e 4
lconsUsedinThisBooko it 4

Beyond the BoOK.ot 5
WheretoGofromHere i 6

BOOK 1: GETTING STARTED WITH C++ 7
caerer ;. Configuring Your Desktop System..................... 9
Obtaininga Copy of C++ 20o ittt 10
Obtaining Code:BIoCKsS.o 11
Installing Code:Blocksttt 12

Working with Windows. 12

Working with Mac OS X. ..ot 13

Using the standard Linux installation......................... 14

Using the graphical Linux installation 15

Touring the Essential Code::Blocks Features. 17

Starting Code::Blocks for the firsttime 18

Opening the sample projects.ooviiiiineiiiineeenn.. 19

Viewing the essential windows, 20

USiNg Other IDES . ..ottt 25

caerer 22 Configuring Your Mobile System...................... 27
Obtaining CppDroidttt 28
Understanding why CppDroid is such a great choice 29

Getting your copy of CppDroidooviiiiiniiii 31
Ensuringyou getagoodinstall......... il 32

Considering Other Alternatives. ..., 32

Working with C4ADroid.o i vt 33

Getting multiple language support with AIDE. 33
Usingweb-based IDES.ottt i 34

Touring the Essential CppDroid Featuresccooovoe.. 35

Getting started with CppDroid ..., 35
Accessinganexample. 37

Working with a simple online project. 37

ACCESSING YOUr SOUrCe €O, . ottt e ettt e 38

Considering differences with the desktop environment......... 39

Table of Contents A"/

Obtaining CppDroid Help. oo oo e 40

Working with the Help documentation 40
Getting community SUPPOIt.ttt e 41
Using the free examples. ... 42
Accessingthetutorials ... 43
cuarrer3: Creating Your First C++ Application.................. 45
Code::Blocks Creatinga Project.ooiiiiii e 46
Understanding projectsiiiiin i 46
Defining your first project ... 47
Building and executing your first application 52
Typingthe Code. oot e 53
Startingwith Main. 55
Showing Information oot i i e 55
Doingsomemathottt i e 60
Tabbing youroutput...... ..ot e 66
Let Your Application RUNAWAYot 67
CHAPTER 4: Storing DatainC++ ... 69
Putting Your Data Places: Variables, 70
Creating anintegervariable. i i 70
Declaring multiple variables 73
Changingvalues.o 74
Setting one variable equaltoanother 74
Initializingavariable 75
Creating a greatname foryourself............... 76
Manipulating Integer Variableso i 78
Adding integervariables. i 78
Subtracting integer variables. o i 82
Multiplying integer variables i i i 84
Dividing integer variables. oo i i 86
Characters 88
Null character. e 89
Nonprintable and other cool characters 89
SHMINES o e et e e 93
Gettingapartofastringcooviiiiin i, 94
Changing partofastring ..., 95
Addingontoastring ...ttt e 96
AddiNg tWO STIiNES. . oot e e e 97
Making Decisions Using Conditional Operators................... 98
Telling the Truth with Boolean Variables........................ 100
Reading fromthe Console....... ... oo, 102

C++ All-in-One For Dummies

CHAPTER 5:

CHAPTER 6:

Directing the ApplicationFlow....................... 105

Doing ThisorDoingThatt 106
Evaluating Conditions in C++.ot 107
Finding the right C++ operators, 108
Combining multiple evaluations 110
Including Evaluations in C++ Conditional Statements............. 111
Deciding what if and alsowhatelse......................... 112
Going further with theelseandif................ 113
Repeating Actions with Statements ThatLoop................... 115
Understanding how computers use loops 116
Looping Situations.ottt 116
LOOPINg fOr. .ttt 117
Performing a simple forloop..........cooo il 118
Using multiple initialization variables. 123
Workingwith ranges. ... 126
Placing a condition within the declaration.................... 128
Letting C++ determinethetype.........coooi ... 129
Looping while. 130
Doing While. .. o e 132
Breaking and continuing i 133
Breakingo 134
CoNtiNUING .ot e 135
NeStiNg I00PS . - o ettt 136
Dividing Your Work with Functions 139
Dividing Your Workot 139
Callinga FUNCLiont e 144
Passingavariable 146
Passing multiple variables il 147
Writing Your OWn FUNCLIONSo vt 148
Defining the AddOne() function.o, 149
Seeing how AddOne()iscalled i, 150
Taking the AddOne() Functionapart.coooveienn... 150
Considering the AddOne() parameterccoovve... 151
Understanding the AddOne() name andtype................. 152
Improving On the BasicFunctiono ... 153
Using multiple parameters or no parameters 153
Returning nothing oo e 156
Keeping your variableslocal i .. 157
Forward references and function prototypes................. 159
Writing two versions of the same function 161

Table of Contents vii

viii

CHAPTER 7:

CHAPTER 8:

Calling All String FuNCtions.ot e 163

Inserting astringintoastring............ ..o i i 163
Removing partsofastring............ccooiiiiiii .. 164
Replacing partsofastring ..., 164
Using the string functions together 164
Understanding main().o vvein e e 165
Splitting Up Source CodeFiles........................ 169
Creating Multiple Source Files. i, 170
Adding a new source codefile.......... ... i 170
Removing an existing source codefile....................... 173
Creating a project with multiple existingfiles................. 173
Getting multiple filestointeract i 177
Sharing with Header Files. i 179
Adding the headeronlyonce.......... ... 182
Using angle bracketsorquotes. ...t 182
Sharing Variables among Source Files...............covvvin... 183
Using the Mysterious Header Wrapperscovvenvenn.. 185
Referring to Your Data Through Pointers.......... 187
Understanding the Changes in Pointers for C++20............... 188
Avoiding brokencode. i 188
Consideringtheissuest 189
Writing cleaner and less bug-pronecode 191
Heaping and Stacking the Variables. 192
Getting avariable’'saddress. o i, 196
Changing a variable by using a pointer 198
Pointingatastringot 200
Pointing to somethingelse. ittt 203
Tips on pointervariableso i i 204
Creating New Raw Pointers 205
USINg MW . o ettt e e e e e e e e 206
Using aninitializer. ... i 208
Freeing Raw Pointerst e 209
Working with Smart Pointers. i, 211
Creating smart pointers using std::unique_ptr
and stdishared_ptr. 212
Defining nullable values using std::optional
andstdunullopt ... 216
Passing Pointer Variables to Functions 218
Returning Pointer Variables from Functions..................... 221

C++ All-in-One For Dummies

PART 2: UNDERSTANDING OBJECTS AND CLASSES....... 225

ciarrer: Working with Classes 227
Understanding Objectsand Classes.cooviivneenn.. 227
Classifying classesand objects, 230
Describing methodsanddata............. ..., 231
Implementingaclassooviiiiiii i 232
Separatingmethodcodet 237
Thepartsofaclass.......covviiinni i, 240
Workingwitha Class.cov i e 241
Accessingmembers 241
Using classesandraw pointers...........cooviiniinennn... 244
Using classes and smartpointers.............cooviiieen.... 248
Passing objects to functions i 249
Using const parametersinfunctions........................ 251
Using the thispointer..........coo i, 252
Overloadingmethods.coviiiiin i 256
Starting and Ending with Constructors and Destructors........... 259
Starting with constructorso 259
Ending with destructorsttt 260
Sampling constructors and destructors. 260
Adding parameters to constructorsooiiii. ... 263
Building Hierarchiesof Classes. ..., 264
Creatinga hierarchy in C++ o i 265
Understanding types of inheritance......................... 266
Creating and Using Object Aliasesc.ccoovviiiinaai.n. 267
cuarrer 2. Using Advanced C++ Features........................ 269
Filling Your Code with Comments.ovviiviinnenneenn.. 270
CoNVErtiNg TYPeS. . ottt et e et 272
Understanding how int and string conversionswork 272
Seeing int and string conversionsinaction................... 273
Considering other conversionissues............covveunon.. 276
Reading fromthe Consolecov vt 277
Understanding Preprocessor Directivesc.oooun.. 282
Understanding the basics of preprocessing 282
Creating constants and macros with #define................. 283
Performing conditional compilation......................... 286
Exercising the basic preprocessor directives 288
USINg CONStaNTS. . .ottt e e et 292
Using Switch Statementst 295

Table of Contents ix

X

CHAPTER 3:

CHAPTER 4:

Supercharging enums with Classes, 298

Working with Random Numbers. oo, 300
Storing Data in Arrays.ov it 302
Declaring and accessinganarrayc.ooveeeinnnenennn.. 303
Arrays of pointerso 304
Passing arrays to functions o i 306
Adding and subtracting pointers. o oo 307
Planning and Building Objects 309
Recognizing Objectsot 310
Observing the Mailboxesclass, 312
Observing the Mailbox classo, 314
Finding otherobjects i 315
Encapsulating Objects. 316
Considering the Application Programming Interface........... 316
Understanding properties ..ot 316
Choosing between private and protected 318
DefiNiNg @ ProCeSS. o vttt e e 318
Implementing properties. ... 319
Building Hierarchiesot i i 322
Establishinga hierarchy o i i, 322
Protecting members when inheriting. 324
Overridingmethods ...t 330
Specializing with polymorphism ool 332
Getting abstract aboutthings o 333
Building with Design Patterns........................ 335
Delving Into Pattern History.o 336
Introducing a Simple Pattern: the Singleton 337
Using an existingpattern......... 337
Creating a singleton patternclass..................oooit. 338
Watching an Instance with an Observer 341
Understanding the observerpattern........................ 341
Defining an observer patternclass............. 343
Observers and the Standard C++ Library. 346
Automatically addingan observer i, 347
MediatingwithaPattern i, 349
Defining the mediator patternscenario...................... 350
Outliningthecarexamplecov it 351
Creatingthecarexample....... ..ot iinnn. 354

C++ All-in-One For Dummies

BOOK 3: UNDERSTANDING FUNCTIONAL

PROGRAMMINGo, 367
cuarrer 1. COnsidering Functional Programming.............. 369
Understanding How Functional Programming Differs 370

Defining an Impure Language.o vvti et 373
Considering the requirements oo, 373
Understanding the C++ functional limitations 374

Seeing DataasImmutable.......... i 375

Working with immutable variables.......................... 376

Working with immutability in classes and structures 377

Creating constant expressionsc.c..veveennennen.. 378

Considering the Effectsof Statecooiiiin ... 381
Eliminating Side Effects. i 382
Contrasting declarations and functions...................... 383

Associating functions with side effects. 384

Removing side effects.t 385

Creating a declarative C++example...........covviiv... 387
Understandingthe Roleofauto ...t 388

Passing Functionsto Functions. o ... 390

Seeing a simple example of functioninput................... 391

Using transforms. ...t i i e 393

Using Lambda Expressions for Implementation 394

caerer 22 Working with Lambda Expressions.................. 397
Creating More Readable and Concise C++ Code 398

Defining the Essential Lambda Expression...................... 399

Defining the parts of a lambda expression................... 399

Relying on computer detection of returntype 401

Using the auto keyword with lambda expressions 404

Using lambda expressionsasmacroscvvnn... 405

Developing with Lambda Expressions, 406

Using lambda expressions with classes and structures 407

Working with the captureclause............ oo un.. 408

Sorting data using a lambda expression 411

Specifying that the lambda expression throws exceptions. 413

cuarrer3: Advanced Lambda Expressions...................... 415
Considering the C++ 20 Lambda Extensions. 416

Defining an immediate function............. 416

Using=and thisincaptures.ccoiiiiiiiinnernnn... 417

Finding otherchanges 418

Table of Contents xi

xii

Working in Unevaluated Contextsooeiineeinn.nn 418

Using Assignable Stateless Lambda Expressions................. 420

Dealing with Pack EXpansions. ...t ennn. 422

Consideringthetemplate., 422

Processing the variables using recursion. 423

Processing the variables using a lambda expression 424

BOOK 4: FIXING PROBLEMS.......................oii, 427

CHAPTER 1: Dealing with BUgS 429

I's NotaBug. It'saFeaturel. o, 430

Make Your Application Features Look Like Features.............. 431

Anticipating (Almost) Everything......... oot 432

CoNSIderiNg MeNUS . ..ottt et 432

Dealing with textual input i, 435

Performing string processingccooviiiiinneiinnn.. 437

Avoiding Mistakes, Plainand Simple 441

ciarrer 2. Debugging an Application......................... L. 443

Programming with Debuggers o i, 444

Running thedebugger i, 446

Recognizing the parts of the Code::Blocks debugger........... 453

Debugging with DifferentTools., 455
Debugging a Code::Blocks Application with Command-Line

ArgUMENES ..ot 456

caeer3: Stopping and Inspecting Your Code 457

Setting and Disabling Breakpointso, 458

Setting a breakpointin Code::Blocks 459

Enabling and disabling breakpoints......................... 460

Watching, Inspecting, and Changing Variables................... 463

Watchingthevariables...... i i 465

Changingvalues. 466

cuaerera: Traveling About the Stack............................. 469

StackingYourDatattt 470

Moving aboutthestack 471

Storing local variables....... 473

Debugging with Advanced Features., 475

Viewingthreads. i 475

Tracing through assemblycode, 475

C++ All-in-One For Dummies

BOOK 5: ADVANCED PROGRAMMING....................... 479
cuarrer 1. Working with Arrays, Pointers,

and References............................ 481
BUilding Up Arrays. . .. coi e e 482
Declaring arrays. . ..ot 482
Arrays and pointers.t 484
Using multidimensionalarrays ..., 488
Arrays and command-line parameters 492
Allocating an arrayontheheap 494
Deleting an array fromtheheap............... 494
Storing arrays of pointers and arrays ofarrays 495
Building constantarrays.ooiiiiiniin it 498
Pointing with Pointers. i i 498
Becoming horribly complex. ...t 499
Pointerstofunctions.t 505
Pointing a variabletoamethod 506
Pointing to staticmethods. oot 509
Referringto References 510
Referencevariables. o i 510
Returning a reference froma function....................... 511
caerer 22 Creating Data Structures.............................. 515
Workingwith Data.t i 515
The greatvariableroundup. ..., 516
Expressing variables from eitherside 518
Castingaspellonyourdata. ..., 520
Comparing castingand converting., 521
Castingsafelywith C++.o i 523
StructuringYourData.t 529
Structures as componentdatatypes............oiiiiiaan.. 531
Equating Structures.ottt e 531
Returning compound datatypes.c.cooviiiiiineiennn.. 532
NamIiNg YOUr SPace. . ..ottt e e 534
Creating @a NAmMeSPACE ...ttt ettt 534
Employing using namespace. ...t 535
Usingvariables. ... 537
Using partof anamespaceoiiiiiiiineinn. 538
cuarter3: Constructors, Destructors, and Exceptions 541
Constructing and Destructing Objects.., 542
Overloading CONStruCtors. vvet it ee 542
Initializing members 543
Adding a default constructor.o 548
Functional constructors ...t 550

Table of Contents xiii

Xiv

Calling one constructor fromanother 553

Copying instances with copy constructors 555
When constructorsgobad. i 557
Destroying your inStanCesoovtiit i 558
Virtually inheriting destructors 560
Programming the ExceptionstotheRule 563
Creating a basictry...catchblock................ 563
Using multiple catch blocksot 565
Throwing directinstancescooviiiiiiiriinennn.n. 566
Catching any exception.vv ittt 567
Rethrowing anexception.........cooviiviiiiiiiin .. 568
Using astandard categorycovvuiviinn e, 570
cuarrers: Advanced ClassUsage 571
Inherently Inheriting Correctly, 572
Morphing your inheritancecco i i 572
Avoiding polymorphism i 573
AdJUSEING @CCESS. .« .ottt 574
Avoiding variable naming conflicts.................., 575
Using class-based access adjustment 576
Returning something different, virtually speaking............. 577
Multiple inheritance i 581
Virtualinheritance........ ... 584
Friend classes and functions o i i 588
Using Classes and Types within Classes.coovvvnn.. 591
Nestingaclass . ..ot i i e e 591
Typeswithinclasses ...t 597
cuaerers: Creating Classes with Templates.................... 601
Templatizing a Classt e 602
CoNSidering types o v vttt 602
Defining the need fortemplates............. o it 602
Creatingand usingatemplate, 605
Understanding the template keyword 607
Going Beyond the BasicSooiiii i 609
Separating a template from the functioncode................ 609
Including static membersinatemplate...................... 611
ParameterizingaTemplatet 612
Putting different types in the parameter..................... 613
Including multiple parameters ...t 616
Working with non-type parametersc.oiiiienn.. 619

C++ All-in-One For Dummies

Typedefinga Template. ... 622

Deriving Templatest 623
Deriving classes from a classtemplate 623
Deriving a class template fromaclass....................... 626
Deriving a class template from a class template 627

Templatizinga Function........... o 630
Overloading and functiontemplates 632
Templatizingamethod. o i 635

ciaerere: Programming with the Standard Library 637

Architecting the Standard Library.........o it 638

Containing Your Classes.ov it 638
StOriNgiNaVeCtOr . ..ot e 639
Working with std:array. 642
Mappingyourdatacoviiiii 643
Containing instances, pointers, or references 644
Working with copies ...t 648
Comparing iNStances ..ottt 649
Iterating through acontainer oo i, 655
Amapofpairsinyourhandcoiiiiini... 658

The Great Container Showdown.......... ...t 658
Associating and storingwithaset............. ... ot 658
Unionizing and intersectingsets.cooviiiviinennn... 662
Listing With list. ..o i e 664
Stackingthedeque ...t 669
Waiting in line with stacks and queues 670

Copying ContaiNers. ..ottt e e e et 673

Creating and Using DynamiC Arrays.ovenvineennennnnn. 675

Working with Unordered Datacoiniiiniinennnnn. 677
Using std::unordered_set to create an unordered set.......... 677
Manipulating unorderedsetsoiiiiiiiiinii.. 677

Workingwith Ranges ... it 679

BOOK 6: READING AND WRITING FILES 681
cuarrer 1: Filing Information with the Streams Library 683

Seeing a Need for Streams.cvv vt 684

Programming with the Streams Library............., 686
Getting theright headerfile........ i, 686
Openingafile. ... e 687
Reading fromafile o i 690
Reading and writingafile.............. ... i i, 691
Working with containers.o i 692

Handling Errors When OpeningaFile 693

FlaggingtheiosFlagso 695

Table of Contents XV

cuaerer 22 Writing with Output Streams 697

Inserting with the << Operatorooviiiiiiniiiiinnennn. 698
Formatting Your Output.t i 699
Formattingwithflagso i i 700

Specifying a precision 704

Setting the width and creatingfields 707

caerers: Reading with Input Streams.......................... 711
Extracting with Operatorsot 712
EncounteringtheEnd of File o it 715

Using the record count approach..............ooua.. 715

Using the EOF check approach it 718

Reading VarioUus TYPeS .« ..o v vttt 720
Understanding data readingissuesccouu... 720

Writing and reading string-typedata........................ 721

Writing and reading structureddata 724

caerera: Building Directories and Contents 727
Manipulating Directoriesouuiuiin et 728

Creating a direCtory.ot 728

Deleting @ direCtory. . ..o e et 730

Getting the Contents of a Directoryvvviineeiinnnennn. 731

CopYINg Files oot 733
Copyingwithwindows i, 734

Using the quick-and-dirtymethod 734

Moving and Renaming Files and Directories..................... 735

cuaeers: Streaming Your Own Classes......................... 737
Streaming a Class for Text Formatting. 738
Understandingthe process, 739

Considering the insertion implementation 739

Considering the extraction implementation.................. 741
Manipulatinga Streamt 742
What'samanipulator? i 742

Writing your own manipulator oo 744

BOOK 7: ADVANCED STANDARD LIBRARY USAGE........ 751
caerer ;. EXploring the Standard Library Further............ 753
Considering the Standard Library Categories.................... 755
Algorithms ..o 755

AtOMIC OPeratioNS. ..o v et 757
CCompatibility. 759

CONCEPES .t ettt 759

C++ All-in-One For Dummies

CHAPTER 2:

CHAPTER 3:

(0] 01 7= 11 1= 1=t 760

COrOULINES ..ot e 760
Filesystemo 761
INPUEL/OULPUL . . oot e e 761
Eerators . ..ot e 761
Localization.t 763
NUMEIICS. .« ottt e e e e 763
RaANgGES. . e e 764
Regular EXpressions 766
SHMIN S o et e e 766
Thread SUPPOIt ..ot e e e e 767
Utilities .. 767
Parsing Strings UsingaHash.......... i, 768
Obtaining Information Using a Random Access Iterator........... 771
Locating Values Using the Find Algorithm....................... 774
Using the Random Number Generatorc.coivenn.. 776
Working with Temporary Buffersot 777
Working with User-Defined Literals (UDLs)........ 779
Understanding the Need forUDLS, 780
Prefixesand suffixes. 781
Differentiating between raw and cooked 784
Working with the UDLs in the Standard Library 785
Stdibasic_String . ..o 785
SEACOMPIEX . ottt e 788
std:ichrono:durationt 789
Creating Your OWN UDLSot 791
DevelopingaconversionUDLcoiiviiniiinennn... 792
Developingacustomtype UDL. ..., 793
Using a custom UDL for side effects.ot 794
Building Original Templates.......................... 795
Deciding Whento Createa Template., 796
Defining the Elements of a Good Template 797
Creating a Basic Math Template............ i, 799
Building a Structure Template. 801
Developinga Class Template.t 804
Considering Template Specialization........................... 807
Creatinga Template Library ... i, 809
Defining the library project i i 810
Configuring the library projecto, 812
Codingthelibrary ... i 813
Using Your Template Library. ...t 815

Table of Contents xvii

xviii

CHAPTER 4:

CHAPTER 5:

InvestigatingBoost..................................... 817

Considering the Standard Library Alternative.................... 818
Understanding why the Standard Library contains Boost
features. . 818
Defining the trade-offs of using the Standard Library.......... 819
Understanding Boost 820
Boostfeatureso 821
LICBNSING . . ottt e 822
Paid SUPPOIt. .ot 823
Obtaining and Installing Boost for Code::Blocks. 823
Unpacking BoOSt ..ottt 823
Using the header-only libraries.ot 825
Building the libraries. i 825
Testing theinstallation........ ... i, 827
Creatingthe BoostTOOIS vv v e 833
Using BOOSt.BUIIdt e 836
Getting a successfulbuild. o i i 836
Creatingyourown example.cooviiiniiin .. 836
USING INSPeCE . o .ttt et et e 837
Understanding BoostBooK. 840
Using QUICKBOOK . . . oot e e 841
USINg DCp ot e 843
UsSiNg Wave. ... e 845
Building Your First Boost Application Using Date Time............ 846
BoostingupaStep......................., 849
Parsing Strings USing REgEX.o viii i 850
Adding the RegEx library 851
Creatingthe RegExcode.o 855
Breaking Strings into Tokens Using Tokenizer 857
Performing Numeric Conversioncoeuieeiennneennn. 858
Creating Improved Loops Using Foreach........................ 862
Accessing the Operating System Using Filesystem 864
.. 869

C++ All-in-One For Dummies

Introduction

»
»
»
»

»

»

»

»

»

here are many general-purpose programming languages today, but few can
claim to be the language of the millennium. C++ can make that claim, and
for good reason:

It's powerful. You can write almost any program in it.
It's fast, and it's fully compiled. That's a good thing.
It's easy to use — if you have this book.

It's object oriented. If you're not sure what that is, dont worry. You can find
out about it by reading this very book you're holding.

It supports functional programming techniques, which makes modeling math
problems considerably easier and makes parallel processing easier. This book
covers functional programming techniques, too.

It's portable. Versions are available for nearly every computer.

It's standardized. The American National Standards Institute (ANSI) and the
International Standards Organization (ISO) both approve an official version.

It's continually updated to meet the changing challenges of the computer
community.

It's popular. More people are using C++ because so many other people use it.

Sure, some people criticize C++. But most of these people don’t truly understand
C++ or are just having a bad day. Or both.

About This Book

This book is a hands-on, roll-up-your-sleeves experience that gives you the
opportunity to truly learn C++. This edition starts out by helping you get a great
C++ installation in place. A lot of readers wrote to tell me that they simply couldn’t
get C++ to work for them, and I listened by adding configuration instructions in
Book 1, Chapter 1. You can find instructions for working with the Mac, Linux, and
Windows throughout the book. The examples are also tested to work on all three
platforms.

Introduction 1

2

C++ All-in-One For Dummies, 4th Edition, is devoted to working with C++ wherever
you want to use it. Book 1, Chapter 2 even includes techniques for writing C++ code
on your mobile device, although writing a complex application on your smart-
phone would be understandably difficult because of the small device size.

At the very beginning, I start you out from square one. I don’t assume any pro-
gramming experience whatsoever. Everybody has to start somewhere. You can
start here. Not to brag, but you are in the hands of a highly successful C++ devel-
oper who has shown thousands of people how to program, many of whom also
started out from square one.

You already know C++? This book is great for you, too, because although I start
discussing C++ from the beginning, I cover the important aspects of the language
in depth. Even if you’ve used C++ in the past, this book gets you up to speed with
the latest in C++ 14 and above innovations, including C++ 20 additions. Plus, this
edition of the book focuses on all the latest programming strategies while remov-
ing some of the less used functionality of the past.

If you’re interested in using the time-tested Object Oriented Programming (OOP)
techniques that C++ developers have used for years, then Book 2 is where you want
to look. You start with a view of classes, but eventually move into more advanced
topics, including the use of programming patterns in Book 2 Chapter 4.

One of the most exciting additions to this edition is the use of functional pro-
gramming techniques, which you can find in Book 3. Functional programming
has become extremely popular because it makes modeling math problems signifi-
cantly easier, and many people use functional programming techniques to solve
modern data science problems. More important, functional programming can be
a lot easier than earlier programming paradigms.

Every application out there has a bug or two. If you doubt this statement, just try
to find one that is bug free—you won’t. Book 4 includes all sorts of techniques
you can use to make your application as bug free as possible before it leaves your
machine and then help you find the bugs that others graciously point out later.

Book 5 is all about moving you from generalized programming strategies into the
advanced strategies used by modern developers. It starts with a look at standard-
ized structures for working with classes in a safe manner. The minibook takes you
through

¥ Simple structures, such as arrays
¥ More advanced data management

3 The use of constructors, destructors, and exceptions

C++ All-in-One For Dummies

¥ Templatized programming

¥ Use of the Standard Library (originally called the Standard Template Library
or STL).

Everyone needs to work with files at some point. You use local, network, and
Internet files today on a regular basis. Book 6 is all about working with files in
various ways. This book includes topics on working with data streams as well.

The Standard Library is immense and there are entire books written about its
use. C++ All-in-One For Dummies, 4th Edition, focuses on providing you with a
really good overview that you can use to drill down into more detailed topics later.
Besides looking at the Standard Library in more detail, you discover how to work
with User Defined Literals (UDLs) and how to create your own templates. This
book also delves into the Boost library, which is the library that has added more to
Standard Library than just about any other source. Check out Book 7, Chapters 4
and 5 to learn about Boost. If you use C++ and don’t use Boost, you’re really
missing out!

C++ is standardized, and you can use the information in this book on many differ-
ent platforms. I wrote the samples using Mac OS X, SUSE Linux (some of the beta
readers used other flavors of Linux), and Windows systems (with some testing on
my ASUS tablet as well). In order to make this happen, I used a compiler called
Code::Blocks that runs on almost every computer (Windows, Linux, and Macintosh)
and CppDroid for my tablet. It doesn’t matter which device you’re using!

To make absorbing the concepts easy, this book uses the following conventions:

¥ Text that you're meant to type just as it appears in the book is in bold. The
exception is when you're working through a step list: Because each step is
bold, the text to type is not bold.

3 Web addresses and programming code appear in monofont. If you're reading
a digital version of this book on a device connected to the Internet, you can
click or tap the web address to visit that website, like this: https: //www.
dummies.com.

3 When you need to type command sequences, you see them separated by a
special arrow, like this: Filec>New File. In this example, you go to the File menu
first and then select the New File entry on that menu.

3 When you see words in italics as part of a typing sequence, you need to
replace that value with something that works for you. For example, if you see
“Type Your Name and press Enter,” you need to replace Your Name with your
actual name.

Introduction 3

https://www.dummies.com
https://www.dummies.com

Foolish Assumptions

This book is designed for novice and professional alike. You can either read this
book from cover to cover, or you can look up topics and treat the book as a refer-
ence guide — whichever works best for you. Keep it on your shelf, and have it
ready to grab when you need to look something up. However, I’ve made some
assumptions about your level of knowledge when I put the book together. The
most important of these assumptions is that you already know how to use your
device and work with the operating system that supports it. You also need to know
how to perform tasks like downloading files and installing applications. A famili-
arity with the Internet is also required, and you need to know how to interact with
it moderately well to locate the resources you need to work with the book. Finally,
you must know how to work with archives, such as the ZIP file format.

Icons Used in This Book

4

TIP

WARNING

LD,
TECHNICAL
STUFF

As you read this book, you see icons in the margins that indicate material of
interest (or not, as the case may be). This section briefly describes each icon in
this book.

Tips are nice because they help you save time or perform some task without a
lot of extra work. The tips in this book are time-saving techniques or pointers to
resources that you should try so that you can get the maximum benefit from C++.
Most important, many of these tips will help you make sense of the overwhelm-
ing quantity of libraries and tools that C++ developers have created over the years.

I don’t want to sound like an angry parent or some kind of maniac, but you should
avoid doing anything that’s marked with a Warning icon. Otherwise, you might
find that your application fails to work as expected, you get incorrect answers
from seemingly bulletproof code, or (in the worst-case scenario) you lose data.
Given where C++ appears, you might also send the next rocket off to Mars prema-
turely, make someone’s thermostat misbehave, or cause nationwide power out-
ages. Really, warnings are for everyone!

Whenever you see this icon, think advanced tip or technique. You might find these
tidbits of useful information just too boring for words, or they could contain the
solution you need to get a program running. Skip these bits of information when-
ever you like.

C++ All-in-One For Dummies

If you don’t get anything else out of a particular chapter or section, remember the

material marked by this icon. This text usually contains an essential process or a

bit of information that you must know to work with C++, or to perform develop-
rememser ment tasks successfully.

Beyond the Book

If you want to email me, please do! Make sure you send your book-specific
requests to:

John@JohnMuel lerBooks . com

I get a lot of email from readers, so sometimes it takes me a while to answer.
I try very hard to answer every book-specific question I receive, though, so
I highly recommend contacting me with your questions. I want to ensure that
your book experience is the best one possible. The blog category at http://blog.
johnmuellerbooks.com/categories/263/c-all-in-one-for-dummies.aspx
contains a wealth of additional information about this book. You can check out the
website at http://www. johnmuellerbooks.com/.

This book isn’t the end of your C++ programming experience — it’s really just
the beginning. I provide online content to make this book more flexible and bet-
ter able to meet your needs. That way, as I receive email from you, I can address
questions and tell you how updates to either Code::Blocks or the C++ language
affect book content. You can also access other cool materials:

3 Cheat Sheet: You remember using crib notes in school to make a better mark
on a test, don't you? You do? Well, a cheat sheet is sort of like that. It provides
you with some special notes on things you can do with C++ that not every
other developer knows. You can find the cheat sheet for this book at www.
dummies.com and typing C++ All-in-One For Dummies, 4th Edition in the
search field. It contains really neat information like the top ten mistakes
developers make when working with C++, a list of header files that you use in
most applications, and some of the C++ syntax that gives most developers
problems.

¥ Updates: Sometimes changes happen. For example, | might not have seen an
upcoming change when | looked into my crystal ball during the writing of this
book. In the past, such a situation simply meant that the book would become
outdated and less useful, but you can now find updates to the book at www.
dummies.com. In addition to these updates, check out the blog posts with

Introduction 5

mailto:John@JohnMuellerBooks.com
http://blog.johnmuellerbooks.com/categories/263/c-all-in-one-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/c-all-in-one-for-dummies.aspx
http://www.johnmuellerbooks.com/
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com

answers to reader questions and demonstrations of useful book-related
techniques athttp://blog. johnmuellerbooks.com/.

3 Companion files: Hey! Who really wants to type all the code in the book?
Most readers would prefer to spend their time actually working through
coding examples rather than typing. Fortunately for you, the source code is
available for download, so all you need to do is read the book to learn C++
coding techniques. Each of the book examples even tells you precisely which
example project to use. You can find these files by visiting www . dummies . com/
go/caiofd4e.

Justin case you're worried about Code::Blocks, you can find complete
download and installation instructions for it in Book 1, Chapter 1. Don’t worry
about which platform you use. This chapter includes instructions for Mac OS
X, Linux, and Windows.

Where to Go from Here

6

If you’re just starting your C++ adventure, I highly recommend starting at either
Book 1, Chapter 1 (for desktop developers) or Book 1, Chapter 2 (for mobile devel-
opers). You really do need to create a solid foundation before you can tackle the
code in this book. If you’re in a hurry and already have a C++ installation, you can
always try starting with Book 1, Chapter 3.

Readers with a little more experience, who already know some C++ basics, can skip
some of these introductory chapters, but you definitely don’t want to skip Book 1,
Chapter 8 because it contains a lot of pointer-related changes in current ver-
sions of C++. If you skip this chapter, you may find later that you have a hard time
following the example code in the book because the newer examples use these
pointer features.

An advanced reader with some idea of the current changes in C++ 20 could pos-
sibly skip Book 1, but scanning Book 2 is a good idea because there are some OOP
changes you definitely want to know about. However, even for advanced read-
ers, skipping Book 3 is a bad idea because modern development really is moving
toward functional programming techniques.

C++ All-in-One For Dummies

http://blog.johnmuellerbooks.com/
www.dummies.com/go/caiofd4e

Getting Started
with C++

Contents at a Glance

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

CHAPTER 5:

Configuring Your Desktop System 9
Obtaininga Copy of C++20.o vt 10
Obtaining Code::Blocks. 11
Installing Code:Blockso v i 12
Touring the Essential Code::Blocks Features. 17
Using Other IDESo ot e 25
Configuring Your Mobile System 27
Obtaining CppDroidovv i 28
Considering Other Alternatives., 32
Touring the Essential CppDroid Features 35
Obtaining CppDroid Help. ... 40
Creating Your First C++ Application.............. 45
Code::Blocks Creatinga Project.ccovvivin i 46
Typingthe Code. ...ttt i e 53
StartingwithMain. o i 55
Showing Information i 55
Let Your Application RunAway, 67
StoringDatainC++................................. 69
Putting Your Data Places: Variables 70
Manipulating Integer Variables oo i, 78
Characters ... i 88
SHMINES o ettt e 93
Making Decisions Using Conditional Operators................ 98
Telling the Truth with Boolean Variables..................... 100
Reading fromtheConsole........., 102
Directing the ApplicationFlow 105
Doing ThisorDoingThatt 106
Evaluating Conditions in C+H.t 107
Including Evaluations in C++ Conditional Statements 111
Repeating Actions with Statements That Loop................ 115
LoOPINg fOr. .ot e 117
Loopingwhile.o o 130
Doingwhile. e 132
Breaking and continuing ...t 133
NeStING I00PS .« vttt e 136

and more. ..

IN THIS CHAPTER

» Getting your own copy of C++ 20

» Getting a copy of Code::Blocks

» Creating a Code::Blocks work
environment on your system

» Seeing how Code::Blocks helps you
perform tasks

» Working with other IDEs

Chapter 1

Configuring Your
Desktop System

his chapter is for those of you who have a desktop system and want to
use it to create your application code. Chapter 2 discusses how to perform
the same task using a mobile device (and provides you with some trade-
offs between the two environments). Whether you use the desktop or the mobile
solution, you need a copy of a compiler that supports C++ 20 features or some
book examples won’t work at all. This book relies on the GNU Compiler Collection
(GCC) version 8.3 compiler because it provides great C++ 20 support (see https://
en.cppreference.com/w/cpp/compiler_support). The best way to obtain the
version 8.3 compiler for your desktop system is to follow the steps in this chapter.

Before you can do anything interesting at all with C++, you need a copy of it
installed on your system. Of course, this means going online, finding the loca-
tion of the software that’s appropriate for your platform, and then downloading
it as necessary. If you use an Integrated Development Environment (IDE) such
as Code::Blocks (the IDE used throughout this book), you get a copy of C++ with
your installation, so you don’t need to worry about reading the first section of
this chapter. This book relies on your having a compiler capable of compiling C++
20 code, which is the latest version of the language available at the time of this
writing.

CHAPTER 1 Configuring Your Desktop System 9

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

©

REMEMBER

Even though this book focuses on working with C++ on the Mac, Windows, and
Linux platforms, you can actually use the techniques it provides on a great many
other desktop systems. With this in mind, you’ll find an overview of using C++
with other IDEs. As your platform becomes more esoteric, you’ll find that fewer
of the book examples work because your platform may require special program-
ming techniques. The best option for working with this book is using a copy of
Code::Blocks 17.12 with C++ 20 support installed on the Linux, Mac, or Windows
platform.

Obtaining a Copy of C++ 20

10

TIP

There is no product available named C++ 20. The C++ 20 standard simply says what
the language contains and how someone should implement it. In other words, you
can’t just go online and get a copy of C++ 20; what you need to do instead is get a
compiler vendor’s implementation of the C++ 20 standard. For example, you can
download the GNU Compiler Collection (GCC) version of C++ 20 from https://
gcc.gnu.org/releases.html.

Every vendor will have a slightly different interpretation of this standard and could
provide additions to the standard. In short, every compiler provides a unique ver-
sion of C++. However, you also have the choice of not using the special features
that the vendor provides, which means your source code is less susceptible to
problems that occur when you use multiple compilers. The examples in this book
are strictly written to the C++ 20 standard, so you shouldn’t have a problem using
them anywhere you want.

It’s important that you also understand that a compiler is not the same as an
Integrated Development Environment (IDE). The compiler is separate from the
IDE in many cases and maintained by two separate parties. For example, the
Code::Blocks IDE supports multiple compilers, and the GCC compiler works within
multiple IDEs. The compiler is the important piece of software that turns your
source code into an executable file that the operating system can run to produce
the output you want.

The compiler you choose has to support the platforms you want to work with. For
example, GCC supports Mac, Windows, and Linux development as well as some
Acorn or (later) Advanced RISC Machine (ARM) processors (ARM doesn’t officially
stand for anything today). In fact, it may support other platforms by the time you
read this chapter. Because it works in so many places, this book focuses on GCC,
even though the examples will work with other compilers with some modification
to overcome compiler differences.

BOOK 1 Getting Started with C++

https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html

Obtaining Code::Blocks

©

REMEMBER

©

REMEMBER

TIP

The Code::Blocks IDE provides an environment in which you can write source
code, compile it, test it, and debug it as needed. The IDE doesn’t actually compile
the source code, but it does provide support for a compiler that does so. (It just so
happens that it does its job in such a way that makes it appear that the compiler is
part of the IDE.) You can choose from a number of compilers in Code::Blocks, but
this book focuses on using GCC to ensure that the examples will run on as many
platforms as possible. GCC comes with your copy of Code::Blocks when working
with Windows, so you don’t have to do anything special to work with it except
select it during the installation process. (When working on a Mac or Linux system,
you must install GCC separately — the compiler doesn’t come with Code::Blocks.)

This book is written using Code::Blocks version 17.12. That doesn’t mean you can’t
use it with earlier or later versions of Code::Blocks. However, when working with
other versions of Code::Blocks, you may find that you need to modify the code
slightly. The modification is required in order to support the compiler that comes
with that version of Code::Blocks. The IDE itself won’t affect your ability to work
with C++ 20.

Code::Blocks comes in both binary form and source code form. You can download
either form of version 17.12 from http://www.codeblocks.org/downloads/5.
The link leads you to SourceForge, where you select the platform you want to use:
Mac, Linux, or Windows. Click the folder link and you see a list of downloadable
archive files for that platform. (Linux users will also have to choose their particu-
lar version of Linux.) Choosing the correct archive is important because different
archives have different features.

When working with a Windows installation, make sure you use the codeblocks-
17.12mingw-setup . exe installer to obtain a copy of GCC with Code::Blocks. Make
absolutely certain that you don’t install it to the Program Files folder on your
system, because the application won’t work there. Code::Blocks writes data to
its host directory, and Windows won’t allow applications to perform this task in
the Program Files folder. Create a folder to which you have write privileges and
install Code::Blocks there instead.

Now that you have an appropriate archive to use, it’s time to install Code::Blocks

on your machine. The “Installing Code::Blocks” section of this chapter tells you
more about getting Code::Blocks installed on your particular system.

CHAPTER 1 Configuring Your Desktop System 11

Configuring Your
Desktop System

http://www.codeblocks.org/downloads/5

Installing Code::Blocks

12

WARNING

Before you can use Code::Blocks as your IDE, you need to install it. The follow-
ing sections describe how to install Code::Blocks on each of the main platforms
supported by this book. The instructions in these sections assume that you’ve
downloaded the binary version of Code::Blocks and that you aren’t using a custom
compiled version of the product.

If you have an older version of Code::Blocks installed on your system, be sure to
uninstall it before installing the new version. Also make sure that you tell the
uninstaller to delete any old custom files in the folder so that you start with a
fresh folder. Old files can cause errors to appear when you start Code::Blocks or
perform common tasks.

Working with Windows

Code::Blocks comes with a Windows installer that will make the task of install-
ing the IDE easier. The following steps help you work with the codeblocks-
17.12mingw-setup.exe installer:

1. Double-click the file you downloaded from the Code::Blocks site.

You see the CodeBlocks Setup Wizard start. If you see a User Account Control
dialog box, give the application permission to proceed by clicking Yes.

2. Click Next.

The licensing agreement appears. Read the licensing agreement so that you
know the terms of usage for Code::Blocks.

3. Clickl Agree.

The wizard displays a series of configuration options, as shown in Figure 1-1.
This book assumes that you've performed the default, full installation.

4. Click Next.

The installation program asks where to install Code::Blocks on your system.
Unlike many other applications, Code::Blocks will actually write data to this
folder from time to time. The best idea is to use a folder to which you have
write access. To ensure maximum compatibility, the book uses the C: \
CodeBlocks folder for installation purposes. To keep from seeing any error
messages, make sure that the path doesn't have any spaces in it (see the blog
postathttp://blog. johnmuellerbooks.com/2016/04/20/spaces—in-
paths/ for details).

BOOK 1 Getting Started with C++

http://blog.johnmuellerbooks.com/2016/04/20/spaces-in-paths/
http://blog.johnmuellerbooks.com/2016/04/20/spaces-in-paths/

FIGURE 1-1:

The wizard asks
you to select the
configuration
options to use.

TIP

(7 Code::Blocks Installation (=1 oh

' Choose Components
‘ Choose which features of CodeBlocks you want to install,

Chedk the components you want to install and uncheck the compenents you don't want to
install. Click Next to continue.

Select the type of install: Full: All plugins, all tools, just everything hd
Default install -

Or, select the optional 5
components you wish to :
install:

mn

B CCTest
:B Share Config

i :B Launcher s
= PSS
Description

Space reguired: 253.4 MB

< Back “ Next >] I Cancel

5. Type C:\CodeBlocks in the Destination Folder field. Click Install.

The installation program automatically creates the C: \CodeBlocks folder for
you when it doesn't already exist. If the folder already exists because you
previously installed an older version of Code::Blocks, you see a dialog box
appear. Click Yes to allow installation to continue. You see all the files installed
into the C: \CodeBlocks folder on your system.

The setup wizard may display a dialog box asking whether you want to start
Code::Blocks. Click No if you see this dialog box.

6. Click Next.
You see a completion dialog box.
7. click Finish.

The setup wizard ends.

If you find that the wizard has somehow managed not to select a compiler and/or
debugger for you, you can perform this task manually. The “Selecting a compiler”
section will help in this regard. In addition, the blog posts at http://blog. john
muel lerbooks.com/2011/04/06/checking-your—-compiler-in-codeblocks/
and http://blog. johnmuellerbooks.com/2013/04/12/resetting-your-code
blocks—configuration/ tell how to perform the additional setup. However, in
most cases, the wizard will perform the required setup for you.

Working with Mac OS X

Installing Code::Blocks on a Mac requires a little extra work than it does in Win-
dows. Code::Blocks requires Mac OS X 10.6 or later to install. You can get the ver-
sion 17.12 file, codeblocks-17.12_0SX64.dmg, from https://sourceforge.net/

CHAPTER 1 Configuring Your Desktop System 13

Configuring Your
Desktop System

http://blog.johnmuellerbooks.com/2011/04/06/checking-your-compiler-in-codeblocks/
http://blog.johnmuellerbooks.com/2011/04/06/checking-your-compiler-in-codeblocks/
http://blog.johnmuellerbooks.com/2013/04/12/resetting-your-codeblocks-configuration/
http://blog.johnmuellerbooks.com/2013/04/12/resetting-your-codeblocks-configuration/
https://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Mac/

14

projects/codeblocks/files/Binaries/17.12/Mac/. If you experience a Mac
Gatekeeper error during installation, please check out the blog post at http://
blog. johnmuellerbooks.com/2016/03/21/mac-gatekeeper—-error/.

The following steps tell you how to get a functional Code::Blocks installation on
your Mac system.

1.

Download and install Xcode from the App Store to obtain a copy of GCC, if
necessary.

You can verify that you have the GNU GCC compiler installed by opening a
terminal, typing gcc -v, and pressing Enter. If GCC is installed, you should see
some version information along with some compiler instructions.

Extract the Code::Blocks files into a folder.

You see a number of files, including the Code::Blocks application, a readme file
containing the latest update information, and a PDF file containing
documentation.

Open the Applications folder.
You see the applications installed on your system.

Drag the CodeBlocks . app file from the folder you used for extraction
purposes to the Applications folder.

The operating system adds Code::Blocks to the list of usable applications.
Navigate to https://developer.apple.com/downloads/.

This site requires that you sign up for a free developer ID. Simply follow the
prompts onscreen to obtain your Apple ID. The sign-up process is free.

Click the Command Line Tools for Xcode link.
The operating system downloads the file and displays a package folder for you.
Double-click the Command Line Tools package.

The operating system installs the package for you, which enables access to
GCC from Code::Blocks.

Using the standard Linux installation

There isn’t a single set of steps for installing Code::Blocks on Linux, because each
flavor of Linux has its own requirements. Code::Blocks directly supports:

¥ Blag

¥ Debian

BOOK 1 Getting Started with C++

https://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Mac/
http://blog.johnmuellerbooks.com/2016/03/21/mac-gatekeeper-error/
http://blog.johnmuellerbooks.com/2016/03/21/mac-gatekeeper-error/
https://developer.apple.com/downloads/

)
S
TECHNICAL
STUFF

¥ Fedora
¥» Gentoo
¥ Platypux

¥ Red Hat Package Manager (RPM)-based distributions (such as SUSE, Red Hat,
Yellow Dog, Fedora Core, and CentOS)

¥ Ubuntu

Each distribution type has its own set of instructions that you can find at http://
wiki.codeblocks.org/index.php?title=Installing_Code: :Blocks. Make sure
you download and install the compiler, debugger, and IDE as needed by carefully
following the instructions (typed at the terminal). The file that you download
from http://www.codeblocks.org/downloads/26 contains the packages for a
Code::Blocks installation, so you don’t need to download each package separately
as part of the installation process.

Some Linux installations have special requirements or experience limitations
when working with Code::Blocks. The only apparent limitation that affects
this book is the lack of Boost support for Red Hat and CentOS. Because of this
limitation, you can’t use the examples found in Book 7, Chapters 4 and 5. However,
if you experience other limitations, please let me know about them at John@
JohnMuellerBooks.com and I’ll address them as part of a blog post for this book.

Using the graphical Linux installation

All versions of Linux support the standard installation discussed in the “Using
the standard Linux installation” section of this chapter. However, a few versions
of Debian-based Linux distributions, such as Ubuntu 12.x and above, provide
a graphical installation technique as well. You’ll need the administrator group
(sudo) password to use this procedure, so having it handy will save you time. The
following steps outline the graphical installation technique for Ubuntu, but the
technique is similar for other Linux installations.

1. Open the Ubuntu Software Center folder (the folder may be named
Synaptics on other platforms).

You see a listing of the most popular software available for download and
installation, as shown in Figure 1-2. Your list will probably vary from the one
shown in the screenshot.

2. select Developer Tools (or Development) from the All Software drop-down
list box.

You see a listing of developer tools, including Code::Blocks, as shown in
Figure 1-3.

CHAPTER 1 Configuring Your Desktop System 15

Configuring Your
Desktop System

http://wiki.codeblocks.org/index.php?title=Installing_Code::Blocks
http://wiki.codeblocks.org/index.php?title=Installing_Code::Blocks
http://www.codeblocks.org/downloads/26
mailto:John@JohnMuellerBooks.com
mailto:John@JohnMuellerBooks.com

FIGURE 1-2:

The Ubuntu
Software Center
contains a list of
the most popular
software when
you open it.

FIGURE 1-3:

The Developer
Tools category
contains an entry
for Code::Blocks.

16

Ubuntu Software Center

B
B

Ubuntu Software Center

Accessories

Books & Magazines
Developer Tools
Education

Fonts

Games

Graphics

Internet

Office

Science & Engineering

Sound & Video

What's New

SynchroniZeRD

Accessories
us$ 2,99

[LibreOffice 4.1 Draw Guide
§ © ™ | Books & Magazines

uss 2.99

, Candy & Puzzle
&S, Puzzles

uss 2.99

indicator File explorer
Accessories
Free

[N LibreOfFfice 4.1 Calc Guide
i " | Books & Magazines

Uss 2.99

Zoo: Orientation
@‘ Books & Magazines
©
Free

More

[FRIFE [Tinta Roja N° 22] Otofio ...
& Books & Magazines

Free

== Calculator Orange
Office

U]
USS$ 299

B Numix wallpaper - Polar ...
! Themes & Tweaks
uss 2.99

System
Themes & Tweaks

Universal Access

Recommended For You

Turn On Recommendations

Ubuntu Software Center

Ubuntu Software Center

Developer Tools

Debugging
&
Python

Graphic

Version Control

-
»

All224

Localization

Profiling

Top Rated Developer Tools

_ . Geany
o9 iDEs

(403}

Free

CodexBlocks IDE
IDEs

Free

m GNU Octave
Mathematics
az)

Free

Meld Diff Viewer
Developer Tools
(113)

Frea

Bluefish Editor
ﬂ Web Development

(130) (162)

Free
wa Seyder
w IDEs

Free

GNU Emacs 23
(a8)
Free

BaseX XML Database
S
®

Free

Eclipse
& 0

Free

i Developer Tools

2n
Free

Qt Creator
IDEs
Free

jEdit
Developer Tools

(29)
Free

224 items available

BOOK 1 Getting Started with C++

3. Double click the Code::Blocks entry.

The Ubuntu Software Center provides details about the Code::Blocks entry
and offers to install it for you, as shown in Figure 1-4.

Bt ™= 219rm

Ubuntu Software Center

@ - [;I - Q codeblocks
H

All e Installed

All Software ByRelevance v

Code:xBlocks IDE & & & (130

Configurable and extensible IDE

FIGURE 1-4:

It's possible to
obtain additional
information
about
Code::Blocks if
necessary.

4. Click Install.

Ubuntu begins the process of installing Code::Blocks. A progress bar shows the
download and installation status. When the installation is complete, the Install
button changes to a Remove button.

5. Close the Ubuntu Software Center folder.

You see a Code::Blocks icon added to the Desktop. The IDE is ready for use.

Touring the Essential Code::Blocks Features

No matter how you install Code::Blocks for your platform, you eventually end up
with an IDE with standardized characteristics. This is one of the best reasons to
use an IDE such as Code::Blocks — you can use the same IDE no matter which
platform you use.

CHAPTER 1 Configuring Your Desktop System 17

Configuring Your
Desktop System

©

REMEMBER

FIGURE 1-5:
Associate

Code::Blocks with
your C++ files to
make it easier to

18

manage them.

Your screenshots may look different from the ones shown in this book. Even
though this book uses screenshots from the Windows version of Code::Blocks,
the same features are provided for Code::Blocks installations on other platforms,
though the IDE may not look precisely the same on those other platforms. The
following sections describe the essential features you need to know about when
working with Code::Blocks.

Starting Code::Blocks for the first time

Open the Code::Blocks executable program using the technique your platform
usually requires. For example, when working with Windows or the Mac, you
double-click the CodeBlocks icon. The first time you start Code::Blocks, you may
see a Compilers Auto-detection dialog box. Select the GNU GCC Compiler entry (it
may be the only available entry and selected by default), click Set as Default, and
then click OK.

At this point, Code::Blocks displays a File Associations dialog box, similar to the
one shown in Figure 1-5. It’s a good idea to associate the IDE with your C++ files so
that opening the file also opens the IDE — making it much easier to write applica-
tions and modify them later.

File associations ==

Code::Blocks is currently not the default application for C/C++ source files.
Do you want to setit as default?

You can always change assodations from the environment settings later.

Mo, leave everything as it is
Mo, leave everything as it is (but ask me again next time)
@ Yes, associate Code::Blocks with C/C++ file types
Yes, assodate Code::Blocks with every supported type (induding project files from other IDEs)

QK

Select either of the Yes options in this list. You can associate Code::Blocks with
other source code types, but for the purposes of this book, you only need to associ-
ate it with C++ files. Click OK to complete the action. At this point, you see the IDE.

After you set the file associations, Code::Blocks usually begins by opening the
IDE and placing a tip dialog box in it, as shown in Figure 1-6. You can turn these
tips off by clearing the Show Tips at Startup check box. The Tip of the Day link
on the Start Here page (which you can display by choosing View=> Start Page) also
displays a tip when clicked. The tip is a random bit of information about using
Code::Blocks more efficiently. You can see the next tip in the series by clicking
Next Tip or disable the display of tips by clearing Show Tips at Startup. After you
read the tip, click Close.

BOOK 1 Getting Started with C++

FIGURE 1-6:
Code::Blocks
provides a tips
dialog box that
contains helpful
information.

FIGURE 1-7:
Save your
changes to disk.

OLAOD,
TECHNICAL
STUFF

Tip of the Day

=

Did you know...

You can change the colours of the editor
by either using "Settings/Editor/Colours"
or right-clicking inside the editor and click
"Configure editor"

Show tips at startup

Mext Tip Cloge

In some cases, the IDE will display a message similar to the one shown in
Figure 1-7. What this message is saying is that you’ve made changes to the
Code::Blocks configuration. Click Yes to save the changes.

Layout changed

'9' The perspective 'Code::Blocks minimal' has changed. Do you want to save it?

Yes | [No
| Don't annoy me again!

Windows users may experience a problem at this point. If you install Code::Blocks
in the C:\Program Files folder and don’t have Administrator access (or if you
simply opened the application as a regular user), you may find that you can’t save
any Code::Blocks settings, making using Code::Blocks an annoying experience.
To use Code::Blocks without problems, make sure you have write access to the
folder in which you installed it. The best policy is to install Code::Blocks to
the C:\CodeBlocks folder on your system. As an alternative, you can right click
the Code::Blocks icon and choose Run As Administrator from the context menu to
run Code::Blocks with the required permissions.

Opening the sample projects

You obtain the source code for this book from the publisher site described in the
Introduction. After you download the .zip file containing the source, you simply
extract it to your hard drive. Don’t attempt to run the source code inside the .zip
file; doing so will display confusing messages in Code::Blocks and won’t allow you
to run the code.

The source code for this book is divided into books, chapters within books, and
examples within chapters. To open the first example found in Chapter 3 of this

CHAPTER 1 Configuring Your Desktop System 19

Configuring Your
Desktop System

FIGURE 1-8:
Each example
has a . cbp file
associated with
it that opens
the example in
Code::Blocks
for you.

TIP

20

book, for example, start by locating the \CPP_AIO\BookI\Chapter@3\SayHello
folder (or the equivalent on your platform). Within this folder is SayHello.cbp.
The Code Blocks Project (. cbp) file extension contains everything that Code::Blocks
needs to open the project and present it to you. When you get to this first project,
you double-click SayHello.cbp and Code::Blocks automatically opens the project
for you, as shown in Figure 1-8.

¥ main.cpp [SayHello] - Code::Blocks 17.12 =l ==
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help
feBE@ e % | =y [l == 2 dsa~
P P § <@ B Debug - B P BE 6D 4D g0 G | &)
Management x main.cpp X
| Brotects il 1 #include <iostream>
OWorkspace 2
"H_ SayHello 3 using namespace std;
i Sources a
5] int main{)
[
T cout << "Hello\tI am your computer talking." << endl:
8 long MyLong = 2762547892451 * 10 / 2 * 3 + 25;
] cout << MyLong << endl;
10 return 0;
11
12
“ T G
Logs & others x
4| /) DoxyBlocks 3 | €) Debugger | 4% Closed files list X | b Thread search x| AFortr p
Command: &1 @'lzj
[cle++ | windows (CR+LF) WINDOWS-1252 Line 7, Col 1, Pos 62 Insert

If you have chosen to allow tips, you’ll actually see a Tip of the Day dialog box
first, like the one shown earlier, in Figure 1-6. Click Close after you read the tip
to see the project. Don’t worry about the contents of this example for now. You’ll
discover how it works in Chapter 3. The only thing you need to know for now is
how to open a project example so that you can follow along with the examples in
the book.

When working with IDEs other than Code::Blocks, you can open the C++ (. cpp) file
instead of the .cbp file. Opening the .cpp file will still display the code example
for you. C++ stores source code in .cpp files, not as part of the .cbp files.

Viewing the essential windows

There are some windows that you use with every example in the book. As the book
progresses, you’ll be introduced to other windows, but the ones covered in the

BOOK 1 Getting Started with C++

following sections are the windows that you need to know about in order to get
started with Code::Blocks.

Using the Start Here window

The Start Here window, shown in Figure 1-9, does precisely as its name
indicates — it gets you started with Code::Blocks. This window is automatically
displayed when you open Code::Blocks directly, without opening a project first. It
appears immediately after you clear the Tip of the Day dialog box.

!‘. Code::Blocks

Release 17.12 rev 11256 (2017-12-28 10:44:41) gee 5.1.0 Windows/unicode - 32 bit

m

E Create a new project '\)\!t Open an existing project J Tip of the Da

FIGURE 1-9: " Misit the Code::Blocks forums Report @ bug or reguest a new feature
=
Use the Start
Here window Recent projects
to start a new 5 CACPP AID\BookNChapteri3\SayHello\SavHello.cbp -

session. Ll] '

This window is important because it also provides you with access to various
Code::Blocks features and makes it possible for you to request changes. Here are
the options you can access using this window:

3 Create a New Project: Before you can use Code::Blocks effectively, you need
to create a project. A project acts as a container to hold the files used to create
the application. It also stores settings used to configure the development
environment and present that environment to you in a specific manner.

3 Open an Existing Project: Any time you want to re-create the environment
you used during a previous coding session, you open an existing project. The
project will automatically open any source code files that you had open and
perform other tasks to make it easy for you to start right back up where you
left off the previous day.

CHAPTER 1 Configuring Your Desktop System 21

Configuring Your
Desktop System

©

REMEMBER

FIGURE 1-10:

The Management

window helps

you manage your

22

Code::Blocks
projects.

»

»

»

»

Tip of the Day: If you missed the Tip of the Day or you simply want to
reactivate the feature, click this link. Code::Blocks displays the Tip of the Day
dialog box, shown in Figure 1-6.

Visit the Code::Blocks forums: You can’'t communicate directly with the
makers of Code::Blocks. However, you can communicate directly with other
users and get peer support. The makers of Code::Blocks also monitor the
forums, and you'll see them actively addressing issues that aren't handled
with peer support.

Report a Bug or Request a New Feature: Every application on the planet
has bugs (programming errors), including the Code::Blocks IDE. It's important
to report bugs when you find them so that they can be fixed.

Anyone who uses an application long enough will likely come up with a
spectacular idea for making it better. The makers of Code::Blocks want to hear
your phenomenal idea, so contact them sooner than later.

Recent Projects: As you work with Code::Blocks, you'll create more than one
project. Rather than look all over your hard drive for the project you need, you
can use this feature to find it immediately. To open the project, just click on its
link in the Recent Projects list.

Even if you can’t see the Start Here window after you open a project, you can
always view it by selecting View=> Start Page. Keeping the Start Here window
handy makes it easy to access commonly used Code::Blocks features. However,
you can also access these features using menus. For example, to create a new
project, you choose File> New=>Project.

Using the Management window

The purpose of an IDE is to help you manage your coding projects in various ways,
so it’s not surprising that Code::Blocks comes with a Management window, as
shown in Figure 1-10. The Management window normally resides on the left side
of the IDE’s main window, but you can move it where you want by using the title
bar to drag the window.

Management B

Projects | Symbols Files | FSymbols Resources
OWorkspace

-y sayHello

=-Er Sources
fee main.cpp

BOOK 1 Getting Started with C++

(= =)
T
TECHNICAL
STUFF

The Management window contains four tabs. (The Fortran Symbols, FSymbols,
tab is never used in this book.) The following list describes the purpose of each tab:

¥ Projects: Grouping in one place all of the files needed to create an application
is a helpful method for managing it. A grouping of applications files is called a
project, and helping you create and maintain projects is just one way in which
Code::Blocks makes application development easier.

3 Symbols: Applications contain a number of symbols, such as the names of
functions (named blocks of code). You use the Symbols tab to find specific
symbols you need within an application. Don't worry too much about symbols
now, but eventually you'll find that this tab helps save time and effort by
making it easier to locate specific pieces of your application.

¥ Files: Locating code and resources you need to add to the current project can
be time consuming. The Files tab provides a method for navigating the file
system. You can then right-click on files you need and use the context menu
entries to perform tasks such as adding the file to your current project.

3 Resources: Graphical applications require the addition of dialog boxes and
other visual elements that C++ treats as resources. The Resources tab
contains a list of these resources so that you can find them easily and manage
them in various ways.

The Resources tab is a feature, used by advanced developers, which you
generally don't need to worry about unless you decide to create graphical
applications using a combination of C++ and the wxWidgets plug-in (installed
automatically for Windows developers, but separately for both Mac and Linux
developers). An explanation of how to create such applications is outside the
scope of this book, but you can see a simple example of such a project at
http://wiki.codeblocks.org/index.php?title=WxSmith_tutorial:_
Hello_world.

Using the Logs & Others window

Code::Blocks helps you track all sorts of activities. For example, when you cre-
ate a new application from source code you write (a process called building), you
see messages that tell you how the process went, as shown in Figure 1-11 (your
messages may vary slightly). The examples in this book will help you understand
when to use the various log tabs and other tabs (such as the Debugger tab) to
better determine how your application works.

The tabs you see in this window depend on which options you have enabled in
Code::Blocks and what task you’re doing. Code::Blocks will usually select the tab
you need automatically. If you want to close a particular tab, click the X next to its
entry on the tab. To display a tab that you don’t see, right-click any tab in the list
and choose an entry from the Toggle option on the context menu.

CHAPTER 1 Configuring Your Desktop System 23

Configuring Your
Desktop System

http://wiki.codeblocks.org/index.php?title=WxSmith_tutorial:_Hello_world
http://wiki.codeblocks.org/index.php?title=WxSmith_tutorial:_Hello_world

Using the Logs &
Others window to Process terminated with status 0 (0 minuta(s), 0 sasond(s))
understand how
your application -

24

Logs & others =

_’! Code::Blocks X _<') Search results X ﬁ Build log f Build messages X Q Debugger ¥

—————————————— Build: Debug in SayHello (compiler: GNU GCC Compiler)-------——-—-——---— s
mingw3Z-g++ exe -Wall -fexceptions -g -c C:\CPE_ATO\BookI\Chapter03\SayHello'\main cpp -o obj

FIGURE 1-11: “Debugimain.o
mingw3Z-g++_exa -LC:\Boost\lib -o bin\Debug\SayHello exe obj\Debugimain o
Output file is bin\Debug'SayHello.exe with size 1.50 MB

m

0 error(s}), 0 warning(s) (0 minute(s}), 0 second(s})

works.

Selecting a compiler

Code::Blocks supports a host of compilers. This book uses GCC because it works on
all of the target platforms and it provides great C++ 20 support. Most Code::Blocks
installations also select this particular compiler automatically. So there are all
kinds of great reasons to use GCC as a compiler. However, you might not have
GCC selected on your system, and that could cause problems when running the
examples. Not every compiler vendor provides great C++ 20 support, or your com-
piler vendor might implement a particular detail differently than GCC does. The
following steps help you verify that GCC is the compiler selected for your system,
and they help you change your configuration if it isn’t:

1. Open Code::Blocks.

It doesn't matter if you select a project or not. Configuring the compiler will be
the same whether you have a project loaded or not.

2. Choose Settings->Compiler.
You see the Compiler Settings dialog box, as shown in Figure 1-12.

3. Click Global Compiler Settings in the left pane to display the global
compiler settings.

4, Verify that the GNU GCC compiler (or an equivalent for your platform) is
actually selected in the Selected Compiler list.

The list could contain a number of GCC compiler entries. The best option is the
GNU GCC Compiler setting because it offers maximum compatibility with the
book examples. If the GNU GCC Compiler option (or an equivalent for your
particular platform) is selected, proceed to Step 7.

5. Sselect the GNU GcC Compiler option (or the equivalent for your platform)
in the Select Compiler list.

The Set As Default button becomes enabled after you make your selection.
6. Click Set As Default.

This step ensures that the GNU GCC compiler is used for all of your projects,
even if you only want to open the downloaded source code.

BOOK 1 Getting Started with C++

FIGURE 1-12:

Set Code::Blocks
to use the GCC
compiler to run
the examples in
this book.

Compiler settings = [==
Global compiler settings

Selected compiler

[enu Gec compiter -
Global compiler settings Compiler settings |Link.er settings | Search directories | Toolchain executables | Custom variables I Build options | a2

Palicy:
" alicy:

——
Compiler Flags ‘ Other compiler options I Other resource compiler options | #deﬁnesl
Bl General -

Have g++ follow the 1998 IS0 C++ language standard [std=c++38] []
Profiler settings

Have g++ follow the C++11150 C++ language standard [-std=c++11] []
Have g++ follow the C++14150 C++ language standard [-std=c++14] []

m

na Have g++ follow the coming C+-+0x (aka c++11) IS0 C++ language stan []
5: Have g++ follow the coming C++1y (aka C++14) IS0 C++ language star []
Have g++ follow the coming C++1z (aka C++17) IS0 C++ language star []
— Have gee follow the 1990 IS0 C language standard (certain GNU extensio []
Batch builds Have gce follow the 1992 IS0 C language standard [-std=c93] O
Have gce follow the 2011150 C language standard [-std=c11] O
In C mode, this is equivalent to -std=c90, in C++ mode, itis equivalent to []
Puosition Independent Code [-PIC] O
Static libgee [-staticdibgec] O
Stati lihetdr 44 T-ataticdihetdr 441 [i
NOTE: Right-dlick to setup or edit compiler fiags.
7. click Ok.

8. Close Code::Blocks.
You see a Layout Changed dialog box.
9. Click Yes.

Your changes become permanent, and Code::Blocks closes.

Using Other IDEs

REMEMBER

Even though this book will focus on the Code::Blocks IDE and the GCC compiler
combination, the knowledge you gain can be used with any IDE and compiler
combination. In fact, all you really need is the compiler. Most developers use an
IDE, just because it makes things easy (and we all like things easy). You may find,
though, that Code::Blocks simply doesn’t provide the functionality you want or
that it’s too hard to use.

The selection of an IDE is a personal thing, and most developers have specific
reasons for choosing a particular IDE. In fact, I use several different IDEs and
make my choice based on the needs of a particular project. So it’s not even neces-
sary to use the same IDE all the time. IDEs provide management features, while

CHAPTER 1 Configuring Your Desktop System 25

Configuring Your
Desktop System

26

compilers control how the source code is interpreted and turned into an execut-
able file. The two applications perform completely different tasks.

GCC is a great choice for a compiler because a number of IDEs support it. If you
decide to use a different IDE from the one found in this book, that’s fine with us.
In fact, we congratulate you on your desire to take a different path! Here are some
alternative IDEs that you might want to consider:

»
»
»

»

»
»

Codelite: https://codelite.org/
Dev-C++: https://dev-c.soft32.com/free-download/?dm=2

Eclipse: https://www.eclipse.org/downloads/ when used with C/C++
Development Tooling (CDT) (https://www.eclipse.org/cdt/)

Emacs: https://www.gnu.org/software/emacs/) when used with the
Emacs Code Browser (ECB) (http://ecb.sourceforge.net/)

Netbeans: https://netbeans.apache.org/download/index.html

Qt Creator: https://www.qgt.io/developers/

BOOK 1 Getting Started with C++

https://codelite.org/
https://dev-c.soft32.com/free-download/?dm=2
https://www.eclipse.org/downloads/
https://www.eclipse.org/cdt/
https://www.gnu.org/software/emacs/
http://ecb.sourceforge.net/
https://netbeans.apache.org/download/index.html
https://www.qt.io/developers/

IN THIS CHAPTER

» Getting and using CppDroid

» Working with other mobile IDEs
» Using CppDroid to write code

» Getting CppDroid help

Chapter 2

Configuring Your Mobile
System

t one time, developers relied exclusively on desktop systems to perform

useful tasks because desktops provided the required computing power.

Laptops came next, but essentially a laptop is a smaller form of a desktop.
Today, however, developers rely on all sorts of mobile devices to write code. Even
though someone could conceivably use a smartphone for the task, the majority
of this activity occurs on high-powered tablet computers. The reason relates not
so much to the power, but the form factor. A tablet offers more screen real estate
to see your code and observe how it works. Keeping these two goals in mind and
looking at the available Integrated Development Environments (IDEs), this chap-
ter relies on Google CppDroid to make the leap from desktop systems to Android-
powered tablet systems, such as the ASUS ZenPad 3S 10.

However, you shouldn’t get the idea that CppDroid is the only game in town. You
also find a description of a few other offerings in this chapter, and you can cer-
tainly try them if you like. The consistent issue with all of these offerings, though,
is that they all currently lack C++ 20 support, so some book examples won’t run
on your tablet at all. If you want to ensure maximum compatibility with the book’s
code, procedures, and screenshots, you still need to rely on Code::Blocks run-
ning GCC.

CHAPTER 2 Configuring Your Mobile System 27

After you get CppDroid installed, you need to know how to perform some basic
tasks with it. This chapter doesn’t provide a complete tutorial on using CppDroid,
which is why it also discusses how to obtain help. However, you do discover how
to interact with the book’s code in this chapter, which is an essential part of the
learning experience.

Obtaining CppDroid

28

Many IDEs are available for you to use to work with C/C++ code. However, most of
them rely on the Windows, Linux, Mac OS X, and Solaris platforms (with Solaris
appearing as an option far less often than the others). In addition, most of them
are paid options, with Code::Blocks (http://www.codeblocks.org/) and Visual
Studio Code (https://code.visualstudio.com/) being notable exceptions.
However, to program on your Android device, you need an IDE that works with
Android and provides some sort of cloud-based storage for the most part (PC-
based IDEs use local storage). CppDroid offers a good Android-based solution that
you can use in both online and offline mode without problem. Plus, the free option
actually does work (but with limits; see the “Free versus paid software” sidebar
for details). The following sections give you insights into working with CppDroid.

FREE VERSUS PAID SOFTWARE

You can often get by using free software on your mobile device. In some cases, you
don't actually have a paid choice, but in other cases the paid option may offer features
you won't use. Game software falls into this category, as do some kinds of productivity
software. The paid version of an app often lacks ads, offers additional storage space,
and frees up a few new features. You may also receive some level of support directly
from the vendor, rather than rely on community support. Whether the paid version is
worth your time depends on which features you use.

The free-versus-paid question skews toward paid when you start to work with an

IDE. Many of the CppDroid features discussed in this chapter come with only the paid
version, and the book assumes that you have the paid version when working with the
code. However, you can probably work with a majority of the examples using the free
version if you're willing to put up with the loss of some functionality, like real-time diag-
nostics and static analysis.

BOOK 1 Getting Started with C++

http://www.codeblocks.org/
https://code.visualstudio.com/

©

REMEMBER

Understanding why CppDroid is such a
great choice

You can find a number of C/C++ IDEs for Android in the Google Play Store. However,
the choices come down to three products for most people (in order of preference):

¥ CppDroid
¥ C4Droid
3 CxxDroid

None of these products will completely replace a desktop IDE, but CppDroid comes
very close. For example, CppDroid is the only one of the three products that has
built-in support for graphics. You can obtain graphics support in CxxDroid using
Qt (https://www.qt.io/) and a nonstandard header, graphics.h, but this means
working in a manner that doesn’t easily translate between desktop and mobile
device. You can also use CxxDroid with Simple DirectMedia Layer (SDL) (https://
www . 1ibsdl.org/). C4Droid supports SDL using only a non-standard graphics.h
file. You use Qt to develop business graphics software, while SDL works great for
2-D games.

If you want to develop 3-D games, you must use DirectX through Wine (https://
www.androidpolice.com/2020/01/21/windows-compatibility-layer-wine-
hits-v5-0-on-android/) or OpenGL (https://developer.android.com/guide/
topics/graphics/opengl). Thereare add-ons, such as Unity (https: //developer.
android.com/games/develop/build-in-unity) and Unreal (https://docs.
unrealengine.com/en-US/Plat forms/Mobile/Android/index.html), but they
actually layer on DirectX or OpenGL, so you’re still using one of these two tech-
nologies, despite using them indirectly. Using any of these products on Android is
difficult, and you should plan plenty of time to integrate these APIs into your IDE.

It’s helpful to know precisely what CppDroid provides. Table 2-1 lists basic func-
tionality, whether this functionality comes only with the paid version, and a brief
overview of what you obtain with the basic functionality. As you work with Cpp-
Droid, you encounter some deficiencies, especially when running the standardized
code in this book, but you also discover that you can run a lot of it without any
sort of modification.

CHAPTER 2 Configuring Your Mobile System 29

Configuring Your
Mobile System

https://www.qt.io/
https://www.libsdl.org/
https://www.libsdl.org/
https://www.androidpolice.com/2020/01/21/windows-compatibility-layer-wine-hits-v5-0-on-android/
https://www.androidpolice.com/2020/01/21/windows-compatibility-layer-wine-hits-v5-0-on-android/
https://www.androidpolice.com/2020/01/21/windows-compatibility-layer-wine-hits-v5-0-on-android/
https://developer.android.com/guide/topics/graphics/opengl
https://developer.android.com/guide/topics/graphics/opengl
https://developer.android.com/games/develop/build-in-unity
https://developer.android.com/games/develop/build-in-unity
https://docs.unrealengine.com/en-US/Platforms/Mobile/Android/index.html
https://docs.unrealengine.com/en-US/Platforms/Mobile/Android/index.html

TABLE 2-1: CppDroid Features

Feature Paid Only Description

Add-ons manager Even though CppDroid comes with all the basics you need, at some
point you'll want to go beyond the basics, which is where add-ons
come into play. An add-ons manager makes the task of knowing what
you need to add a lot easier. Plus, you can easily get rid of items that
you no longer need.

Auto indentation Trying to keep your code readable means using indentation to see
things like the start and finish of an i f statement or other code
block. Having configurable auto indentation means that you can
choose how the code is indented, but you don't have to indent
it manually.

Auto pairing Locating a missing parenthesis or brace can drive you slowly nuts.
Configurable auto pairing means that you determine how elements
are paired, but the IDE helps you ensure that nothing needed to
compile the code is missing.

Auto updates Getting the latest software updates helps you write code that works
with the newest trends in C/C++ development. You also get bug
fixes, which is essential for the reliability and security of the code

you create.
C/C++ code X Because working with tablet-based IDEs can sometimes come with
examples included quirks, having a full set of C/C++ code examples is essential. These

examples show how to work around the quirks so that you can
execute your C/C++ code with just a few small modifications when

necessary.

C++ tutorial and learn X If you plan to work offline, it's essential to have a tutorial and learning

guide included guide for those times when you almost, but not quite, remember
how to perform a particular task. Of course, you'll also want to keep
this book handy.

Code complete X Automatically suggests how to complete statements that you type

based on previous content. This feature reduces potential typos and
makes you considerably more efficient, especially when working on
the tiny keyboards found in tablets.

Compile C/C++ code In some cases, such as when working with a web-based IDE,
the C++ code you create is interpreted by ROOT (see https://
en.wikitolearn.org/ROOT_for_beginners for more
information about ROOT). Some tablet IDEs also require ROOT, but
with CppDroid you get fully compiled C/C++ code output instead.

Dropbox support X Sharing your code with others is a lot easier when you have
Dropbox support.

File and This feature provides an index into the documentation to tell you

tutorial navigator about C/C++ code constructs, including variables and methods.

30 BOOK1 Getting Started with C++

https://en.wikitolearn.org/ROOT_for_beginners
https://en.wikitolearn.org/ROOT_for_beginners

Feature

Paid Only Description

Google Drive support

Working from anywhere on a single piece of code means having
access to that code from every environment you use. If your desktop
system also supports Google Drive, you can switch between your
desktop and tablet as the need arises.

Portrait/landscape Ul

A tablet presents a constrained screen real estate environment.
When an IDE forces you to use it in landscape mode only, you often
see the IDE informational panes at the expense of seeing the code.
Working in portrait mode lets you ignore most of the IDE panes while
focusing on the code.

Problem fix
suggestions

You get suggestions for a variety of coding issues, even if those issues
may not necessarily result in a compilation error.

Real-time diagnostics
(warnings and errors)

Real-time diagnostics enable you to find certain classes of errors in
your code without having to compile it. The IDE monitors what you
type and can point out issues like typos without compilation, which
saves considerable time.

Smart syntax
highlighting

Highlighting makes your code stand out so that you can see things
like variables and keywords more easily.

Static analysis

Static analysis helps locate truly difficult-to-find bugs that include:
memory leaks, mismatching allocation and deallocation, uninitialized
variables usage, and array index out-of-bounds errors.

Theme-based code
syntax highlighting

Themes let you highlight code syntax in a manner that makes sense
to you. If you have visual problems, using themes can turn a difficult
viewing experience into one that works well with your vision. The use
of themes means that no one is stuck using a particular theme to
highlight syntax; you see it the way that works best for you.

Works offline

The ability to work without an Internet connection means that you
gain flexibility in where you can work. However, it also means that
you must have access to everything you need as part of the local
installation, which is something that CppDroid provides at the
expense of additional local storage use.

Getting your copy of CppDroid

You obtain CppDroid from the Google App Store by searching for CppDroid. Unfor-
tunately, it doesn’t support every version of Android, so you may not actually see
it if your device doesn’t support it. Figure 2-1 shows how the page appears when
you find it. To obtain a copy, all you need to do is tap Install.

CHAPTER 2 Configuring Your Mobile System 31

Configuring Your
Mobile System

[] % F R 20aPM

<« Q
1 CppDroid - C/C++ IDE
Contains ads + In-app purchases
41% M+
32K reviews Downloads Everyone ©
@ This app may not be optimized for your device
About this app EY

CppDroid - C/C++ IDE for Android. Learn and code C/C++ on-the-go!

Education

Ratings and reviews © >
FIGURE 2-1: .
Locating 41 P o
CppDroid in t;n:« |z o-
the Google Play)
Store.
Ensuring you get a good install
After the CppDroid app installs on your tablet, you see the Open button as usual.
However, instead of opening the app, you see something like the view in Figure 2-2.
To work offline, CppDroid needs to install a number of libraries on your system.
This process can take a while, so just wait for it to complete.
Extracting
FIGURE 2-2: “libclang" 3.4
Loading the
CppDroid ——————
libraries for 37/100
offline use.

Considering Other Alternatives

You aren’t limited to working with CppDroid, even though it’s the tablet IDE used
for the book. Most tablet IDEs will let you perform a basic set of tasks that will work
well for the majority of the book examples. The only time you’ll encounter dif-
ficulty is when working with examples that use new C++ features, rely on graphics

32 BOOK 1 Getting Started with C++

©

REMEMBER

in some way, or employ standard features not found in the tablet IDE. One of
the advantages of these alternatives is that they might support your device when
CppDroid doesn’t. The following sections tell you about the best alternatives that
provide maximum compatibility with the book examples.

Working with C4Droid

C4Droid has many of the same features as CppDroid. For example, it compiles your
C/C++ code, so you don’t need ROOT support. However, you can use it if desired. As
with CppDroid, the app targets the educational market, but C4Droid doesn’t enjoy
the strong community support that CppDroid does (see the article at https://
www .androidrank.org/compare/c4droid_c_c_compiler_ide/cppdroid_c_c_
ide/com.n@n3m4 .droidc/name.antonsmirnov.android.cppdroid for details). In
contrast to CppDroid, no free version of C4Droid exists, but when compared to the
price charged for most desktop IDEs, C4Droid is a bargain.

Beside the graphics limitations noted earlier in the chapter, C4Droid has some
other limits as well. The most important of these is that it currently supports only
C++ 11, which means that any newer examples in the book won’t run on it. You also
need to download and separately install more products to get a fully functional
IDE. The limited number of examples can also be a problem. Because the tablet
environment can be different from working on the desktop, having a great list of
examples can really help.

Getting multiple language support
with AIDE

If you’re looking for a single IDE that can do everything you need on your tablet,
Android IDE (AIDE) (https://www.android-ide.com/) might be what you need.
Unlike the other IDEs listed in this chapter, this one works with a slew of lan-
guages, including Java, C/C++, HTML5, CSS, and JavaScript. AIDE is also Android
Studio and Eclipse compatible (limited to API level 27), so if you plan to create
Android apps using a language such as Java, this might be the right choice for you.
(Unfortunately, Google is focusing on the Kotlin language for Android develop-
ment and has no plans to add Kotlin support to AIDE now.)

However, with such a flexible range of features comes complexity, which seems
to be the major criticism of AIDE. The well-designed tutorials tend to help a little,
but obviously not enough for a novice developer. Many users also complain that
there is a plug-in for every need and all the plug-ins are paid, so this IDE can
nickel-and-dime you to death.

CHAPTER 2 Configuring Your Mobile System 33

Configuring Your
Mobile System

https://www.androidrank.org/compare/c4droid_c_c_compiler_ide/cppdroid_c_c_ide/com.n0n3m4.droidc/name.antonsmirnov.android.cppdroid
https://www.androidrank.org/compare/c4droid_c_c_compiler_ide/cppdroid_c_c_ide/com.n0n3m4.droidc/name.antonsmirnov.android.cppdroid
https://www.androidrank.org/compare/c4droid_c_c_compiler_ide/cppdroid_c_c_ide/com.n0n3m4.droidc/name.antonsmirnov.android.cppdroid
https://www.android-ide.com/

©

REMEMBER

FIGURE 2-3:
Web-based IDEs
tend to provide
a very simple
interface.

34

The C/C++ language support for AIDE comes from the Android Java C++ APK 3.2,
which means that you can expect differences in support from the GNU Compiler
Collection (GCC) used with Code::Blocks for the desktop application in this book.
You may find that some examples won’t work properly because of these differ-
ences, but all the simple (earlier) examples will work fine.

Using web-based IDEs

You can use a web-based IDE from any device, including your desktop, so in some
cases, they represent the best in terms of device compatibility. A web-based IDE
also provides an interpreted environment through ROOT in most cases. Conse-
quently, when learning to develop apps in C/C++, you get instant feedback, which
can save considerable time. As shown in Figure 2-3, the web-based offerings also
tend to provide a simple interface that allows you to get right to work.

The example in Figure 2-3 is JDoodle (https://www.jdoodle.com/online-
compiler-c++17/), which is one of the best C/C++ online offerings. This particular
online IDE supports 72 programming languages. How well it supports all of them
depends on the interpreter used. For the most part, you find that the JDoodle IDE
provides an acceptable method of working with the code in the book. Because it
also supports C++ 17, you can also run more of the examples than you can using
a C/C++ app.

[=[=] =]
& Online C++ 17 Compiler- Onl % +
&« C {} & jdoodle.com/online-compiler-c++17/ w @ E 0
i3 Apps Reference Radio Stations Search Engines La Valle, WI 10-D »
{ _
JD00DLE@ e) =
Sponsored a Factor JS A new way to build apps, websites and more 23x faster # Start Now

Online C++ 17 Compiler IDE

1 #include <iostream>
2
3 using namespace std;

5~ int main
6 int
7 int y=25;
8 int zexey;

14 cout<<"Sum of x+y = " << z;

g+ 17GCCEL0 w e Stdin Inputs

CommandLine Arguments

BOOK 1 Getting Started with C++

https://www.jdoodle.com/online-compiler-c++17/
https://www.jdoodle.com/online-compiler-c++17/

©

REMEMBER

The problem with every one of the web-based IDEs is that you must use them
online. In addition, there is a very good chance you won’t be able to save your
code, so they’re mostly useful for experimentation and not long-term learning.
However, even with these issues, here are some of the web-based IDEs you might
consider as replacements for CppDroid in addition to JDoodle:

3 C++Shell (C++ 14):http://cpp.sh/

¥ CodeChef (C++ 14): https://www.codechef.com/ide

¥ Ideone (C++ 14): https://ideone.com/SXNfCO

¥ OnlineGBD (C++ 17): https://www.onlinegdb.com/online_c_compiler

» Rextester.com (Varies according to C compiler selected): https://
rextester.com/1/c_online_compiler_gcc

¥ ReplLit (C++ 11):https://repl.it/languages/cppll

¥ TutorialsPoint (C++ 11): https://www.tutorialspoint.com/compile_
cppli_online.php

Touring the Essential CppDroid Features

After you have CppDroid downloaded, you want to begin working with it. The fol-
lowing sections get you started with the basic features you need to work with the
examples in this book. However, the IDE provides a lot more functionality than
you find here, so spending time with the various examples and tutorials is a good
idea as well.

Getting started with CppDroid

When the libraries are finally loaded, you see a screen similar to the one shown
in Figure 2-4. The top left of this screen displays the name of the file (which you
can change if you want). The top right contains buttons to Save, Compile, and Run

your app.

Along the bottom of the screen, you see the current phase of working with your
code:

¥ Diagnostics: Shows errors that occur in your typing.
3 Analysis: Outputs the results of a compilation.

3 Output: Displays the output from your app.

CHAPTER 2 Configuring Your Mobile System 35

Configuring Your
Mobile System

http://cpp.sh/
https://www.codechef.com/ide
https://ideone.com/SXNfC0
https://www.onlinegdb.com/online_c_compiler
https://rextester.com/l/c_online_compiler_gcc
https://rextester.com/l/c_online_compiler_gcc
https://repl.it/languages/cpp11
https://www.tutorialspoint.com/compile_cpp11_online.php
https://www.tutorialspoint.com/compile_cpp11_online.php

NBC 2 C T ER239PM
B

CppDroid

project_mari0a.cpp

o

Diagnostics Analysis ~ B
FIGURE 2-4: - eeee——

Line Col Me;

Accessing the
basic CppDroid
user interface
features.

Tap the ellipsis button in the top-right corner and you see the menu shown

@ in Figure 2-5. To obtain full functionality from CppDroid, you need to tap the

Purchase entry and select the optional features you want to buy (see Table 2-1

TIP for details). Choosing Premium will give you access to all the extra features at a
reduced cost.

Project
File
Edit
Actions
Settings
FIGURE 2-5: Misc
Use the menu
to locate the Purchase
CppDroid
features and Help
options.

36 BOOK 1 Getting Started with C++

FIGURE 2-6:
Loading an
example provides
a quick way

to see code in
action.

Accessing an example

CppDroid comes with both examples and tutorials you can use to learn more
about the IDE and C/C++ in general. The tutorials work much like the examples—
just with more content. To access the Hello World example, choose ...c>Proj-
ecte> Examples=> C++=>For Beginners= HelloWorld. The display will now contain
the code shown in Figure 2-6.

3 int main()

std::cout << "Hello world!";

To compile this code, you touch the lightning icon. After it has compiled, you can
run it by tapping the right-pointing arrow. The display will change to show the
output. To clear the output, tap the left-pointing arrow in the upper left corner
of the display.

Working with a simple online project

You can place the source code for this book on your Google Drive or Dropbox. Of
course, you’ll still need some method of accessing it. The following steps assume
that you use Google Drive, but they also work with Dropbox. (When working with
Dropbox, you place the code in the Dropbox\Apps\CppDroid folder.)

1. choose ...>Project=>Open>From Google Drive.

You may have to log in at this point. After you log in, you may see a dialog box
like the one shown in Figure 2-7 in which you give permission to access Google
Drive from CppDroid. Tap Allow to allow the access. (This is a one-time step.)

2. Locate the folder containing the code you want to access.

You see one or more . cpp files. For example, when working with the book’s
source code, you might choose the Book I \Chapter@3\SayHello folder.

3. Highlight the file you want to open and then tap Select.
CppDroid opens the file for you. Figure 2-8 shows an example of the

HelloWorld.cpp file for Book 1, Chapter 3.

At this point, you can compile and run your application just as if you used
Code::Blocks. The only difference is that you’re doing it on your tablet.

CHAPTER 2 Configuring Your Mobile System 37

Configuring Your
Mobile System

FIGURE 2-7:
Give permission
to access your
Google Drive.

FIGURE 2-8:

The file is
available for use
with your local
copy of CppDroid.

G Sign in with Google

CppDroid wants to access your Google
Account

0 John@JohnMuellerBooks.com
This will allow CppDroid to:

L View and manage Goagle Drive files and folders that you have @
opened or created with this app

Make sure you trust CppDroid

You may be sharing sensitive info with this site or app. Learn about how
CppDroid will handle your data by reviewing its terms of service and privacy
policies. You can always see or remove access in your Google Account.

Learn about the risks

cancel

Accessing your source code

To begin creating a new source code file, you choose ...->Filec>New. When you
create a new file, CppDroid automatically gives it a default name. You can change
the name by choosing ...c>Filec> Rename. A single file can be part of a project, but
you can also make a single file the entire project. For example, a Hello World app
would consist of a single file.

38 BOOK 1 Getting Started with C++

You can store your source code locally, on Google Drive, or on Dropbox. When
working online, the process is the same as when working with online source as
described in the “Working with a simple online project” section of the chapter.
The following list tells how you can store your source code locally to make it avail-
able at all times.

¥ To create a new project: Choose ...=>Project>New. When you see the New
Project dialog box shown in Figure 2-9, type a project name and then tap
either Create C Project or Create C++ Project.

¥ To open an existing project: Choose ...=>Project=>Open, select one of the
project sources: Recent, From Device, From Dropbox, or From Google Drive,
and then select the project you want to open.

¥ To save an existing project: Choose ...=>Projectr>Save or ...c>Projectr>Save
As. When using Save As, you can choose a different location, such as Dropbox
or Google Drive, and a new project name.

¥ To close an existing project: Choose ...~ Project>Close. CppDroid automati-
cally saves your project to the default location with the current name if you
haven't done so.

¥ To delete an existing project: Choose ...>Project> Delete while the project is
open for editing.

New Project

FIGURE 2-9:
Define a new
local project.

CREATE C PROJECT CREATE C++ PROJECT

Considering differences with the desktop
environment

When you compare CppDroid with Code::Blocks, you find that CppDroid provides a
much simpler interface with far fewer features. It works as a means to write code
while on the road and for testing simple applications. You can’t use CppDroid as
a full-fledged development environment simply because it doesn’t contain the
features that such an environment provides, especially when it comes to things
like debugging. In fact, the limits clearly present themselves on the Actions menu
shown in Figure 2-10, where CppDroid limits you to completing code, performing
analysis, compiling, and running the code with or without arguments.

CHAPTER 2 Configuring Your Mobile System 39

Configuring Your
Mobile System

FIGURE 2-10:

The list of actions
in CppDroid

is somewhat
limited.

TIP

Code complete

Analyze
Compile
Run

Run with arguments

Even with the limits, you can easily work with any example in the book that con-
sists of a single file or doesn’t rely on the latest C++ functionality. You need the
desktop environment, however, to make most multifile examples work and to
perform complex tasks. By working through the examples in this book on your
tablet, you gain insights into what is and isn’t possible for CppDroid, giving you
another useful tool that you can use to code wherever and whenever you want.

Obtaining CppDroid Help

FIGURE 2-11:
A list of Help
sources for
CppDroid.

No matter how simple and straightforward the interface, no matter how many
examples and tutorials supplied, every app will generate some number of ques-
tions. Consequently, you need access to help at some point to make things work.
The following sections offer a quick overview of the help available for CppDroid.

Working with the Help documentation

The oddest part about working with CppDroid is that there isn’t an actual Help
file. When you open the ...<>Help menu, you see the options shown in Figure 2-11.

CppDroid blog

Privacy Policy

Post feedback

The CppDroid blog contains the latest entries by the app author. What the blog
provides is a running commentary of the problems that the developer is seeing
and what is being done to fix them. You also see side posts on topics such as the

40 BOOK 1 Getting Started with C++

FIGURE 2-12:

The developer
uses blog posts to
help you find bug
fixes.

Q

TIP

number of people currently using CppDroid and other projects that the author is
contemplating. Even so, this is where you go when you have a problem with the
product and hope that the developer is addressing it. Figure 2-12 shows an exam-
ple of the sort of blog posts you see.

*NLR 3 C T E10:36 AM

[} CppDroid - C/C++ IDEfor Ar X [N

O < C @ cppdroid.info/2017/03/android-nougat-support.html %

CppDroid - C/C++ IDE for Android search

Home Introduction Privacy Policy Adva atures Releases

Android Nougat support

Hey, guys.
Every Android release Google breaks something. Just like for Android Marshmallow (read my

blog post) CppDroid stopped working for Android Nougat - now with “Permission denied" error
message while compiling:

Compilation error

The first time i've been working about a week to fix it with no luck.
The second time i've contacted Google and reported about the issue with app sources

Dynamic Views theme. Powered by Blogger

When you find no apparent help for a particular problem, you choose the Post
Feedback option on the Help menu to send the developer an email. Oddly enough,
you may find that you have a hard time getting through with anything other than
Gmail.

Getting community support

You can find a lot of articles about CppDroid online on various websites. The
articles provide you with insights on how to use CppDroid and often answer ques-
tions that users have about it. In addition, you can find help using CppDroid at
these sites:

¥ Reddit: https://www.reddit.com/r/cpp/search?q=cppdroid

3 SourceForge: https://sourceforge.net/ (search for CppDroid)

CHAPTER 2 Configuring Your Mobile System 41

Configuring Your
Mobile System

https://www.reddit.com/r/cpp/search?q=cppdroid
https://sourceforge.net/

¥ StackOverflow: https://stackover flow.com/search?q=CppDroid

¥ AndroidForums: https://androidforums.com/apps/
cppdroid-c-c-ide. 5356/

You might find additional locations for CppDroid information online. If you find
@ one of these places and it seems to have good, consistent information, please let
me know at John@JohnMuellerBooks .com so that I can share the information with

TIP other readers.

Using the free examples

The free examples often provide you with insights into how CppDroid works. For
example, you may wonder how the static analysis feature works. To see a dem-
onstration of static analysis, choose ...2>Project=> Examples= C++=>For Develop-
erse Static Analysis. After the file loads, choose ... Actions=> Analyze. Figure 2-13
shows the results.

*fNLR % C FTIE11:03AM
CppDroid 8 ¥ >

StaticAnalysis.cpp

someCondition(int
unused_var)

51 someCondition(unused_var) {

unused_function()
scope_test()
exception_test()
nt VAR

if_else(int var)
do_uid(int x)
unsigned_

int

@ int main()
id exception_test() {

st int VAR = 10;

if_else(int var) {
Diagnostics Analysis Output ~ E@
- O O O OO Onn— OO OO O OO O O O OO0

Line

Use an exam p|e A 0 printf format string requires 2 parameters but 3 are given.
) Duplicate conditions in 'if' and related ‘else if'.
to see hOW the 9 0 The scope of the variable pe_var' can be reduced.
static ana|ysis hecking if unsigned variable 'var is less than zero.

feature works.

Notice that the output shows various problems with the code, such as the printf
format string requires 2 parameters, but 3 are given at line 43, column

42 BOOK 1

https://stackoverflow.com/search?q=CppDroid
https://androidforums.com/apps/cppdroid-c-c-ide.5356/
https://androidforums.com/apps/cppdroid-c-c-ide.5356/
mailto:John@JohnMuellerBooks.com

The tutorials take
you through basic
processes within
CppDroid.

0 near the bottom of the screen. The output helps you locate problems with your
code and fix them before you compile it.

Accessing the tutorials

The tutorials provide a multistep process for working with C++ within CppDroid.
When you choose ...=> Project=> Tutorials=> C++=> For Beginners, you see two tutorial
options:

¥ CPlusPlus.com C++ Tutorial

¥ LearnCpp.com C++ Tutorial

Both tutorials give you help with getting over the C++ learning curve from within
the CppDroid environment. The IDE changes to show a tutorial outline in the
left pane and the associated text in the right, as shown in Figure 2-14. You work
directly from within the CppDroid environment, which means that you can better
understand how CppDroid works when you finish.

32 C B,E11:09aM

~ [Introduction: = The essential tools needed to follow these tutorials are a computer and a compiler toolchain able to compile
~ [Compilers = C++ code and build the programs to run on it.
E

[Compilers

n What is a = C++ is a language that has evolved much over the years, and these tutorials explain many features added

ecently to the language. Therefore, in order to properly follow the tutorials, a recent compiler is needed. It

compiler? = shall support (even if only partially) the features introduced by the 2011 standard.
B console -
programs Many compiler vendors support the new features at different degrees. See the bottom of this page for some
~ [Basics of C++: =* compilers that are known to support the features needed. Some of them are free!

-
8 Structure of a n: If for some reason, you need to use some older compiler, you can access an older version of these tutorials
program . (no longer updated)
B Structure of a .
program
B Comments
B using
namespace std
BB Variables and
types
B Variables and
types
B Identifiers
B Fundamental
data types

~

Analysis

CHAPTER 2 43

Configuring Your
Mobile System

IN THIS CHAPTER

» Organizing your applications into
projects

» Typing code into the code editor

» Writing an application that writes to
the screen

» Doing basic math

» Running your application

Chapter 3

Creating Your First C++
Application

t’s your lucky day. You have decided to learn one of the most popular program-

ming languages on the planet. (C++ is the fourth most popular language accord-

ing to the TIOBE Index at the time of this writing, at https://www.tiobe.com/
tiobe-index/.) From the biggest skyscrapers housing huge Fortune 500 compa-
nies all the way down to the garages with the self-starting kids grinding out the
next generation of software, people are using C++. Yes, there are other languages,
but more programmers use C++ than any other language for desktop application,
game, animation, media access, compiler, and operating system development. In
this chapter, you start right out writing a C++ application.

As mentioned in Chapter 1, this book relies on your use of Code::Blocks as the IDE
and on GCC as the C++ compiler. The procedures are written for the most current
version of Code::Blocks (version 17.12) at the time of writing, so you may need to
make allowances if you use a different Code::Blocks version, and the procedures
won’t work if you use another IDE. In addition, you may need to make minor
changes to the code as the examples become more complex if you want to use
other compilers.

CHAPTER 3 Creating Your First C++ Application 45

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

\CPP_AI04\BookI\Chapter@3 folder of the downloadable source. See the Intro-
rememeer duction for details on how to find these source files.

You don’t have to type the source code for this chapter manually. In fact, using the
@ downloadable source is a lot easier. You can find the source for this chapter in the

Code::Blocks Creating a Project

Creating a computer application is usually a bigger job than you’d want to organ-
ize in your head. Application code is saved in files much like the documents in a
word processor. But applications often have more than one source-code file. At
big companies in big buildings in big cities, some applications are really big —
hundreds of source-code files for just one application.

Understanding projects

Applications can contain a lot of source code. To keep all that source code together,
programmers use a file that manages it all, called a project. A project has a few key
elements:

¥ Aset of source-code files
¥ (Optional) Resource information such as icons and sound files
¥ Adescription of how to compile (build) the application

¥ Integrated Development Environment (IDE) settings that tell how to set up the
editor you use to write the application

¥ Some general descriptions of the application being built, such as its name and
the type of application it is

The type of application doesn’t mean “word processor” or “really cool earth-
shattering software,” even if that’s what your application is. This book uses type
to mean your application’s overall relationship with other applications:

¥ Does this application run by itself?

3 Does this application add to or extend the functionalities of another applica-
tion (such as Firefox)?

¥ Does this application serve as a library (a bunch of code that you make
available to another application)?

46 BOOK1 Getting Started with C++

FIGURE 3-1:

The New from
Template dialog
box lets you
select a new
project type.

Q

TIP

All this information, along with your source-code files, represents a project.

In the Code::Blocks IDE, you create a new project each time you start work on
a new application. You provide a little information about the application you’re
working on, and then you begin writing your code. All the code for your applica-
tion is stored in one place — in the project.

Defining your first project

To create a new project in Code::Blocks, start Code::Blocks and choose
Files>New=>Project, or click Create a New Project on the Start Here page that
appears when you start the application. A dialog box appears, as shown in
Figure 3-1.

New from template ==
Projects Category: [<AI\ categories > v] Go
Build targets -
@ @ o = ==
Custom NE ARUINO
User templates ARM Project AVR. Project Arduino Code::Blocks Console
Project plugin application

B &0 8B 1 &

Dapplication Direct/X DynamicLink Empty project FLTK project
project Library
GLUT

A 8 " e o

Fortran DLL Fortran Fortran library GLFW project GLUT project
application

m

()
® & © #H o
GTK+ project Irrlicht project Java Kernel Mode Lightfeather

application Driver project

@ B 4 F &S

MCS51 Project MSP430 OpenCV
Project project

View as

Matlab project Ogre project @ Large icons

~ | @ Lst

e == == -

TIP: Try right-clicking an item

1. Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go

You see what appear to be way too many project types, including some that have
nothing to do with C++, such as Fortran Application and Matlab Project. You can
reduce the number of choices by selecting a category in the Category field. The
best option for the projects in this book is Console.

CHAPTER 3 Creating Your First C++ Application 47

Creating Your First C++

Application

48

WHAT ABOUT ALL OF THOSE OTHER
PROJECTS?

Code::Blocks supports a host of other application types. This book doesn't discuss them,
because they won't add to your initial understanding of C++ programming. However,
these other projects are valuable in the right environment. For example, the GIMP
Tool-Kit Plus (GTK+) Project relies on a graphical user interface designed for the X
Windowing system (see more athttp://www.gtk.org/).

You'll find that Code::Blocks uses a considerable number of acronyms and abbrevia-
tions for project and resource names without defining any of them. This book defines
all acronyms and abbreviations on first use so that you don't have to guess what they
mean. However, some of these acronyms and abbreviations go on and on. For exam-
ple, you might wonder about the GIMP part of the GTK+ definition. GIMP stands for
GNU Image Manipulation Program. Of course, now you need to know GNU, which
stands for Gnu's Not Unix. Okay, now that we've exhausted that bit of fun, if you ever
do run across an interesting acronym or abbreviation, you can always get it defined
for you on the Acronym Finder website (http: //www.acronymfinder .com/). If

you find one that could be defined further in this book, please let me know at John@
JohnMuel lerBooks . com. The bottom line is that you need to research both projects
and resources before you use them.

When you create a C++ project in Code::Blocks, you choose from a list of several
types of applications. They’re shown as icons in the New from Template dialog
box in alphabetical order. The following list shows some application types:

¥ GTK+ Project: This is a graphical application that includes, well, a window. You
know the kind: It usually has a menu across the top and something inside it
that you can either click or type into. It relies on the GNU Image Manipulation
Program (GIMP) Toolkit (GTK), which provides an incredibly flexible interface
that runs on a number of platforms including Linux, Mac, and Windows
systems. Read more about GTK in the “What about all of those other proj-
ects?” sidebar.

3 Console Application: This is an application that gets a paltry Console window
instead of a graphical window. Console refers to a window with a command
prompt. (Folks who recall the old days, before Windows, call it a DOS box, and
you may know it as a terminal window when working with operating systems
such as the Mac or Linux.)

¥ Static library: A static library is a set of C++ code that you use later in another
project. It's like making a really great marinade that you won't use up today.
You'll use some of it tomorrow and some of it after that.

BOOK 1 Getting Started with C++

http://www.gtk.org/
http://www.acronymfinder.com/
mailto:John@JohnMuellerBooks.com
mailto:John@JohnMuellerBooks.com

3 Dynamic Link Library: A Dynamic Link Library (DLL) is kind of like a static
library except it is separated from the main application and gets its own file
with a .DLL extension.

3 Empty project: This blank project is as clean as a blank sheet of white typing
paper, ready for you to fill ‘er up.

Frankly, it's kind of a pain to use an empty project, because you have to tweak
and set a bunch of things. So we never use this option.
TIP
For the samples in this chapter, create a Console Application. Follow these steps:
1. Inthe New from Template dialog box, click the Console Application icon
found on the Projects tab, and then click Go.
The wizard asks which language you want to use.
2. Highlight C++ and click Next.
You see a list of project-related questions, as shown in Figure 3-2. These
questions define project basics, such as the project name.
Console application ==
Bl Console [ttt
Project title:
Folder to create project in: o
C:\CPP_AIO\BookVI\OnlineContent), l_l
Project filename:
Resulting filename:
<invalid path >
FIGURE 3-2:
Provide the name
of your project <Back || Next> | [Cancel
for Code::Blocks.

3. Type a name for your project in the Project Title field.

The example uses SayHello as the project title. Notice that the wizard
automatically starts creating an entry for you in the Project Filename field.

4, Type a location for your project in the Folder to Create Project In field.

The example uses C: \CPP_AI04\BookI\Chapter@3 as the folder name. You
can also click the ellipsis button next to the Folder to Create Project In field to

CHAPTER 3 Creating Your First C++ Application 49

Creating Your First C++

Application

FIGURE 3-3:

Tell Code::Blocks
where to place

the Debug
and Release

versions of your

50

application.

use the Browse for Folder dialog box to locate the folder you want to use.
Notice that the wizard completes the entry in the Project Filename field.

(Optional) Type a project filename in the Project Filename field.

Code::Blocks fills in this field for you automatically based on the Project Title
field entry, and there isn't a good reason to change it in most cases; however,
in special circumstances, you may choose to do so. For example, if you have a
project with multiple elements, you may want the project file to match the
name of an overall project rather than the name of a particular entity within
the project.

Click Next.

You see the compiler settings shown in Figure 3-3. Most of the projects in this
book use the default compiler settings, which include the GNU GCC Compiler
shown in the figure. However, if you look at the Compiler drop-down list, you
see that Code::Blocks supports a number of compilers and you can add more
to it. The other settings control the creation and location of a Debug version of
the application (the version you use for finding problems in your code) and a
Release version (the version that you send to a customer).

Console application ==

Please select the compiler to use and which configurations
ﬂ CO n So Ie you want enabled in your project.

Compiler:
[GeE Compiler -

Create "Debug” configuration: Debug

"Debug” options
Output dir.: bin'Debugh

Objects output dir.: obj\Debug}

Create "Release” configuration: Release

"Release” options

Output dir.: bin'\Releazel,

Objects output dir.: obj'Release}

< Back I[Finish]l Cancel

7.

(Optional) Change any required compiler settings.

There generally isn't any good reason to change the compiler settings unless
your project has a specific need, such as placing the output and object files in
the same folder.

BOOK 1 Getting Started with C++

FIGURE 3-4:

Use the
Code::Blocks IDE
to interact with
your project.

8. Click Finish.

The wizard creates the application for you. It then displays the Code::Blocks IDE
with the project loaded. However, the source code file isn't loaded yet.

9. Drill down into the SayHello workspace entries on the Projects tab of the
Management window and double-clickmain.cpp.

You see the source code file loaded so that you can edit it, as shown in

Figure 3-4.
s main.cpp [SayHello] - Code::Blocks 17.12 = E=h| %)
File Edit View Search Project Build Debug Fertran wxSmith Toels Teols+ Plugins DoxyBlocks Settings Help
feBE@ ¢y | Q &2 [l = = £ ¢ & -
0> 00D B > EGYaGvil0lS
Management x maincpp X
4| Projects | Symbols Files ¥ 1 #include <iostream>
OWorkspace 2
E‘"_ SayHello 3 nsing namespace std;
B-B Sources 4
(] (TR 5 int main()
& I
7 cout << "Hello world!"™ << endl;
8 return 0;
a
10
4 [| [}
4 Q,Searchresuhs x| §yBuildlog ¢ {"Bul\dmessages 3 | €3 Debugger | b
Command: b] &
C/C++ Windows (CR+LF) WINDOWS-1252 Line 1, Col 1, Pos 0 Insert

The project window is organized side by side:

¥ The left side is an Explorer view (called a tree view), which represents your
project. At the top of the tree view is a workspace — the essential unit of a
project. Below the workspace is the name of your project. Underneath that
are the components of your project. In this case, only one component exists
so far: the source-code file whose filename ismain.cpp. Remember that, in
order to program in C++, you enter code into a source-code file; this file, called
main.cpp, is such a file for your SayHello project.

¥ The right side (which actually takes up about three-quarters of the screen) is
the source-code file itself.

CHAPTER 3 Creating Your First C++ Application 51

Creating Your First C++

Application

52

©

REMEMBER

This part works much like a word processor or an email editor, and you can
type the code into the window. You notice that you already have some code
there — a sort of starter code that came into being when you chose Console
Application and created the project.

¥ At the bottom of the display are a number of status windows. The
Code::Blocks window tells you how the wizard created your application. Don't
worry about these windows right now. You see them in action as the book
progresses.

Note that Figure 3-4 also shows some additional elements: a menu, several tool-
bars, and a status bar. You can right-click the toolbar area to show or hide toolbars
as needed. Figure 3-4 shows the default toolbars when you first start a project. The
status bar shows the language highlighting in use, some configuration settings,
and your current position within the source file. You can change the highlighting
used in the editor window by choosing a new language option in the drop-down
menu on the left side of the status bar that currently shows C/C++.

Building and executing your first
application

Okay, it’s time to work with your first application. Use the following steps to save
the file, build the application (make it into an executable that your operating sys-
tem can use), and execute the application:

1. save the code file by choosing Filer>Save Everything or press Ctrl+Shift+S.

Saving the files ensures that you have a good copy on disk should something
go wrong. For example, you could completely crash the IDE if your application
does the wrong thing.

2. Choose Build=Build or press Ctrl+F9.

This action creates the executable file. Building the code converts words you
understand into code that your operating system understands. Notice that
Code::Blocks automatically selects the Build Log window for you and you
see the steps that Code::Blocks takes to create your application. At the end
of the process, you should see something like® errors, @ warnings

(0 minutes, 1 seconds) as the output (the precise amount of time

may vary, but it should be short).

3. Choose Build=Run or press Ctrl+F10.

An output window like the one shown in Figure 3-5 opens, and you see your
first application execute.

BOOK 1 Getting Started with C++

FIGURE 3-5:
Execute your first
application.

4. PressEnterto stop application execution.

The application window disappears and you see the Code::Blocks IDE again.

2| CACPP_AIO4\Bookl\Chapter03i5ayHello\bin\DebugiSayHello.exe [l[E =]
elle world?!

m| »

Process returned @ {@x@> execution time : B.811 =
Press any key to continue.

Well, that wasn’t interesting, was it? But that’s okay! The application starts out
in a basic situation: You have a console window, and then when the application
is finished doing whatever it must do, it shows the message Press any key to
continue. — and when you do so, the application ends.

Typing the Code

AN

WARNING

The rightmost 75 percent or so of the Code::Blocks window is the code editor; it’s
where you type and change your code. Of all the tasks we just mentioned in the
first part of this chapter, the nearest equivalent to using the Code::Blocks code
editor is composing an email message.

Word movement and selection actions look a bit strange on the screen. They
ignore certain characters, such as braces — the curly characters { and }.

The code editor works like the editor in an email message. You can

¥ Type code.

¥ Move the cursor with the arrow keys (up, down, left, right) to the position
where you want to type. The cursor is the little blinking vertical bar that shows
where your text goes when you type. Some folks call it a caret or an insertion
point.

CHAPTER 3 Creating Your First C++ Application 53

Creating Your First C++

Application

REMEMBER

TABLE 3-1

»

»

»

»

Click where you want to type. Use the mouse to point where you want to type,
and then click the mouse button. The cursor jumps to the spot where you
click.

Select text to delete or change. You can select text in either of two ways:

Point with the mouse at the first or last character you want to select; then
hold down the mouse button while you drag the mouse.

Move the cursor to the first or last character you want to select; then hold
down the Shift key while you press the arrow keys.

Scroll the text up and down (vertically) or left and right (horizontally) with the
scroll bars. The scroll bars work only when there is more text than you can see
in the window, just like most other places in the Windows, Linux, and Mac
worlds. You can scroll up and down (if there’s enough text in the editor) by
using Ctrl+T and Ctri+l key combinations or the mouse wheel (assuming you
have one).

Scrolling changes only what you see. You must use the mouse or the arrow
keys to select what you see.

After you play around a bit with the editor, you can use Table 3-1 to do a few of
your favorite tasks. (Of course, if you’re new to programming, you may not know
yet whether these are your favorites — but they will be soon. Trust me.)

Navigation and Edit Commands

Command Keystroke or Action

Move the cursor T, 1, «, or -, Home, End

Move from word to word Ctrl+« or Ctrl+—

Select with the mouse Click the mouse in the text, and while the mouse button is

down, drag the mouse

Select with the cursor Shift+T, Shift+!, Shift+«, or Shift+—

Select the next word Shift+Ctrl+—

Select the previous word Shift+Ctrl+«

Select everything Ctrl+A
Go to the top Ctrl+Home
Go to the bottom Ctrl+End

54 BOOK 1 Getting Started with C++

Starting with Main

©

REMEMBER

When a computer runs code, it does so in a step-by-step, line-by-line manner.
But your code is organized into pieces, and one of these pieces is the main func-
tion, or simply main(), which is the part that runs first. main() tells the computer
which other parts of the application you want to use. main() is the head honcho,
the big boss.

How does the computer know what is main()? You type lines of code between the
brace characters, { and }. Here is the default application that Code::Blocks pro-
duces when you create a Console Application project:

#include <iostream>
using namespace std;

int main()

{
cout << "Hello world!" << endl;
return 0;

The word main is required, and it tells the computer where main() is. You might
also seemain() shown as

int main(int argc, char xargv[])

Don’t worry about the words around main() for now. You discover what these
words mean later in the chapter. For now, all you need to know is that every C++
application has amain() function.

The computer performs the code line by line. If a line is blank, the computer
just goes to the next line. When you write lines of code, you are instructing the
computer to do something (which is why some people refer to lines of code as
instructions).

Showing Information

Ready to type some code and try it out? Go for it! This code will open the famous
console window and write some words to it.

CHAPTER 3 Creating Your First C++ Application 55

Creating Your First C++

Application

56

First, make sure that you still have the Code::Blocks IDE open and the SayHello
project open, as in this chapter’s preceding examples. If not, follow these steps:

1.

2.

Start Code::Blocks if it's not already running.
You see the Start page for the Code::Blocks IDE.
Click the SayHello.cbp project found in the Recent Projects list.

Code::Blocks opens the project for you.

If the main.cpp code isn’t showing in the rightmost 75 percent of the window,
double-click main.cpp in the tree view on the left. It immediately opens. (If you
don’t see the tree view, click the little tab at the top that says Projects; it’s next to
a tab that says Symbols.)

Follow these steps carefully. Make sure that you type everything exactly as given

here:

1.

©

REMEMBER

4.

Position the cursor on the line with the opening brace.

In this case, that's Line 6. You can see the line number on the left side of the
code editor.

Press the Enter key.

The cursor should be in the fifth column. If it isn't — if it stays in the first
column — press the spacebar four times.

Type the following line of code exactly as it appears here.

Put no spaces between the two less-than (<) symbols. Make sure that you
remember the final semicolon at the end. Here's the line:

cout << "Hello, I am your computer talking." << endl;

Delete the line of code that looks like this:

cout << "Hello world!" << endl;

In the end, your code will look like the following example (the new line that you
typed is shown here in bold):

#include <iostream>

using namespace std;

int main()

BOOK 1 Getting Started with C++

FIGURE 3-6:
Code::Blocks
tells you about
errors in your
application.

cout << "Hello, I am your computer talking." << endl;
return 0;

If you don’t type your code correctly, the computer can tell you. This step compiles
the application: The computer makes sure that what you wrote is okay and then
translates it into a runnable application. (Don’t worry too much about what that
means. For now, just think of it as making sure that your application is okay.)

To find out whether your application is good to go, choose Build= Build.

If all is well, you see a window in the lower-left of the main Code::Blocks window
with the really happy message, @ errors, © warnings (@ minutes, 1 seconds)
(the precise time you see may vary). A message like Yourock ! might be nicer, but
@ errors, @ warnings (@ minutes, 1 seconds) ain’t all that bad.

If you didn’t type the line correctly, all is not lost, because the computer will tell
you what you did wrong. For example, you might type couts instead of cout. In
this case, you will see something like what is shown in Figure 3-6. A list with
columns appears at the bottom of your screen.

/| Codex:Blocks > ' Search results x| €3Buidlog 3 ¥ Build messages | £yDebugger X

File Line Message
= Build: Debug in SayHello (compiler: GNU GCC Compiler) =—

©-\CPE_AT04\BookI\Chapter03\SzyHel lo\main_ cpp In function 'int main{)':

C-\CBE_AT04\BookI\Chapterd3\SayHello\main cpp 7 error: "ci

not declared in this scope

—— Build failed: 1 error(s]), 0 warning(s) (0 minute(s), 0 second(s)) —

¥ The leftmost column shows the name of the file where the error was. In this
case, the error was inmain. cpp, the only file you were working on.

3 The middle column shows the line number of the problem (in this case, 7).

3 The rightmost column of the list makes a basic attempt to tell you what you
did wrong, like this:

error: 'couts' was not declared in this scope

When the compiler doesn't recognize a word, it says that the word is not
declared. In other words, the compiler doesn't know what couts is. (The
word should be cout.)

CHAPTER 3 Creating Your First C++ Application 57

Creating Your First C++

Application

58

TIP

If you want to see the problem, you can point at the error report line and double-
click. The bad line appears in the code editor, with a little red box next to the
line. The line is also highlighted normally. As soon as you press an arrow key, the
highlight vanishes.

Thus, if you press the — key a few times and get to the word couts and then delete
the letter s, you can try again. If you choose Build=>Build, this time you see the
happy message @ errors, @ warnings (@ minutes, 1 seconds). Excellent!

No errors means that the application is good enough to run. So run it!
Choose Build=>Run. A console appears with text that looks like this:
Hello I am your computer talking.

Process returned @ (0x@) execution time : 0.030 s
Press any key to continue.

See what happened? There is now a message that says, Hello, I am your com-
puter talking. Apparently, the thing you typed caused that message to appear.
(Go ahead and press Enter to close the console.)

And in fact, that’s exactly what happened. That’s how you make a message appear
on the console screen. The steps look like this:

1. Type cout.

Although cout looks like it's pronounced “cowt,” most programmers say
“see-out.” Think of it as shorthand for console output. (But don't type console
output in its place, because the compiler won't accept that.)

2. After the word cout, type a space and then type two less-than signs
(make sure to leave that single space before them).

These less-than signs just mean that the data that follows will be sent to cout
for display on the console. The data that follows, some text, is in double
quotes. That's the way the computer knows where it starts and ends. The
words and stuff inside these double quotes is called a string because it's a
bunch of letters strung together. The computer knows where the string starts
because there's a double quote, and it knows where the string ends because
there’s a double quote. The computer doesn't display these two sets of double
quotes when the application runs.

Then some weirdness follows. There's another set of less-than signs, which
means you want to write more to the console. But what follows? It's endl.
Notice this is not in quotes. Therefore, you aren't saying that you want the

BOOK 1 Getting Started with C++

REMEMBER

)
TECHNICAL
STUFF

REMEMBER

strange barely pronounceable word “end|” to appear on the screen. Instead,
you're using a special notation that tells the computer that you want to end the
current line and start fresh on the next line. And if you look at the output, you
notice that the words that follow (the message about pressing the any key) are,
indeed, on the next line. Note thatendl is pronounced “end-el.”

So that’s not so bad after all. Here’s a recap:

¥ The word cout means you want to write to the console.

¥ The << symbols together (with no space between them!) mean the thing that
follows is what you want to write.

¥ After the << symbol, you tell the computer what you want to write. It can
either be a string of letters, symbols, and other characters (all inside quotes),
or it can be the word endl.

3 You can put multiple items in a row and have them appear on the console
that way, provided you start the line with cout and precede each item with
the << symbols.

Oh, and if you have a sharp eye, you may notice one more thing not mentioned
yet; a semicolon appears at the end of the line. In C++, every line must end with a
semicolon. That’s just the way it’s done.

Statements in C++ end with a semicolon.

Saying that every line must end with a semicolon is not quite accurate. You can
break any line of code into multiple lines. The computer doesn’t mind. You could
just as easily have written your code as the following two lines:

cout << "Hello, I am your computer talking."
<< endl;

This is fine, provided that you don’t split any individual word (such as cout and
endl) or the << symbols or the string. In effect, any place you have a space occur-
ring “naturally” in the code, you can start a new line, if you want.

Strings, the text in this example, must stay together on a single line between
double quotes as shown, unless you break it into two strings, each with its own
set of double quotes like this:

cout << "Hello, I am your" <<

" computer talking."
<< endl;

CHAPTER 3 Creating Your First C++ Application 59

Creating Your First C++

Application

REMEMBER

TABLE 3-2

TIP

Notice that you must also add << between each string segment. Then, when the
whole statement is finished, you end with a semicolon. Think of the semicolon as
a signal to the computer that the old statement is finished.

Doing some math

You can get the computer to do some math for you; you can use the same cout
approach described in the preceding section; and you can throw in some numbers
and arithmetic symbols.

Although addition uses the familiar plus sign (+) and subtraction uses the familiar
minus sign (-), multiplication and division use symbols you might not be familiar

with. To multiply, you use the asterisk (*); to divide, you use the forward slash (/).

Table 3-2 shows the four common math symbols.

Math Symbols
+ Addition (plus)
- Subtraction (minus)
* Multiplication (times)
/ Division (divided by)

Yep, it’s now math-with-weird-symbols time. Continue with the source code you
already have. Click somewhere on the line you typed — you know, the one that
looks like this:

cout << "Hello, I am your computer talking." << endl;

Press End so that the cursor moves to the end of the line. Then press Enter so that
you can start a new line between the cout line and the line that starts with the
word return.

Whenever you want to insert a line between two other lines, the easiest way to
get it right is to go to the first of those two lines, press End, and then press Enter.
Doing so inserts a new, blank line in the right place.

After you press Enter, you notice that something happened: The cursor is not at
the start of the newly inserted line; instead, it has four spaces and it’s indented

60 BOOK 1 Getting Started with C++

TIP

FIGURE 3-7:
Configure the
editor to use
automatic
indents.

flush with the other lines. That’s not a mistake. Believe it or not, it’s a seri-
ous lifesaver. Well, okay, maybe not a lifesaver, but it’s almost as good as those
little candies that everybody loves. The reason is that often you indent your code
(this particular code is indented four spaces); if you’re typing lots of code, it’s a
bummer to have to type four spaces (or press the Tab key) every time you start a

new line. So Code::Blocks considerately (and automatically) does the indentation
for you.

If, for some reason, your code didn’t automatically indent and the cursor is loiter-
ing at the beginning of the line, the auto-indent feature is not turned on. It should
be on by default, but if it isn’t, here’s how to turn it on:

1. choose Settings— Editor.

The Configure Editor dialog box, shown in Figure 3-7, appears. It should

automatically show the General Settings/Editor Settings tab, but you can select
this tab if needed.

Configure editor ==
General settings

Editor settings | Other editor settings | C/C-++ Editor settings | Encoding settings |

S Font
y This is sample text

[TIReset zoom of all editors to default, if leaving dialog

m

General settings

TAB options End-ofine options
[Detect indent style [Show end-ofine chars
2 []Use TAB character [¥] strip trailing blanks
[7]TAB indents [V]End files with blank line
TAB size inspaces: | 4 21 [[JEnsure consistent EOLs
"\ End-of-ine mode:
Folding Indent options Code Completion
[¥] Auto indent [¥] Code completion
Smart indent [F] Case sensitive
| Brace completion [Autoselect single match
[#] Backspace unindents =

B Autolaunch after typing # letters: 3
Show indentation guides
[¥] Documentation popu

T [¥]Brace Smart Indent @ popup
Selections

nable virtual space (space beyond the end of lin)

Enable virtual beyond the end of |
[Enable virtual space for rectangle selections
[] Allow multiple selections

Enable typing (and deleting) in multiple selections simultanzously

Syntax highlighting

<

CHAPTER 3 Creating Your First C++ Application 61

Creating Your First C++

Application

2.
3.

4.

5.

that changed is the source-code file you’re currently working on. If you see the

Make sure that the Tab Indents check box is selected and then click OK.

When you're back in the code, press Backspace to delete your new line
and then try pressing Enter again.

Behold! The code automatically indents.
After your new, blank line appears and indents itself, type the following:
cout << 5 + 10 << endl;

The beginning and the end of this line are just like those of the line you typed
earlier. The difference is the middle — instead of typing a string, you type a
math problem: 5 plus 10. Note that you put spaces around the 5, around the +,
and around the 10 — but not between the 1 and @. If you put a space there,
the computer gets confused (it doesn't know that you meant to write a single
two-digit number). When you're finished, your code should look like the
following code snippet (here, the new line you typed is shown in bold and the
first cout is broken to fit in the book):

#include <iostream>
using namespace std;

int main()

{
cout << "Hello, I am your computer talking." <«
endl;
cout << 5 + 10 << endl;
return 0;
}

Save your work by choosing File->Save Everything.

; Instead of choosing File=> Save Everything, you can recognize that the only thing

blinking cursor in the code editor, you know that the code editor is active. If not,
TIP click somewhere in your code to activate the editor. When you see the blinking

cursor, press Ctrl+S. This saves your file.

often.” Get in the habit of pressing Ctrl+S every so often. You won’t wear out your

; The computer world uses an adage that goes something like this: “Save early, save

hard drive, and the keyboard is pretty durable. Every time you type a few lines of
TIP code, press Ctrl+S. Before you compile, press Ctrl+S. When you feel paranoid that
the last Ctrl+S didn’t stick, you can press Ctrl+S. When you’re stuck at a traffic

light, you press Ctrl+S.

62 BOOK 1 Getting Started with C++

Now you can tell the computer to compile your code. If you haven’t saved it, do so
now by pressing Ctrl+S. Then choose Build= Build. If you typed everything cor-
rectly, you should see the magical message® errors, @ warnings (@ minutes,
1 seconds) appear in the Build Log window. But if not, don’t worry; you can
easily fix it. Look at your code and find the difference between the line we wrote
earlier and your code. Here it is again, just for safe measure:

cout << 5 + 10 << endl;

There is a space after cout, a space after <<, a space after 5, a space after +, a space
after 10, and a space after <<. And there is a semicolon at the end. Make sure that
these are all correct.

Then when you successfully compile and see the happy message © errors, ©
warnings, you are ready to run your application. Choose Build=>Run.

A console window opens, and you should see the following:

Hello I am your computer talking.
15

Process returned 0 (0xQ) execution time : 0.015 s
Press any key to continue.

Notice that the second line is the answer to the math problem 10 + 5. That means
the computer knows how to do math, more or less correctly.

Ordering the operations

If you want, you can play around with some more complicated problems. For
example, you can try something like this:

cout << 5 +10 / 2 % 3 + 25 << endl;

What do you think the answer will be? The answer depends on computer rules for
the order in which it performs math problems. These are called orders of operation.
Multiplication and division take precedence over addition and subtraction. There-
fore, the computer does all the multiplication and division first from left to right;
then it does the addition and subtraction from left to right. Figure 3-8 shows the
order in which the computer does this particular math problem.

CHAPTER 3 Creating Your First C++ Application 63

Creating Your First C++

Application

FIGURE 3-8:
The computer
likes to use
orders of
operation.

FIGURE 3-9:

A programmer
calculator comes
in handy when
working with
numbers.

5+10/2%3+125

5+45%34+25

'

54154725

’

20+25

'

45

Going overboard

The computer actually has various limits, including when it comes to math. If you
try something like this:

cout << 12345678 x 100 / 2 x 3 x 3 << endl;
a warning message shows up in the error window when you try to compile:
warning: integer overflow in expression [-Woverflow]
This message is bad. It means that you can’t rely on the answer, which is
1,260,587,804 in this case, when it should be 5,555,555,100. You can use a pro-

gramming calculator to see why this problem occurs. When you input 12345678,
the resulting value takes up to bit 23 of the 32-bit integer, as shown in Figure 3-9.

|| Calculator (=)= =
View Edit Help
12,345,678
esee @ee8 1811 1188 6118 @88l @188 1118
31 2
el
oo L0 e (<=l =
s [so|[so]l ¢ 7][5][o][][=
‘;.Qword |7| |;| D ‘Z| |E| |E|| k | =
owen (][] e [)2 (s][_
O Byte |Nut||And| F ‘ 0 | c |+|

6/ BOOK 1 Getting Started with C++

FIGURE 3-10:

You can see how
overruns occur by
doing the math.

LD,
TECHNICAL
STUFF

When you multiply the initial value by 100, the bits now extend up to bit 30 of the
32-bit integer, as shown in Figure 3-10. At this point, the value is in jeopardy of
running out of bits to use. Only the topmost bit is left.

|| Calculator (E=N N E)

View Edit Help

1,234,567,800

eles 1861 1eel o116 oees 6ele 011l lede
31 15 a8

Hex Mod|| A | MC || MR || MS || M=+ || M-
() B +— || CE s + v
Ein RoL || RoR | C 7 8 9 %
D

Qword or Xor Fil 5 6 * 1/x
@ Dword

o Lsh Rsh E 1 2 3

Byte Mot | | And F 0 c +

Dividing by 2 buys you some room — the value is back down to bit 29. Multiply-
ing by 3 produces a correct output value of 1,851,851,700. However, multiplying by
3 the second time causes an overflow. The value actually decreases, which is not
what you’d expect from a multiplication. The value from the programmer calcu-
lator matches the value output by the application. In both cases, you see the result
as an overflow of the number of available bits. Using the programmer calculator
helps you see what is happening in a visual way.

The greatest positive number you can use is 2,147,483,647. The greatest negative
number is -2,147,483,647. However, if you’re willing to stick to only positive num-
bers and o, the computer can make some adjustments inside and handle a higher
positive number. In that case, your numbers can range from 0 to 4,294,967,295.

Pairing the parentheses

If you want to get around the order in which the computer does its math, you can
add parentheses. For example, if you use the following line, the computer does the
final operation (+) before it does the others:

cout << 5 +10 / 2 x (3 + 25) << endl;

Whereas previously, without the parentheses, this thing came out to be 45, now
it comes out to be 145. First the computer does the 3 + 25 to get 28. Then it begins

CHAPTER 3 Creating Your First C++ Application 65

Creating Your First C++

Application

66

with the multiplication and division, from left to right. So it takes 10 / 2 to get
5, and then multiplies that by (3 + 25), or 28, to get 140. Then it starts with the
addition and subtraction from left to right. So it adds 5 to this to get the final
number, 145.

Tabbing your output

Just as you can write a string of letters and numbers to the console, you can also
write a tab. For example, change the following line from your application

"

cout << "Hello, I am your computer talking." << endl;

to:

"

cout << "Hello\tl am your computer talking." << endl;

In the preceding code, you replaced the comma and space with a backslash and
then a lowercase t. But when you compile and run this application (remember to
compile it first!), it won’t print exactly what’s in the double quotes. Here’s what
you see:

Hello I am your computer talking.

The extra space in the displayed line is a tab space, just as if you had pressed the
Tab key while typing this. (Is that slick, or what?)

There’s a complication to using the backslash: You can’t just type a backslash (or
a double quote, for that matter) and expect to see it on the screen. A couple of
workarounds will show the actual characters:

¥ Really want to display a backslash, not a special character? Use a backslash
followed by another backslash. (Yes, it's bizarre.) The compiler treats only the
first backslash as special. When a string has two backslashes in a row, the
compiler treats the second backslash as, well, a backslash.

For example, the following line of code has two backslashes:
cout << "\\tabc" << endl;
The following text shows up at the console:

\tabc

BOOK 1 Getting Started with C++

Q

TIP

¥ If a string starts with a double quote and ends with a double quote, how in the
world would you actually print a double quote? Type a backslash and then a
double quote, as in the following code:

cout << "Backslash and double quote are \"." << endl;
When that code runs in an application, you see this on the screen:

Backslash and double quote are ".

C++ programmers use the term escape-sequence to refer to any special character
in a string that starts with a backslash. This is an outdated bit of vocabulary —
maybe not as old as “methinks,” but it does date back to the original C language
of the 1970s. Back then, you made special characters appear on console screens by
first pressing the Esc key.

Let Your Application Run Away

(= =)
T
TECHNICAL
STUFF

The word execute refers to running your application, but you need to compile (or
build, using the Code::Blocks terminology) the application before you run it. The
compilation process transforms your application into an executable file. An exe-
cutable file is a special type of file that contains an application you can run on your
computer. When you run your word processor application, you run an executable
file containing the word processor application.

After the computer compiles (builds) your application, it performs a step called
linking. People often refer to these two steps together as simply compiling. Indeed,
this book often uses the term to mean both steps together. If you’re curious about
what goes on here, take a look at Appendix A. It has a section devoted to the com-
piling and linking processes.

Whenever you want to run your application, you first compile it and then run it.

If you make more changes to your application, you must compile it again before
running it. Otherwise, the executable file won’t have your changes.

CHAPTER 3 Creating Your First C++ Application 67

Creating Your First C++

Application

Because you almost always use Build and Run in sequence, the kind people who
built Code::Blocks included a special menu item called Build and Run on the Build
menu. The computer first compiles your code, and then it immediately runs the
application if there are no errors. If there are errors, the compiler doesn’t run the
application, and the errors are reported as usual. (You can also perform a build
and run by pressing F9.)

Table 3-3 lists keyboard shortcuts for compiling.

TABLE 3-3 Keyboard Shortcuts for Compiling and Running
Build Ctri+F9
Run Ctrl+F10
Build and run F9

68 BOOK 1 Getting Started with C++

IN THIS CHAPTER

» Using storage bins called variables

» Working with integer and character
variables

» Manipulating strings

» Using Boolean variables and
conditional operators

» Reading from the console

Chapter4
Storing Data in C++

©

REMEMBER

veryone loves to store things away. The closet is a perfect example of a place

to store things. You may have boxes in your closets that you haven’t opened

in years. Perhaps you inadvertently created a time capsule. Or just a fire
hazard. When you program a computer, you can also store things away. Most
people know that a computer has two kinds of memory: memory inside a chip and
memory on a hard drive. But most people use the term memory in reference to chip
memory; the other is referred to as simply the hard drive. When you type a busi-
ness letter in a word processor, the letter is stored in memory. After you choose
File=>Save, the letter gets stored on the hard drive, but as long as you still have the
letter open in the word processor, it’s generally still in memory.

The best way to think of memory is as a set of storage bins, much like the ones
in the closets that you’re afraid of. When you write a computer application, you
reserve some storage bins, and you give each storage bin a name. You also say
what type of thing can be stored in the storage bin. The technical term for such a
storage bin is a variable.

In this chapter, you discover how you can use these storage bins in your
applications.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AI04\BookI\Chapter@4 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

CHAPTER 4 Storing DatainC++ 69

Putting Your Data Places: Variables

70

©

REMEMBER

LD,
TECHNICAL
STUFF

When you write an application, you specify that you want to make use of one or
more storage bins called variables. You can put different kinds of things in these
storage bins. The difference between these computer storage bins and those in
your closet, however, is that each computer storage bin can hold only one thing at
atime.

You can put many different types of things into your variables, too. For exam-
ple, you can put numbers in a storage bin, or you can put a string in a storage
bin. (However, each storage bin contains a unique kind of data — you can’t put a
number into a storage bin designed for a string.) Book 1, Chapter 3 advises that a
string is simply a bunch of letters, digits, punctuation marks, or other characters
all strung together. As for numbers, they can be either integers (which are posi-
tive whole numbers, negative whole numbers, and 0) or numbers with a decimal
point, such as 3.11 or 10.0, which (for various reasons) are called floating-point
numbers.

The term floating-point number refers to a number that has a decimal point and
something to the right of the decimal point (even if it’s just a 0). When you see the
term floating point, you can remember what it means by focusing on the word point
in its name. Think of decimal point.

If you are already familiar with the term variable from other fields (such as
astronomy, in which variable refers to a kind of star), be careful not to apply their
definitions here. Even if they’re from fields similar to computer science, such as
data science or math, some significant differences are involved. For example, in
algebra, a variable represents an unknown quantity, and you can solve for a vari-
able. But in C/C++ programming, it’s simpler than that: A variable is simply a stor-
age bin with an associated name.

Creating an integer variable

In your C++ application, you can easily write a line of code that creates a vari-
able. Although what you’re doing at that point is simply writing code (and the
variable doesn’t actually get created until you run the application), people often
refer to this process as creating a variable. A variable has three aspects, as shown
in Table 4-1.

BOOK 1 Getting Started with C++

TABLE 4-1

A Variable Has Three Aspects

Aspect What It Means

Name The name you use in your application to refer to the variable
Type The type of information that the variable can hold
Value The actual thing that the storage bin holds

The following list describes the items in Table 4-1 in more detail.

¥ Name: Every variable must have a name. In your application, you refer to the
variable by this name. For example, you may have a variable called count, and
you may have a variable called LastName. Or you could have a variable called
MisterGates.

¥ Type: When you create a variable, you must specify the type of information
the variable can hold. For example, one variable may hold an integer, and
another variable may hold a single character. After you pick a type for the
variable in your application, you can put only things of that type into the
variable.

¥ Value: At any given moment, a variable holds a single value. For example, an
integer variable might hold the number 10, and a character variable might
hold the character a. In your application, you can store something in a
variable, and later you can store something else in the variable. When you
store something else, the variable forgets what was previously inside it. So, in
this sense, you can think of a computer as having a one-track mind.

The code for the SimpleVariable example, shown in Listing 4-1, demonstrates
how to create a variable. This is a full application that you can run.

m Creating a Variable

#include <iostream>
using namespace std;

int main()
{
int mynumber;
mynumber = 10;
cout << mynumber << endl;
return 0;

CHAPTER 4 Storing Datain C++ 71

Storing Data in C++

72

©

REMEMBER

Take a careful look at Listing 4-1. Remember that the computer starts with the
code inside the braces that follow the word main, and it performs the code line
by line.

The first line inside main looks like this:
int mynumber;

When you declare a variable, the first thing you specify is the type of thing the
variable can hold. Here, you use the word int. This word is the C++ word for inte-
ger. Thus, the variable that you’re declaring can hold an integer. Next is the name
of the variable. This variable is named mynumber. Then a semicolon ends the vari-
able declaration.

Notice that, in this line, you’ve covered two of the three aspects of variables: You
have given the variable a name, and you have told the computer what type of thing
you want the variable to hold. The order seems a little odd — in C++, you first say
the type and then the name. That’s just the way it’s done in C++, and a good reason
stands behind it, which you can read about in “Declaring multiple variables,” later
in this chapter.

The next line looks like this:
mynumber = 10;

This line puts something in the variable. It puts the number 10 in it. Because you
already know that the variable can hold an integer, you’re allowed to put in a 10
because it is an integer. If you had tried to put something other than an integer
in the variable, the compiler would have given you an error. The compiler makes
sure that you put into a variable only the type of thing that you said you would.
The compiler is good at keeping you in line. And of course you noticed that the
statement ends with a semicolon. In C++, every statement ends with a semicolon.

To put something in a variable, you type the variable’s name, an equals sign (sur-
rounded by optional spaces), and the value. You then end the line with a semi-
colon. This line of code is an assignment. Or you can say that you are setting the
variable to the value. The next line is this:

cout << mynumber << endl;

Book 1, Chapter 3 describes what this line does. It’s a cout statement, which
means that it writes something on the console. As you can probably guess, this
code tells the computer to write the value of mynumber on the console. It does not
write the string mynumber. Rather, it writes whatever happens to be stored in the

BOOK 1 Getting Started with C++

TIP

©

REMEMBER

©

REMEMBER

storage bin. The previous line of code puts a 10 in the storage bin, and so this line
prints a 1@ on the console. When you run the application, you see this:

10

Think of it like this: When you type the variable’s name, you are accessing the
variable. The exception to this is when the variable’s name appears to the left of
an equals sign. In that case, you are setting the variable. You can do two things
with a variable:

3 Set the variable: You can set a variable, which means that you can put
something inside the storage bin.

3 Retrieve the value: You can get back the value that is inside the variable.
When you do so, the value stays inside it; you are not, so to speak, taking it out.

When you retrieve the value that is in a variable, you are not removing it from the
variable. The value is still inside the variable.

Declaring multiple variables

Many years ago, when the original C programming language first appeared (which
was the language that served as the predecessor to C++), many developers thought
it odd that they had to first say the type of the variable and then the name. But
this actually works out well because it makes declaring multiple variables of the
same type easy. If you want to declare three integer variables in a row, you can do
it all in one shot, like this:

int tom, dick, harry;

This statement declares three separate variables. The first is called tom; the sec-
ond is called dick; and the third is called harry. Each of these three variables
holds an integer. You have not put anything in any of them, so you may follow that
with some code to stuff each of them full with a number. For example, this code
puts the number 10 in tom, the number 20 in dick, and the number 3254 in harry.

tom = 10;
dick = 20;
harry = 3254;

When you run your applications, the computer executes the statements in the
order that they appear in your code. Therefore, in the preceding code, the com-
puter first creates the three storage bins. Then it puts a 10 inside tom. (Now does-
n’t that sound yummy?) Next, dick gets a 20. And finally, harry consumes a 3254.

CHAPTER 4 Storing Datain C++ 73

Storing Data in C++

Changing values

Although a variable can hold only one thing at a time, you can still change what
the variable holds. After you put something else in a variable, it forgets what it
originally had. So when people accuse you of being forgetful, you can just say,
“Yes, but you should see that computer I work with all day long!”

You put something new in the variable in the same way you originally put some-
thing in it. Look closely at the code for the ChangeVariable example in Listing 4-2.
Notice that the first part of the application is just like Listing 4-1. But then you
add two more lines (shown in bold) that look pretty much like the previous two:
The first one sticks 20 in the same variable as before, and the next one writes this
new value out to the console.

m Changing a Variable

74

©

REMEMBER

#include <iostream>
using namespace std;

int main()
{
int mynumber;
mynumber = 10;
cout << mynumber << endl;

mynumber = 20;
cout << mynumber << endl;
return 0;

As before, the line where you put something new in the variable follows the same
format: There’s an equals sign, with the variable on the left and the new value
on the right. As described earlier in this chapter, this statement is an assignment
statement.

When you see a single equals sign by itself, the item on the left side is the variable
or item that receives the information that is on the right side.

Setting one variable equal to another

Because you can do only two direct things with variables — put something in and
retrieve the value — setting one variable equal to another is a simple process of

BOOK 1 Getting Started with C++

REMEMBER

REMEMBER

retrieving the value of one variable and putting it in the other. This process is
often referred to as copying the variable from one to another. For example, if you
have two integer variables — say, start and finish — and you want to copy the
value of start into finish, you would use a line of code like the following:

finish = start;

Don’t let the language confuse you. Although you want to copy the value of start
into finish, notice that the first thing you type is finish, and then the equals
sign, and then start. The left side of the equals sign is what receives the value; it
is an assignment statement.

When you copy the value of one variable to another, the two variables must be the
same type. You cannot, for instance, copy the value from a string variable into an
integer variable. If you try, the compiler issues an error message and stops.

After the computer runs this copy statement, the two variables hold the same
thing. The code for CopyVariable, shown in Listing 4-3, is an example of copying
one variable to another.

Copying a Value from One Variable to Another

#include <iostream>
using namespace std;

int main()
{
int start = 50;
int finish;
finish = start;
cout << finish << endl;
return 0;

Initializing a variable

When you create a variable, it starts as an empty storage bin. Before it can be of
much use, you need to put something in it.

CHAPTER 4 Storing Datain C++ 75

Storing Data in C++

76

A

WARNING

If you try to retrieve the contents of a variable before you actually put anything
in it, you end up with what computer people fondly call “unpredictable results.”
What they really mean to say is, “Don’t do this because who knows what’s in it.”
It’s kind of like if you go in the attic and you discover that the former owners left
behind a big, ominous box. Do you really want to look inside it? With variables, the
problem you run into is that the computer memory has something stored in that
particular place where the variable now sits, and that stored item is probably just
some number left over from something else. But you can’t know in advance what
it is. So always make sure that you place a value inside a variable before you try to
retrieve its contents, a process called initializing the variable.

You can initialize a variable in two ways. The first way is by declaring the variable
and then assigning something into it, which takes two lines of code:

int mynumber;
mynumber = 153;

But the other way is a bit quicker. It looks like this:
int mynumber = 153;

This method combines both strategies into one neat little package that is available
for you to use whenever you want. You see variables initialized both ways in this
book, depending what is clearer or more convenient at the time.

Creating a great name for yourself

Every variable needs to have a name. But what names can you use? Although you
are free to use names such as Fred, Zanzibar, or Supercount100@M, there are
limits to what C++ will allow you to use.

MYTHIS AND MYTHAT

As you progress through your computer programming life (in addition to your antici-
pated life as a millionaire), you're likely to notice that, for some reason, some computer
programmers seem to favor variable names that start with the word My. Other com-
puter programmers despise this practice and completely distance themselves from

it. You may have seen such computer identifiers as MyClass, MyNumber, MyHeight,
MyName, MyCar, MyWhatASurprise, MyLar, MyStro, and MyOpic. There really isn't any
problem using names that start with My, especially in training exercises.

BOOK 1 Getting Started with C++

A

WARNING

TABLE 4-2

Although most C++ code is in lowercase, you are free to use uppercase letters in
your variable names. However, C++ distinguishes between the two. Therefore, if
you have a variable called count, you cannot access it later in your application by
calling it Count with a capital C. The compiler treats the two names as two dif-
ferent variables, which makes C++ case sensitive. But on the other hand, please
don’t use two separate variables in the same application — one called count and
one called Count. Although the compiler doesn’t mind, the mere humans that may
have to read your code or work on it later might get confused.

Here are the rules you need to follow when creating a variable name:

3 Characters: You can use any uppercase letter, lowercase letter, number, or
underscore in your variable names. Other symbols (such as spaces or the
ones above the number keys on your keyboard) are not allowed in variable
names. The only catches are that

The first character cannot be a number.
The variable name cannot consist of only numbers.

3 Length: Most compilers these days allow you to have as many characters in
the variable name as you want. Just to be sure, and to prove I'm easily
amused, | successfully created a variable in Code::Blocks with a name that's
more than 1,000 characters in length. However, | wouldn't want to have to
type that name over and over. Instead, | recommend keeping variable names
long enough to make sense but short enough that you can type them easily.
Most people prefer anywhere from five to ten characters or so.

Examples of acceptable variable names are Count, current_name, address_1000,
and LookupAmount. Some variable names are legal, but not easily understood, such
as _, __, and _12 — none of which tell you what the variable contains. Table 4-2
lists some variable names that are not allowed.

Examples of Bad Variable Names

Bad Why It's Not Allowed
VERELIEEINE

12345 It has only numbers (and it starts with a number, which is
wrong as well).

A&B The only special character allowed is the underscore, _. The
ampersand (&) is not allowed.

Tabc A variable name cannot start with a number.

CHAPTER 4 Storing Datain C++ 77

Storing Data in C++

Manipulating Integer Variables

78

©

REMEMBER

A potter who is creating an elegant vase is said to manipulate the clay. Like-
wise, you can manipulate variables to create a thing of abstract beauty. But in this
case, manipulation means simply that you can do arithmetic. You can easily do
the usual addition, subtraction, multiplication, and division. Book 1, Chapter 3,
introduces the characters that you use for the arithmetic operations. They are:

¥ +for addition
¥ - for subtraction
¥ *for multiplication

¥ /for division

You can, however, perform another operation with integers, and it has to do with
remainders and division. The idea is that if you divide, for example, 16 by 3, the
answer in whole numbers is 5 remainder 1. Another way of saying this is that 16
doesn’t divide by 3 evenly, but 3 “goes into” 16 five times, leaving a remainder of 1.
This remainder is sometimes called a modulus. Computer people actually have an
important reason for calling it modulus rather than remainder, and that’s because
people in the computer field like to use confusing terms.

When working with integer variables, remember the two basic things you can do
with variables: You can put something in a variable, and you can retrieve it from
a variable. Therefore, when working with an integer variable, the idea is that you
can retrieve the contents, do some arithmetic on it, and then print the answer or
store it back into the same variable or another variable.

Adding integer variables

If you want to add two integer variables, use the + symbol. You can either print the
result or put it back into a variable.

The AddInteger example adds two variables (start and time) and then prints the
answer to the console. The addition operation is shown in bold.

#include <iostream>
using namespace std;

int main()

{

BOOK 1 Getting Started with C++

REMEMBER

int start;

int time;
start = 37;
time = 22;

cout << start + time << endl;
return 0;

This code starts with two integer variables called start and time. It then sets
start to 37 and sets time to 22. Finally, it adds the two variables (to get 59) and
prints the results. When you see start + time, + is the operator that tells what
action to perform, and start and time are the operands upon which the operator
acts.

In this example, however, the computer doesn’t actually do anything with the
final sum, 59, except print it. If you want to use this value later, you can save it in
its own variable. The AddInteger2 example demonstrates how to save the result
in a variable; the storage operation is shown in bold:

#include <iostream>
using namespace std;

int main()
{
int start;
int time;
int total;
start = 37;
time = 22;
total = start + time;
cout << total << endl;
return 0;

In this code, you declare the integer variable total along with the others. Then
after you store 37 in start and 22 in time, you add the two and save the total in
the variable called total. Then you finally print the value stored in total.

You can also add numbers themselves to variables. The following line adds 5 to
start and prints the result:

cout << start + 5 << endl;

CHAPTER 4 Storing Datain C++ 79

Storing Data in C++

80

A

WARNING

Or you can save the value back in another variable, as in the following fragment:

total = start + 5;
cout << total << endl;

This example adds 5 to start and saves the new value in total.

When you use code such as total = start + 5;, although you are adding 5 to
start, you are not actually changing the value stored in start. The start variable
itself remains the same as it was before this statement runs. Rather, the computer
figures out the result of start + 5 and saves that value inside total. Thus, total
is the only variable that changes here.

Here’s where things get a little tricky in the logical arena. This might seem strange
at first, but you can actually do something like this:

total = total + 5;

If you have taken some math courses, you might find this statement a little bizarre,
just like the math courses themselves. But remember that total is a variable in
computer programming, and that definition is a bit different from the math world.

This statement really just means you’re going to add 5 to the value stored in
total, and you’ll take the value you get back and store it back in total. In other
words, total will now be 5 greater than it was to begin with. The AddInteger3
example shows this technique in action:

#include <iostream>
using namespace std;
int main()

{
int total;

total = 12;
cout << total << endl;

total = total + 5;
cout << total << endl;

return 0;

When you run this application, you see the following output on the console:

BOOK 1 Getting Started with C++

TIP

12
17

Notice what took place. First, you put the value 12 inside total and print the value
to the console. Then you add 5 to total, store the result back in total, and print
the new value of total to the console.

Now, it’s no big secret that we computer people are lazy. After all, why would we
own computers if we weren’t? And so the great makers of the C++ language gave
us a bit of a shortcut for adding a value to a variable and storing it back in the
variable. The line
total = total + 5;
is the same as
total += 5;

’

We computer folks also have a special way of pronouncing +=. We say “plus equal.”
So for this line, we would say, “Total plus equal five.”

Think of the total += 5 notation as simply a shortcut for total = total + 5;.
You can also use the += notation with other variables. For example, if you want
to add the value in time to the value in total and store the result back in total,
you can do this

total = total + time;
or you can use this shortcut:

total += time;

If you are adding just 1 to a variable, which is called incrementing the variable, you
can use an even shorter shortcut. It looks like this:

total++;

This is the same as total = total + 1; ortotal += 1;

;e

Table 4-3 summarizes the different things you can do that involve the addition
of variables. Note that when you see ++, which is the increment operator, it’s pro-
nounced plus plus, not double plus.

CHAPTER 4 Storing Datain C++ 81

Storing Data in C++

TABLE 4-3 Doing Things with Addition

Add two variables cout << start + time << endl;
Add a variable and a number cout << start + 5 << endl;
Add two variables and save the result in a variable total = start + time;

Add a variable and a number and save the result in a variable total = start + 5;

Add a number to what's already in a variable total = total + 5;

Add a number to what's already in a variable by using a shortcut total += 5;

Add a variable to what's already in a variable total = total + time;

Add a variable to what's already in a variable by using a shortcut total += time;

Add 1 to avariable total++;

Subtracting integer variables

Everything you can do involving the addition of integer variables you can also do
with subtraction. For example, you can subtract two variables, as shown in the
SubtractVariable example in Listing 4- 4.

AND NOW THE ANSWER TO THE GREAT
QUESTION

In C++, as well as in the original C language (upon which C++ is based), the ++ opera-

tor adds 1 to a variable, which finally allows an answer to The Great Question: Where
did the name C++ come from? When the guy who originally designed C++, Bjarne
Stroustrup, needed a name for his language, he decided to look into its roots for the
answer. He had based the language on C; and in C, to add 1 to something, you use the
++ operator. And because he felt that he added only 1 thing to the language, he decided
to call the new language C++.

Okay, that's not quite true; Bjarne actually added a great deal to the language. But that
entire great deal can be thought of as just one thing made of lots of smaller things.
What did he add? The main thing of those smaller things is the capability to do object-
oriented programming. Object-orientation is something you find in the next chapter.
And by the way, the originator of C++, Mr. Stroustrup, is still alive and still doing work for
the language at AT&T. You can see his web page athttp: //www.stroustrup.com/.

82 BOOK1 Getting Started with C++

http://www.stroustrup.com/

Subtracting Two Variables

#include <iostream>
using namespace std;

int main()

{
int final;
int time;

final = 28;
time = 18;

cout << final - time << endl;
return 0;

When this application runs, the console shows the number 10, which is 28 - 18.
Remember that, as with addition, the value of neither final nor time actually
change. The computer just figures out the difference and prints the answer on the
console without modifying either variable.

You can also subtract a number from a variable, and (as before) you still aren’t
changing the value of the variable, as in the following example:

cout << final - 5 << endl;
You can subtract one variable from another and save the result in a third variable:
start = final - time;

And you can change the value in a variable by using subtraction, as in the follow-
ing four sample lines of code. This first subtracts time from final and saves the
result back in final:

final = final - time;
Or you can do the same thing by using the shortcut notation:

final —-= time;

CHAPTER 4 Storing DatainC++ 83

Storing Data in C++

84

Or you can do the same thing with a number:
final = final - 12;

And (as before) you can alternatively do the same thing with a shortcut:
final —= 12;

Finally, as with addition, you have a shortcut to a shortcut. If you want only to
subtract 1, you can simply use two minus signs, as in

Final——;

This line is pronounced minus minus. The — is the decrement operator and when
applied to a variable is called decrementing the variable.

Multiplying integer variables
To do multiplication in C++, you use the asterisk (*) symbol. As with addition and
subtraction, you can multiply two variables, or you can multiply a variable by a
number. You can either print the result or save it in a variable. For example, you
can multiply two variables and print the results to the console with the following
line:

cout << length x width << endl;
Or you can multiply a variable by a number, as in this line:

cout << length x 5 << endl;

And as with addition and subtraction, you can multiply two variables and save the
result in a third variable:

area = length x width;

Also, you can use multiplication to modify a variable’s value, as in
total = total x multiplier;

Or, to use the shortcut:

total %= multiplier;

BOOK 1 Getting Started with C++

PREFIX VERSUS POSTFIX

The ++ and —— operators can appear as a prefix (before the variable name) or a post-
fix (after the variable name) operator. However, they behave differently depending on
where they appear. A prefix operator is applied before anything else happens, while a
postfix operator is applied afterward. Consider this code:

int final = 10;
cout << final++ << endl;
cout << final << endl;

The output from this code is

10
11

because the postfix ++ operator is added after the cout. However, with this code:
int final = 10;
cout << ++final << endl;
cout << final << endl;

the output in this case is

11
11

because the prefix ++ operator is added before the cout. The same holds true for the
—— operator. Code with a prefix operator like this:

int final = 10;
cout << ——final << endl;
cout << final << endl;

produces an output of

9
9

because the operator is applied before the cout. Using prefix or postfix operators,
when applied correctly, can reduce the amount of code you write and possibly make
your code easier to read.

CHAPTER 4

85

Storing Data in C++

86

WARNING

And (as before) you can do the same with just a number:
total = total x 25;

or this:
total x= 25;

Note that there is no x* operator used to multiply a value by 1 or by itself. Conse-
quently, the compiler will raise an error if you type totalsx;.

Dividing integer variables

Although addition, subtraction, and multiplication are straightforward with
integer variables, division is a bit trickier. The chief reason is that, with whole
numbers, sometimes you just can’t divide evenly. It’s like trying to divide 21
tortilla chips evenly among five people. You just can’t do it. Either somebody will
feel cheated, or everyone will get four chips, and one will be left over for everyone
to fight over. Of course, you could break every chip into five pieces, and then
each person gets Y5 of each chip, but then you’re no longer working with whole
numbers — just a bunch of crumbs.

If you use a calculator and type 21 divided by 5, you get 4.2, which is not a whole
number. If you want to stick to whole numbers, you have to use the notion of a
remainder. In the case of 21 divided by 5, the remainder is 1, as you figured out
with the tortilla chips. The reason is that the highest multiple of 5 in 21 is 20
(because 5 times 4 is 20), and 1 is left over. That lonely 1 is the remainder.

So in terms of strictly whole numbers, the answer to 21 divided by 5 is 4 remainder
1. And that’s how the computer does arithmetic with integers: It gets two different
answers: The quotient and the remainder. In math terms, the main answer (in the
example, 4) is the quotient. What’s left over is the remainder.

Because two different answers to a division problem may occur, C++ uses two dif-
ferent operators for figuring these two different answers.

To find the quotient, use the slash (/). Think of this character as the usual division
operator, because when you deal with numbers that divide evenly, this operator
gives you the correct answer. Thus, 10 / 2 gives you 5, as you would expect. Fur-
ther, most people just call this the division operator, anyway.

To find the remainder, use the percent sign (%). This is often called the modulus
operator.

BOOK 1 Getting Started with C++

The DivideInteger example, shown in Listing 4-5, takes two numbers and prints
their quotient and remainder. Then it does it again for another pair of numbers.
The first pair has no remainder, but the second pair does.

Finding Quotients and Remainders

TIP

#include <iostream>
using namespace std;

int main()

{
int first, second;
cout << "Dividing 28 by 14." << endl;
first = 28;
second = 14;
cout << "Quotient
cout << "Remainder

n

<< first / second << endl;
" << first % second << endl;
cout << "Dividing 32 by 6." << endl;

first = 32;

second = 6;

cout << "Quotient
cout << "Remainder
return 0;

n

<< first / second << endl;
<< first % second << endl;

n

When you run this application, you see the following output:

Dividing 28 by 14.
2
0
Dividing 32 by 6.
5
2

The code in Listing 4-5 uses a couple new tricks in addition to (or divided by?) the
division tricks. For one, it combines the variable declarations of first and sec-
ond variables into one statement. A comma separates the variable names and the
type (int) only once. Next, you combine the output of strings and numbers into a
single cout statement. You did this for four of the cout statements. That’s accept-
able, as long as you string them together with the << signs between each of them.

CHAPTER 4 Storing Data in C++ 87

Storing Data in C++

You have access to all the usual goodies with both the division (/) and modulus
(%) operators. For example, you can store the quotient in another variable, as you
can with the remainder:

myQuotient = first / second;
myRemainder = first % second;

And you have shortcuts available:

int first = 30;
first /= 5;
cout << first << endl;

In this case, the value of first becomes 6 because 30 / 5 is 6. And in the follow-
ing case, the value of first becomes 3 because the remainder of 33 divided by 6
is 3:

int first = 33;
first %= 5;
cout << first << endl;

Characters

88

Another type of variable you can have is a character variable. A character vari-
able can hold a single — just one — character that C++ stores as a number. It
holds a value between —127 and 128 (char or signed char) or between 0 and 255
(unsigned char). Normally, a character is anything that can be typed, such as a
letter of the alphabet, a digit, or another symbol you see on the computer key-
board, but a character can also hold nonprintable values found in an ASCII table
(see https://en.cppreference.com/w/cpp/language/ascii). Some of these
unprintable characters are control characters (so called because they control the
appearance of text on the screen), such as the tab, carriage return, and newline
character.

To use a character variable, you use the type name char. To initialize a character
variable, you put the character inside single quotes. (If you use double quotes, the
compiler issues an error message because double quotes create a string, which
can contain multiple characters rather than a single character.) The following is
an example of a character:

char ch;

ch = 'a';

BOOK 1 Getting Started with C++

https://en.cppreference.com/w/cpp/language/ascii

cout << ch << endl;

The character variable here is called ch, which is initialized to the character a. It’s
surrounded by single quotes. The code then prints it by using cout.

Null character

One important character in the programming world is the null character. Deep
down inside the computer’s memory, the computer stores each character by using
a number, and the null character’s number is 0. There’s nothing to actually see
with the null character; this book can’t contain a picture of it for you to hang on
your wall. (Bummer.) The book can only describe it. Yes, every once in a while,
computer people have to become philosophers. But the null character is important
because it is often used to signify the end of something — not the end of the world
or anything big like that, but the end of some data.

To notate the null character in C++, use \9, as in

char mychar = '\@';

Nonprintable and other cool characters

In addition to the null character, several other cool characters are available —
some that have a look to them and can be printed and some that do not and can-
not. The null character is an example of a nonprintable character. You can try to
print one, but you get either a blank space or nothing at all, depending on the
compiler.

But some characters are special in that they do something when you print, though
you can’t type them directly. One example is the newline character. The newline
character (\n) symbolizes the start of a new line of text. In all cases, the computer
places the insertion point, the place where it adds new characters, on the next line.
If you are printing some text to the console and then you print a newline charac-
ter, any text that follows will be on the next line. Most compilers these days start
the text at the far left end of the next line (Column 1), but some compilers start the
text in the next column on the next line, as in the following output. In this case,
the text appears on the next line, but it starts at Column 4 rather than at the far
left end (Column 1):

abc
def

CHAPTER 4 Storing DatainC++ 89

Storing Data in C++

90

Here, you print abc, and then a newline, and then def. Notice that the def con-
tinues in the same position it would have been had it been on the first line. For
the compilers used in this book, however, printing abc, and then a newline, and
finally def results in this output:

abc
def

But to accommodate the fact that some other compilers sometimes treat a new-
line as just that (start a new line but don’t go anywhere else), the creators of the
computers gave you another special character: the carriage return. (Can you hear
the crowd say, “Ooooh!”?)

The carriage return character (\r) places the insertion point at the start of the
line, but not on a new line (which means that if you use just a carriage return on
a computer expecting both a carriage return and a newline, you overwrite what’s
already on the line). That’s true with pretty much every C++ compiler.

The “Tabbing your output” section of Book 1, Chapter 3, describes the tab char-
acter (\t) and other characters that start with a backslash. These are individual
characters, and you can have them inside a character variable, as in the following
example, which prints the letter g, and then a tab, and then the letter b. Notice
that, to get the tab character to go into the character variable, you have to use the
\ and then a t:

char ch = "\t';

cout << "a" << ch << "b" << endl;

Book 1, Chapter 3 mentions that to put a double quote inside a string, you need to
precede the double quote with a backslash so that the computer won’t think that
the double quote is the end of the string. But because a character is surrounded
by single quotes, you don’t need to do this. You can just put a double quote inside
the character, as in

[T
7

char ch =

Of course, that raises an important question now: What about single quotes? This
time, you do have to use the backslash:

char ch = "\'"';

BOOK 1 Getting Started with C++

REMEMBER

And finally, to put a backslash inside a character, you use two backslashes:
char ch = "\\';

When the compiler sees a backslash inside a string or a character, it treats the
backslash as special and looks at whatever follows it. If you have something like
"\' with no other character inside the single quotes following it, the compiler
thinks the final quote is to be combined with the backslash. And then it moves
forward, expecting a single quote to follow, representing the end. Because a single
quote doesn’t appear, the compiler gets confused and issues an error. Compilers
are easily confused — kind of gives you more respect for the human brain.

CARRIAGE RETURN, NEWLINE, OR BOTH?

Depending on what platform you use (such as Windows, Linux, or Mac) and on which
applications you use, the effect of the carriage return, newline, or a combination of both
varies. In some cases, it's really enough to drive you quite nuts. The form that seems to
work best in all situations is the combination of the carriage return and linefeed (\r \n).
Sometimes, you can also use the linefeed and carriage return combination (\n\r), but
oddly enough, it doesn't always produce the same result as \r \n. Here is a quick sam-
pling based on platform:

® Windows: \r\n
® Linux: \n
® Older Mac: \r

® Acorn BBC and RISC: \n\r

This list doesn't even get into the domain of mainframes and other computers, which
can use very odd combinations like \@25. Sometimes a single character doesn't produce
any result at all. For example, when working with Windows Notepad, you must pro-

vide the \r \n combination because using \n alone won't do anything. However, when
importing a file using some C++ libraries, all you want is the \n because the library will
see the \r as a second line. This is the reason that many developers use just \n, which,
as previously mentioned, doesn’t show up in some editors.

So, there isn't a pat answer to the question of which character to use, and you need to
experiment to ensure that using \r, \n, \r\n, or \n\r will actually work the way you
want it to in the situation you're dealing with. When in doubt, rely on \r\n until you
know that the combination won't work.

CHAPTER 4 Storing DatainC++ 01

Storing Data in C++

92

WHAT IS THAT SYMBOL?

Never known to turn down the chance to invent a new word, computer people have
come up with names for characters that may not always match the names you know.
You've already heard the use of the word dot for a period when surfing the Internet.
And for some characters that already have multiple names, computer folks may use
one name and not the other. And sometimes, just to throw you off, they use the usual
name for something. The following are some of the names of symbols that computer
people like to use:

* @

%

++

Dot (but not period or decimal point)
At

Ampersand (but not and)

Pound (but not number sign)

Bang (though most people still say exclamation point)
Tilde

Percent

Star (not asterisk)

Left paren or left parenthesis

Right paren or right parenthesis

Left square bracket or left bracket
Right square bracket or right bracket
Equal-equal (not double equal)
Plus-plus (not double plus)
Minus-minus (not double minus)
Forward slash

Backslash

Left brace or left curly brace or open brace

BOOK 1 Getting Started with C++

Strings

} Right brace or right curly brace or close brace

o Caret (though a few people say hat, for real — no joke here!)

Double quote

If you'd like to have some fun with these symbols, check out the poem athttps://
spot.colorado.edu/~sniderc/poetry/wakawaka.html. It's especially helpful
on those days when you're bored to tears and really need some comedy relief.

If any single computer word has become so common in programming that most
computer people forget that it’s a computer word, it’s string. Book 1, Chapter 3
introduces strings and describes what they are, and it gives examples of them. In
short, a string is simply a set of characters strung together. The compiler knows
the start and end of a string in your code based on the location of the double
quotes.

You can create a variable that can hold a string. The type you use is string. The
CreateString example, shown in Listing 4-6, demonstrates how to use astring
variable.

Using Brackets to Access Individual Characters in a String

#include <iostream>
using namespace std;

int main()

{
string mystring;
mystring = "Hello there";
cout << mystring << endl;
return 0;

When you run this application, the string Hello there appears on the console.
The first line inside main() creates a string variable called mystring. The second
line initializes it to "Hello there". The third line prints the string to the console.

CHAPTER 4 Storing Data in C++ 03

Storing Data in C++

https://spot.colorado.edu/~sniderc/poetry/wakawaka.html
https://spot.colorado.edu/~sniderc/poetry/wakawaka.html

DELIMITERS LIMIT DE TOKENS

When you read an English sentence, you can tell where one word starts and one word
ends by looking at the spaces and the punctuation. The same is true in a computer
application. Words are normally separated by spaces, but other characters also denote
the beginning and end of a word. In a string, this character is the double quote, ("). Such
word dividers are called delimiters (pronounced “dee-LIM-it-ers”). And just to make sure
that you stay confused, computer people use the word token to mean the individual
words in an application that are set apart by delimiters. However, you won't hear about
tokens again in this book, because using the term word is less confusing.

Getting a part of a string

Accessing the individual characters within a string is easy. Take a look at the
IndividualCharacter example shown in Listing 4-7.

Using the string Type to Create a String Variable

#include <iostream>

using namespace std;

int main()
{
string mystring;
mystring = "abcdef";
cout << mystring[2] << endl;
return 0;

Notice that the ninth line, the cout line, has the word mystring followed by a 2
inside brackets ([]). When you run this application, here’s what you see:

That’s it, just a letter ¢, hanging out all by itself. The 2 inside brackets means that
you want to take the second character of the string and only that character. But
wait! Is ¢ the second character? Your eyes may deceive you, but it looks like that’s
the third character. What gives?

94 BOOK 1 Getting Started with C++

REMEMBER

Turns out that C++ starts numbering the positions inside the string at 0. So for
this string, mystring[@] is the first character, which happens to be a. And so,
really, mystring[2] gets the third character. Yes, life gets confusing when you try
to hold conversations with programmers, because sometimes they use the phrase
the third character to mean the third position; but sometimes they use it to mean
what’s really the fourth position. But to those people, the fourth position is actu-
ally the fifth position, which is actually the sixth position. Life among computer
programmers can be confusing. In general, this book uses fourth position to mean
the fourth position, which you access through mystring[3]. (The number inside
brackets is called an index.)

A string is made of characters. Thus, a single character within a string has the
type char. This means that you can do something like this (as shown in the Indi-
vidualCharacter2 example):

#include <iostream>

using namespace std;

int main()

{
string mystring;
mystring = "abcdef";
char mychar = mystring[2];
cout << mychar << endl;
}

In this example, mychar is a variable of type char. The mystring[2] expression
returns an item of type char. Thus, the assignment is valid. When you run this, you
once again see the single character in the third position:

Changing part of a string
Using the bracket notation, you can also change a character inside a string. The

following code, for example, changes the second character in the string (that is,
the one with index1) fromab toagq:

string x = "abcdef";
x[1] = 'q";

cout << x << endl;

This code writes the string agcdef to the console.

CHAPTER 4 Storing Data in C++ 95

Storing Data in C++

96

THOSE STRANGE # LINES

Now for those strange-looking lines that start with the # symbol. In Book 1, Chapter 7,
you discover how to divide your code into multiple pieces, each in its own source file.
That is a powerful way to create large software applications, because different people
can work on the different parts at the same time. But to do so, somehow each file must
know what the other files can do. And the way you tell the files about the other files is
by putting a line toward the top of your file that looks like this:

#include <string>

This line means that your application is making use of another file somewhere, and
that file has a filename of string. Inside that other file is a bunch of C++ code that
essentially gives your application the ability to understand strings. To see this file in
Code::Blocks, right-click the filename and choose Open #include File: <filename> from
the context menu. The line

#include <iostream>

gives your application the ability to write to the console, among other things.

As you progress through C++, you discover more lines that you can include at the top
of your application, each starting with #include and each giving your application more
features and capabilities. You see many #include files used throughout this book.
(Now, how is that for a teaser?)

Adding onto a string

Any good writer can keep adding more and more letters to a page. And the same
is true with the string type: You can easily add to it. The following lines of code
use the += operator, which was also used in adding numbers. What do you think
this code will do?

string mystring;
mystring = "Hi ";
mystring += "there";

cout << mystring << endl;

The first line declares the string mystring. The second line initializes it to
"Hi ".But what does the third line do? The third line uses the += operator, which
appends something to the string — in this case, "there". Thus, after this line
runs, the string called mystring contains the string "Hi there", and that’s what
appears on the console when the cout line runs. The fancy programmer term for
adding something to a string is concatenation.

BOOK 1 Getting Started with C++

A

WARNING

You can also do something similar with characters. The following code snippet
adds a single character to a string:

string mystring;

mystring = "abcdef";
mystring += 'g‘;

cout << mystring << endl;

This code creates a string with "abcdef" and then adds a 'g' character to the end
to get "abcdefg". Then it writes the full "abcdefg" to the console.

Adding two strings

You can take two strings and add them together by using a + sign, just as you can
do with integers. The final result is a string that is simply the two strings pushed
together, side by side. For example, the following code adds first to second to
get a string called third:

string first = "hello ";
string second = "there";
string third = first + second;

cout << third << endl;

This code prints the value of third, which is simply the two strings pushed
together — in other words, "hello there". (Notice that the string called first
has a space at its end, which is inside quotes and, therefore, part of the string.)
You can also add a string constant (that is, an actual string in your application sur-
rounded by quotes) to an existing string variable, as shown here:

string first = "hello ";

string third = first + "there";
cout << third << endl;

You may be tempted to try to add two string constants together, like so:

string bigstring = "hello " + "there";
cout << bigstring << endl;

Unfortunately, this won’t work. The reason is that (deep down inside its heart) the
compiler just wants to believe that a string constant and a string are fundamentally

CHAPTER 4 Storing Datain C++ Q7

Storing Data in C++

different. But really, you don’t have a good reason to do this, because you can
accomplish the same thing with this code:

string bigstring = "hello there";
cout << bigstring << endl;

= You can do a lot more with strings. But first, you need to understand something
\ called a function. If you’re curious about functions, read Book 1, Chapter 6, which

TecunicaL covers all the nitty-gritty details.
STUFF

Making Decisions Using Conditional
Operators

One of the most important features of computers, besides allowing you to surf the
web and allowing telemarketers to dial your telephone automatically while you’re
eating, is the capability to make comparisons. Although this topic may not seem
like a big deal, computer technology did not start to take off until the engineers
realized that computers could become much more powerful if they could test a
situation and do one task or another task, depending on the situation.

You can use many ways to write a C++ application that can make decisions; see
Book 1, Chapter 5, for a discussion about this topic. But one way that is quite handy
is the use of the conditional operator.

Think about this process: If two integer variables are equal, set a string variable
to the string "equal". Otherwise, set it to the string "not equal". In other words,
suppose that you have two integer variables, called first and second. first has
the value 10 in it, and second has the value 20 in it. You also have a string vari-
able called result. Now, to follow the little process just described: Are the two
variables equal? No, they are not, so you set result to the string "not equal".

Now do this in C++. Look carefully at the following code. First, you declare the
variables first, second, and result:

int first = 10;
int second = 20;
string result;

So far, so good. Notice that you didn’t yet initialize the string variable result.

But now you’re going to write a single line of code that performs the process just
described. First, look over the following example, and see whether you can figure

98 BOOK 1 Getting Started with C++

out what it’s doing. Look carefully at the variables and what they may do, based on
the process described earlier. Then the text explains what the code does.

result = (first == second) ? "equal" : "not equal";

The preceding line is probably one of the more bizarre-looking lines of C++ code
that you’ll see in this book. First, you discover what it means. Then you break it
into parts to understand why it means what it does.

In English, this means result gets "equal" if first is equal to second; other-
wise, it gets "not equal".

Now break it into two parts. A single equals sign indicates that the left side,
result, receives what is on the right side. So you need to figure out that crazy
business on the right side:

(first == second) ? "equal" : "not equal"
When you see this strange setup, consider the question mark to be the divider.
The stuff on the left of the question mark is usually put in parentheses, as shown
in the following:

(first == second)
This line actually compares first to second and determines whether they are
equal. Yes, the code shows two equals signs. In C++, that’s how you test whether
two things are equal. Now move to the part on the right of the question mark:

"equal" : "not equal"
This is, itself, two pieces divided by a colon, so if first is indeed equal to second,
result gets the string "equal". Otherwise, it gets the string "not equal". Take a
look at the whole thing one more time:

result = (first == second) ? "equal" : "not equal";

Once again, consider what it means: If first is equal to second, result gets
"equal"; otherwise, it gets "not equal".

Remember that the storage bin on the left side of the single equals sign receives
what is on the right side. The right side is an expression, which comes out to be a
string of either "equal" or "not equal". The whole EqualityCheck example is
shown in Listing 4-8.

CHAPTER 4 Storing Data in C++ 99

Storing Data in C++

Using the Conditional Operator to Do Comparisons

#include <iostream>
using namespace std;

int main()

{
int first = 10;
int second = 20;
string result;

result = first == second ? "equal" : "not equal";

cout << result << endl;
return 0;

Telling the Truth with Boolean Variables

In addition to integers and strings, another type in C++ can be pretty useful. This
type is called a Boolean variable. Whereas an integer variable is a storage bin that
can hold any integer value, a Boolean variable can hold only one of two different
values: a true or a false. Boolean values take their name from George Boole, the
father of Boolean logic. You can read about him at: http://mathshistory.st-
andrews.ac.uk/Biographies/Boole.html.

The type name for a Boolean variable is bool. Therefore, to declare a Boolean vari-
able, you use a statement like this:

bool finished;

This line declares a Boolean variable called finished. Then you can put either a
true or a false in this variable, as in the following:

finished = true;
or

finished = false;

100 BOOK 1 Getting Started with C++

http://mathshistory.st-andrews.ac.uk/Biographies/Boole.html
http://mathshistory.st-andrews.ac.uk/Biographies/Boole.html

BOOLEAN VARIABLES AND CONDITIONAL
OPERATORS

You can use Boolean variables with conditional operators. In a conditional operator
such as

result = (first == second) ? "equal" : "not equal";

theitem (first == second) actually works out to be a Boolean value — either true
or false. Therefore, you can break up this code into several lines. Even though break-
ing something into several lines seems a little backward, developers do it all the time.
The reason for breaking code into lines is that sometimes, when you are programming,
you may have an expression that is extremely complex — much more complex than
first == second. As you grow in your C++ programming ability, you start to build
more complex expressions and then start to realize just how complex they can become.
Often, breaking expressions into multiple smaller pieces is more manageable. To break
this example into multiple lines, you can do this (as shown in the EqualityCheck2
example):

string result;

bool isequal;

isequal = (first == second);

result = isequal ? "equal" : "not equal”;

The second line declares a Boolean variable called isequal. The third line sets it to the
value first == second. In other words, if first is equal to second, then isequal
gets the value true. Otherwise, isequal gets the value false. In the fourth line,
result gets the value "equal" if isequal is true; or result gets the value "not
equal" if isequal is false.

The reason that this code works is that the item on the left side of the question mark
is a Boolean expression, which is just a fancy way of saying that the code requires a

Boolean value. Therefore, you can throw in a Boolean variable if you prefer, because a
Boolean variable holds a Boolean value.

When you print the value of a Boolean variable by using code like this:
cout << finished << endl;

you see either a1 for true or a @ for false. The reason is that, deep down inside,
the computer stores a 1 to represent true and a @ to represent false.

CHAPTER 4 101

Storing Data in C++

Reading from the Console

(= =)
55
TECHNICAL
STUFF

Throughout this chapter and the preceding chapter, you see many examples of
how to write information to the console. But just writing information is sort of
like holding a conversation where one person does all the talking and no listening.
Getting some feedback from the users of your applications would be nice. Fortu-
nately, getting feedback is easy in C++.Writing to the console involves the use of
cout in a form like this:

cout << "hi there" << endl;

Reading from the console (that is, getting a response from the user of your appli-
cation) uses the cin object. (It’s pronounced “see-in”.) Next, instead of using the
goofy-looking << operator, you use the equally but backwardly goofy >> operator.

The << operator is often called an insertion operator because you are writing to (or
inserting into) a stream. A stream is nothing more than a bunch of characters going
out somewhere. In the case of cout, those characters are going out to the con-
sole. The > > operator, on the other hand, is often called the extraction operator. The
idea here is that you are extracting stuff from the stream. In the case of cin, you
are pulling letters from the stream that the user is, in a sense, sending into your
application through the console.

The ReadString example, shown in Listing 4-9, demonstrates how you can read
a string from the console.

Using the Conditional Operator to Make Comparisons

102

#include <iostream>
using namespace std;

int main()

{
string name;
cout << "Type your name: ";
cin >> name;
cout << "Your name is
return 0;

<< name << endl;

BOOK 1 Getting Started with C++

REMEMBER

When you run this code, you see the console ask you to type your name, and then
it stops. That’s because it’s waiting for your input. Notice that the insertion point
appears immediately after the text "Type your name:". That’s because the first
cout statement lacks the usual endl. It’s normal to leave the insertion point, or
cursor, on the same line as the question to avoid confusing the user. Type a name,
such as Fred, without spaces and press Enter. The console then looks like this:

Type your name: Fred
Your name is Fred

The first line includes the name you typed, and the second line is whatever appears

after you press Enter. Notice what happens: When you type a word and press

Enter, the computer places that word in the name variable, which is a string. Then

you can print name to the console by using cout.

You can also read integers, as in the following code (in the ReadInt example):
#include <iostream>

using namespace std;

int main()

{
int x;
cout << "Type your favorite number: ";
cin >> Xx;
cout << "Your favorite number is " << x << endl;
return 0;
}

This sample code reads a single integer into the variable x and then prints it to
the console.

By default, cin reads in characters from the console based on spaces. If you put
spaces in your entry, only the first word gets read. cin reads the second word the
next time the application encounters acin >>.

CHAPTER 4 Storing Datain C++ 103

Storing Data in C++

IN THIS CHAPTER

» Comparing numbers and evaluating
other conditions

» Doing things based on a comparison
» Repeating code in specific ways

» Creating nested loops (loops within
loops)

Chapter 5

Directing the
Application Flow

s you program in C++, many times you need to present the computer with
a choice, allowing it to do one thing in one situation and something else in
another situation. For example, you may have an application that asks for
a user’s password. If the password is correct, the application continues; but if the
password is incorrect, the application asks the user to reenter the password. After
some number of times — usually three — the application performs yet another
task when the user enters the incorrect password. Such situations are called condi-
tions. In the case of the password, the condition is whether the password is correct.

You may also encounter situations in which you want several lines of code to run
over and over. These are loops, and you can specify conditions under which the
loop runs. For example, you may want to check the password only three times;
and if the user fails to enter it correctly the third time, you may bar access to the
system. This is a loop, and the loop runs under the condition that a counter has
not exceeded the value of 3.

In this chapter, you consider different ways to evaluate conditions within your
applications and cause different sections of code to run based on those conditions.
The chapter helps you understand how you can use C++ commands called if state-
ments, which are similar to what-if situations in real life. You also see how to use

CHAPTER 5 Directing the Application Flow 105

©

REMEMBER

other C++ statements (such as do-while) to perform loops (repeating the same
application sections a number of times).

To make the explanations clear, this chapter gives you real-world examples that
you can feel free to incorporate into your life. The examples usually refer to groups
of friends and how you can get money from them. So, you see, the benefits of this
chapter are twofold: You find out how to program by using conditions and loops,
and you find out how to make money off your unsuspecting friends.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookI\Chapter@5 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Doing This or Doing That

106

As you go through life, you’re always faced with decisions. For example, when
you bought this book, you faced the following decision: Should I buy this great
For Dummies book that’s sure to tell me just what I need to know, or should I buy
some other book?

When you’re faced with a decision, you usually have options that offer different
results — say, Plan A and Plan B. Making a decision requires making a choice that
results in the execution of either Plan A or Plan B. For example, if you approach a
stoplight that has just turned yellow, you must either slam on the brakes or floor
the accelerator. If you slam on the brakes, the car will stop just in time (you hope).
If you floor the accelerator, the car will speed up and you’ll go sailing through the
intersection just before the stoplight turns red. The choice is this: Press the brake,
or press the accelerator. The plan looks like this:

If I press the brake, | will stop just in time.

If | press the accelerator, | will speed through the intersection.

Computers are faced with making decisions too, although their decisions are usu-
ally a little less exciting and don’t usually yield the possibility of police interac-
tion. Computer decisions are also usually simpler in nature. That is, a computer’s
decisions mostly focus around such issues as comparing numbers and strings of
characters. For example, you may be writing a computer application for a bank.
The user of your application (that is, the bank customer) has a choice of Plan A,
Make a Deposit, or Plan B, Receive a Cash Withdrawal when interacting with an
account. If the user chooses to make a deposit, your application adds to the account

BOOK 1 Getting Started with C++

balance the amount of the deposit. If the user chooses to make a withdrawal, your
application instead subtracts the withdrawal amount from the account balance.

In C++, decisions usually take the form of an if statement, which is code that
starts with the i f keyword followed by a condition, which is often a numerical
condition wherein two numbers are compared and then two blocks of code appear:
one that runs if the condition is satisfied and one that runs if it is not.

Evaluating Conditions in C++

Most decisions that the computer makes are based on conditions evaluated by
comparing either two numbers or two characters. For numerical comparisons, you
may compare a variable to a number, as in the following statement:

x > 10

This comparison evaluates whether the variable x holds a value greater than the
number 10. If x is indeed greater than 10, the computer sees this condition as
true. If x is not greater than 10, the computer sees the condition as not true
(false).

Developers often use the word satisfied with conditions. For the condition x > 10,
if x is greater than 10, developers say the condition is satisfied. It’s kind of like,
“We’re satisfied if our IRS tax refund is five figures.” For this, if the condition is

x > 9999, and you receive a $10,000 refund, the condition is satisfied.

For character comparisons, you may compare whether two characters are equal,
as in the following statement:

mychar == 'A'
This comparison evaluates whether mychar contains the letter A. Notice that you
use two equals signs, not just one. Using a single equals sign would assign the

value A to mychar.

To test whether the character is not equal to something, you use the somewhat
cryptic-looking != operator. Think of the ! as meaning not, as in

mychar != 'X'

CHAPTER 5 Directing the Application Flow 107

Directing the

Application Flow

TABLE 5-1

AN

WARNING

Finding the right C++ operators

Each statement in the previous section uses an operator to specify the comparison
to make between the numbers or the strings. Table 5-1 shows you the types of
operators available in C++ and the comparisons that they help you make in your
applications.

Evaluating Numerical Conditions

Operator What It Means

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
== Equal to

1= Not equal to

Some operators in this table — and how you use them — can be a bit annoying or
downright frightening. The following list gives examples:

¥ The operator that tests for equality is two equals signs. It looks like this:
x == 10
When the computer finds this statement, it checks to see whether x equals 10.

If you put just one equals sign in your statements, most C++ compilers will not
give you an error — though a statement likex = 10 is not really a condition!
Instead, x = 10 is an assignment, setting the variable x to 10. When code
contains such a statement, the result of the evaluation is always the same,
regardless of the value that x has.

¥ The operator that tests for inequality is an exclamation mark followed by an
equals sign. For the conditionx != 10, the condition evaluates as true only if
x is not equal to 10 (x is equal to something other than 10).

¥ When you're testing for greater-than or less-than conditions, the condition
x > 10 is not true if the value of x is equal to 10. The conditionx > 1@ is true
only if x is actually greater than, but not equal to, 1@. To also test for x being
equal to 10, you have two choices:

108 BOOK 1 Getting Started with C++

REMEMBER

If you're working with integers, you can test whetherx > 9.In that case,
the condition is true if x equals 10, or 11, or 12, and so on.

You can use the greater-than-or-equal-to operator to determine equality
x >= 10. This condition also is true if x equals 10, 11, and so on.

To test for all whole numbers greater than or equal to 10, the conditionx > 9
works only if you're working with integers. If you're working with floating-point
numbers (refer to Book 1, Chapter 4, for information on the types of numbers
you can work with in C++), the statementx > 9 won't work the way you want.
The number 9.1 is greater than 9, and it's not greater than or equal to 10. So
if you want greater than or equal to and you're not working with integers, use
the >= operator.

CONSIDERING THE NEW SPACESHIP
OPERATOR

C++ 20 comes with a new operator that will eventually make your life easier. It's called
the spaceship operator and looks like this: <=>. The spaceship operator performs a
three-way comparison, which means that it can tell you whethera < b,a == b, ora

> b, all in one operation. This is one of those cases when you might want to skip this
sidebar and come back to it after you've read through later in the book (such as Book 5,
Chapter 2), but this chapter is the most appropriate place to include information about
the spaceship operator.

The spaceship operator appears as part of the std: : strong_ordering class, so that's
how you see it referred to in many cases. Instead of an output of true or false, this
operator outputs —1 (std: :strong_ordering: :less)whena < b, @ (std: :strong_
ordering: :equal)whena == b,and1 (std: :strong_ordering: :greater)whena
> b. Using this different form of output means that you need to write your conditional
statements differently than normal.

If you try to use the spaceship operator in a copy of C++ that doesn’t support it, you
receive an error message because the compiler won't be able to understand what <=>
means. As of this writing, Code::Blocks doesn’t implement the spaceship operator,

so you need to test the spaceship operator somewhere else. One of the few online

(continued)

CHAPTER 5 Directing the Application Flow 109

Directing the

Application Flow

(continued)

compilers that fully implements this operator is Wandbox (https: //wandbox.org/).
You can see how this operator works using this code:

#include <iostream>
#include <cstdlib»>

int main()

{
std: :strong_ordering result =1 <=> 1;
bool outl1 = result < 9;
bool out2 = result == 0Q;
bool out3 = result > 9;
std::cout << outl << std::endl;
std::cout << out2 << std::endl;
std: :cout << out3 << std::endl;
}

In this case, the outputs are @ (which is false), 1 (which is true), and @ because 1 really
does equal 1. The std: : strong_ordering type doesn't provide cout functional-

ity, so you have to create a bool comparison for it. Instead of comparing the value of
result to @, you can also use std: :strong_ordering constants like this: result ==
std: :strong_ordering: :equal. Obviously, this is an extremely simple example and
you normally use the spaceship operator to perform complex comparisons. In Book 5,
Chapter 2, you begin to see how it's possible to reduce the amount of code needed for
comparing two structures using the spaceship operator. For now, just know that the
operator exists and it can perform complex comparisons.

Combining multiple evaluations

When you make evaluations for application decisions, you may have more than
one condition to evaluate. For example, you might say, “If I get a million dollars,
or if I decide to go into debt up to my eyeballs, I will buy that Lamborghini.” In
this case, you would buy the car under two conditions, and either can be true.
Combining conditions like this is called an or situation: If this is true or if that is
true, something happens.

To evaluate two conditions together in C++, you write them in the same state-
ment and separate them with the or symbol (| |), which looks like two vertical
bars. Other programming languages get to use the actual word or, but C++ uses
the strange, unpronounceable symbol that you might call The Operator Previously
Known As Or. The following statement shows it performing live:

110 BOOK 1 Getting Started with C++

https://wandbox.org/

(i <10 || i > 100)

This condition is useful for some kinds of range checking for which you want to
& exclude the middle of a range and check only for the extremes. In this case, an
i value of 50 (the middle of the range) would evaluate to false. If you use the or
warning operator (| |), accidentally ending up with a condition that is always true is easy.
For example, the condition (x < 100 || x > 0) is always going to be true. When
x is -50, it’s less than 100, so the condition is true. When x is 500, it’s greater than

9, so it’s true.

In addition to an or condition, you can have something like this: “If I get a million
dollars and I feel really bold, I will buy a Lamborghini.” Notice that this uses the
word and. In this case, you do it only if both situations are true. (Remember that
with or, you do it if either situation is true.) In C++, the and operator is two amper-
sands: &&. This makes more sense than the or operator because the & symbol is
often associated with the word and. The and comparison in C++ looks like this:

(i > 10 && i < 100)

This example checks to see whether a number is more than 10 and less than 100.
That would mean the number is in the range 11 through 99.

Combining conditions by using the & and | | operators is a use of logical operators.

To determine whether a number is within a certain range, you can use the and
operator (8&&), as you see earlier in this chapter.
TIP
With the and operator, accidentally creating a condition that is never true is easy.
& For example, the condition (x < 10 & & x > 100) will never be true. No single
number can be both less than 10 and simultaneously greater than 100.

WARNING

Including Evaluations in C++ Conditional
Statements

Computers, like humans, evaluate conditions and use the results of the evalua-
tions as input for making a decision. For humans, the decision usually involves
alternative plans of action, and the same is true for computers. The computer
needs to know what to do if a condition is true and what to do if a condition is
not true. To decide on a plan of action based on a condition that your application
evaluates, you use an i f statement, which looks like this:

CHAPTER 5 Directing the Application Flow 111

Directing the
Application Flow

112

©

REMEMBER

if (x > 10)
{

cout << "Yuppers, it's greater than 10!" << endl;

This example translates into English as: If x is greater than 10, write the message
"Yuppers, it's greater than 10!"

In an if statement, the part inside the parentheses is called either the test or the
condition. You usually apply condition to this part of the i f statement and use the
word test as a verb, as in “I will test whether x is greater than 10.”

In C++, the condition for an if statement always goes inside parentheses. If you
forget the parentheses, you get a compile error.

You can also have multiple plans of action. The idea is simply that if a condition
is true, you will do Plan A. Otherwise, you will do Plan B. This is an if-else block,
which appears in the next section.

Deciding what if and also what else

When you write code for a comparison, usually you want to tell the computer to do
something if the condition is true and to do something else if the condition is not
true. For example, you may say, “If I’m really hungry, I will buy the Biggiesuper-
sizemondohungryperson french fries with my meal for an extra nickel; otherwise,
I'll go with the small.” In the English language, you often see this kind of logic
with the word otherwise: If such-and-such is true, I will do this; otherwise, I will
do that.

In C++, you use the else keyword for the otherwise situation. The I fE1se example
demonstrates how to use the else keyword, as shown in the following code:

#include <iostream>
using namespace std;

int main()
{
int i;

cout << "Type any number: ";
cin >> 1i;

BOOK 1 Getting Started with C++

A

WARNING

if (i > 10)

{
cout << "It's greater than 10." << endl;
}
else
{
cout << "It's not greater than 10." << endl;
}
return 0;

In this code, you test whether a number is greater than 10. If it is, you print one
message. If it is not, you print a different message. Notice how the two blocks of
code are distinct. The first block immediately follows the if statement; it’s the
code that runs if the condition is true. The next block is preceded by the else
keyword, and this block runs if the condition is false.

Think carefully about your else code block when dealing with numbers. If you are
testing whether a number is greater than 10, for instance, and it turns out that
the number is not greater than 10, the tendency of most people is to assume that
it must, therefore, be less than 10. But that’s not true. The number 10 itself is not
greater than 10, but it’s not less than 10, either. So the opposite of greater than 10
is simply not greater than 10. If you need to test the full range of numbers using
a simple if statement, create an if statement that uses either >= or <= (refer to
Table 5-1 for a listing of operators).

Going further with the else and if

When you are working with comparisons, you often have multiple comparisons
going on. For example, you may say, “If I go to Mars, I will look for a cool red rock;
otherwise, if I go to the moon, I will jump up really high; otherwise, I will just look
around wherever I end up, but I hope there will be air.”

The IfElse2 example, shown in the following code, demonstrates how to com-
bine the i f and else keywords to check for multiple alternatives:

#include <iostream>
using namespace std;

int main()

{

CHAPTER 5 Directing the Application Flow 113

Directing the

Application Flow

int i;
cout << "Type any number: ";

cin >> i;
if (i > 10)
{
cout << "It's greater than 10." << endl;
}
else if (i == 10)
{
cout << "It's equal to 10" << endl;
}
else
{
cout << "It's less than 10." << endl;
}
return 0;

Here you can see having several different conditions, and only one can be true.
The computer first checks to see whether i is greater than 10. If i is greater, the
computer prints a message saying that i is greater than 10; but if it isn’t greater,
the computer checks to see whether i equals 10. If so, the computer prints a mes-
sage saying that i is equal to 10. Finally, the computer assumes that i must be
less than 10, and it prints a message accordingly. Notice there is no condition for
the final else statement (you can’t have a condition with else statements). But
because the other conditions failed, you know, by your careful logic, that i must
be less than 10.

Be careful when you are thinking through such if statements. You could have a
situation where more than one condition can occur. For example, you may have
something like the example shown in IfE1se3:

#include <iostream>

using namespace std;

int main()
int i;
cout << "Type any number: ";
cin >> i;

114 BOOK 1 Getting Started with C++

if (i > 100)

{
cout << "It's greater than 100." << endl;
}
else if (i > 10)
{
cout << "It's greater than 10" << endl;
}
else
{
cout <«
"It's neither greater than 100 nor greater than 10."
<< endl;
}
return 0;

Think about what would happen if i is the number 150. The first condition,
i » 100, is true. But so is the second condition, i > 10. The number 150 is greater
than 100, and 150 is also greater than 10. So which block will the computer exe-
cute? Or will it execute both blocks?

The computer executes only the first condition that is satisfied. Thus, when i is
150, the computer prints the message "It's greater than 100." It doesn’t print
the other messages. In fact, the computer doesn’t even bother checking the other
conditions at that point. It just continues with the application.

Repeating Actions with Statements
That Loop

You see loops all the time. A child runs around in circles until getting quite dizzy
and falling over (laughing, in all likelihood). While driving, you see a roundabout
and navigate it successfully or go around for another try. During exercise, you
perform a given number of repetitions to obtain a desired fitness result. All these
examples reflect real-life loops. Computers also deal with loops, as defined in the
following sections.

CHAPTER 5 Directing the Application Flow 115

Directing the
Application Flow

116

Understanding how computers use loops

Suppose that you’re writing an application to add all the numbers from 1 to 100.
For example, you may want to know how much money you will get if you tell 100
people, “Give me one dollar more than the person to your left.” With a mastery
of copy-and-paste, you could do something like this (with the first person giving
you a dollar, the second giving you two dollars, the third giving you three dollars,
and so on):

int x = 1; // First person.

X =X + 2; // Person two gives you 2, for a total of 3
X = x + 3; // Person three gives you 3, for a total of 6
X =X + 4; // Person four gives you 4, for a total of 10

and so on until you get tox = x + 100. As you can see, this code could take a long
time to type, and you would probably find it a tad frustrating, too, no matter how
quickly you can choose the Edit= Paste command (or press Ctrl+V). Fortunately,
the great founders of the computer world recognized that not every programmer
is a virtuoso at the piano with flying fingers and that applications often need to
do the same thing over and over. Thus, they created a helpful tool: the for loop.
A for loop executes the same piece of code repeatedly a certain number of times.
And that’s just what you want to do in this example.

Looping situations

Several types of loops are available, and in this section you see how they work.
Which type of loop you use depends on the situation. The preceding section meth-
ods one loop type: the for loop. The idea behind a for loop is to have a coun-
ter variable that either increases or decreases, and the loop runs as long as the
counter variable satisfies a particular condition. For example, the counter variable
might start at 0, and the loop runs as long as the counter is less than 10. The
counter variable increments (has one added to it) each time the loop runs, and after
the counter variable is not less than 10, the loop stops.

Another way to loop is to simplify the logic a bit and say, “I want this loop to run
as long as a certain condition is true.” This is awhile loop, and you simply specify
a condition under which the loop continues to run. When the condition is true, the
loop keeps running. After the condition is no longer true, the loop stops.

Finally, there’s a slight modification to the while loop: the do-while loop. The
do-while loop is used to handle one particular situation that can arise. When you
have a while loop, if the condition is not true when everything starts, the com-
puter skips over the code in the while loop and does not even bother executing

BOOK 1 Getting Started with C++

TABLE 5-2

it. But sometimes you may have a situation in which you would want the code to
always execute at least once. In that case, you can use a do-while loop.

Table 5-2 shows the types of loops. As the chapter progresses, you see examples
of using all three loop types.

Choosing Your Loops

Type of Loop Appearance

for for (x=0; x<10; x++) { }
while while (x < 10) { }
do-while do { } while (x < 10)

You may want to use these loops in these situations:

¥ for loop: Use a for loop when you have a counter variable and you want it to
loop while the counter variable increases or decreases over a range. It's a
good choice if you know how many times you want the loop to execute.

¥ while loop: Use the while loop when you have a condition under which you
want your code to run. It's a good choice when you want to perform the test
at the beginning of the loop. The test may fail immediately, so the loop may
not execute even once.

3 do-while loop: Use the do-while loop when you have a condition under
which you want your code to run and you want to ensure that the loop always
runs at least once, even if the condition is not satisfied. It's a good choice
when the code inside the loop prepares the variables that the test uses, so the
loop must execute at least once.

Looping for

Using the for loop provides precise control over how many times the code per-
forms a task. In addition, it’s extremely flexible because you also have control
over how the counter variable updates. While you can use a for loop for situa-
tions when you don’t know how many times you need to perform a task, such as
streaming content from the Internet, it still provides the basis for code that is less
susceptible to errors because you always know precisely how long the loop will
continue. With this in mind, the following sections tell you more about the for
loop.

CHAPTER 5 Directing the Application Flow 117

Directing the

Application Flow

18

REMEMBER

Performing a simple for loop

To use a for loop, you use the for keyword and follow it with a set of parentheses
that contains information regarding the number of times the for loop executes.

For example, when adding the numbers from 1 to 100, you want a variable that
starts with the number 1; then you add 1 to x, increase the variable to 2, and add
the next number to x again over and over. The common action here that doesn’t
change each time is the “add it to x” part, and the part that changes is the vari-
able, called a counter variable.

The counter variable, therefore, starts at 1 and goes through 100. Does it include
1007 Yes. And with each iteration, you add 1 to the counter variable. The for state-
ment looks like this:

for (i =1; i <= 100; i++)

This statement means that the counter variable, i, starts at 1, and the loop runs
over and over while i is less than or equal to 100. After each iteration, the counter
variable increments by 1 because of the i++ statement.

The following list describes the three portions inside the parentheses of the for
loop:

¥ Initializer: You use this first portion to set up the counter variable.
3 Condition: It's the condition under which the loop continues to run.

¥ Finalizer: In this third portion, you specify what happens after each cycle of
the loop.

Three items are inside the for loop, and you separate them with semicolons. If
you try to use commas, your code will not compile.

Now the line of code from a few paragraphs back doesn’t do anything for each
iteration other than add 1 to i. To tell the computer the work to do with each iter-
ation, follow the for statement with a set of braces containing the statements you
want to execute with each iteration. Thus, to add the counter variable to x, you
would do this:

for (i =1; i <=100; i++)
{

X 4= 1;

BOOK 1 Getting Started with C++

Note that if the for loop only executes one statement, you don’t have to include the
braces. This example would add i to x with each loop. Of course, you must create
x and assign an initial value to it to make the loop work. The ForLoop example
demonstrates the for loop in its final form, complete with the way to write the
final value of x to the console after the loop is finished:

#include <iostream>
using namespace std;

int main()

{
int x = 0;
int i;

for (i =1; i <= 100; i++)
{

cout << x << endl;
return 0;

When you run this example, you see an output of 5050. Notice a few things about
this block of code.

1. You declare both variables that you're working with: x and i.

2. The for statement initializes the counter variable, specifies the condition
under which it continues running, and tells what to do after each iteration.
In this example, the for loop startswithi = 1, anditrunsaslongasi is less
than or equal to 100. For each iteration, the computer adds the value of i to x;
the process that adds the value to x is the code inside the braces.

3. The computer adds 1 to i, which you specify as the third item inside the
parentheses. The computer does this part, adding 1 to i, only after it finishes
executing the stuff inside the braces.

Meddling with the middle condition

The middle portion of the for statement specifies a condition under which to con-
tinue doing the stuff inside the for loop. It must eventually evaluate to false or
the loop will continue forever. In the case of the preceding example, the condition
isi <= 100, which means that the stuff inside the braces continues to run as long
as i is less than or equal to 100.

CHAPTER 5 Directing the Application Flow 119

Directing the

Application Flow

120

A

WARNING

GETTING A SMALL PERFORMANCE BOOST

It's possible to get a small, but sometimes noticeable, performance boost by declaring
your counter variable within the for statement. The following code runs precisely the
same as the code used in the “Performing a simple for loop” section, but it uses one less
line of code by initializing 1 within the for statement usingint i = 1;.The trade-off
is that it may be less clear in some situations where the function you write is longer and
i becomes inaccessible when the for loop terminates.

#include <iostream>
using namespace std;

int main()

{
int x = 9;
for (int i = 1; i <= 100; i++)
{
X +=1i;
}
cout << x << endl;
return 9;
}

In this example, you want the loop to iterate for the special case in which i is
100, which still satisfies the condition i <= 100. If you instead say i < 100, the
loop won’t execute for the case in which i equals 100. The loop will stop short of
the final iteration. In other words, the computer would add only the numbers 1
through 99. And if your friends are gathering money for you, you’d be cheated out
of that final $100. And, by golly, that could make the difference as to whether you
pay rent this month.

The question of when the loop stops can get kind of confusing. If you go crazy and
tell the compiler that you want to add the numbers 1 up to but not including 100,
you need a condition such as i < 100. If you say up to 100, it’s not clear exactly
which you want to do — include the 100 or not. If that’s the case and you’re
writing the application for someone else, you would want to ask for clarification.
(Unless you’re the 100th friend, in which case you may get out of paying your
dues.)

BOOK 1 Getting Started with C++

In the example you’ve been using, the condition i <= 100 and the condition
i < 101 have essentially the same meaning. If the conditionisi < 101, the appli-
cation operates the same. But that’s true only because the example uses integers
to count up to and including 100. If you instead add floating-point numbers, and
increment the counter by 0.1 after each iteration, these two conditions (i <= 100
and i < 101) aren’t the same. With i <=100, i gets up to 99.5, 99.6, 99.7, 99.8,
99.9, and finally 100, after which the loop stops. But i < 101 would also include
100.1, 100.2, up to and including 100.9.

You can see that the two conditions are not the same by playing with the ForLoop2
example. When you run this example with a condition of i <= 100, the output is
50050. However, when you run this example with a condition of i < 101, the out-
put is 51055.5. (Remember to rebuild the application after you make any changes
to it.)

#include <iostream>
using namespace std;

int main()

{
double x = 0.0;

for (double i = @.1; i <= 100; i += 0.1)

cout << x << endl;
return 0;

Now notice the third item in the for statement: i+=0.1. Remember that this item
isthe sameasi = i + ©.1. Therefore, this third item is a complete statement.
A common mistake is to instead include just a partial statement, asini + 0.1.
Unfortunately, some compilers allow a partial statement to get through with only
a warning. C++ is notorious for letting you do things that don’t make a whole lot
of sense, though newer compilers tend to fix these errors.

Yes, it’s true: The entire statement i = i + 1 is considered to have a side effect.
In medicine, a side effect is an extra little goodie you get when you take a pill that
the doctor prescribes. For example, to cure your headache with medicine, one side
effect may be that you experience severe abdominal pains — not something you
want. But in computers, a side effect can be something that you may want. In

CHAPTER 5 Directing the Application Flow 121

Directing the

Application Flow

122

REMEMBER

this case, you want the counter to be incremented. The partial statement i + 0.1
returns only a value and doesn’t put it anywhere; that is, the partial statement
doesn’t change the value of i — it has no side effects.

If you try this at home by replacing one of the for loops in the earlier examples
with just i + ©.1, your loop runs forever until you manually stop the applica-
tion. The reason for this action is that the counter always stays put, right where it
started, and it never increments. Thus, the condition i <= 100 is always satisfied.

The final portion of the for statement must be a complete statement in itself. If
the statement simply evaluates to something, it will not be used in your for loop.
In that case, your for loop can run forever unless you stop it.

Going backward

If you need to count backward, you can do that with a for loop as well. For exam-
ple, you may be counting down the number of days remaining before you get to
quit your job because you learned C++ programming and you are moving on to an
awesome new job. Or you may be writing an application that can manipulate that
cool countdown timer that they show when the space shuttle launches. Counting
up just isn’t always the right action. It would be a bummer if every day were one
day more before you get to quit your job and move to an island. Sometimes, count-
ing backward is best.

To count backward, you set up the three portions of the for loop. The first is the
initial setup, the second is the condition under which it continues to run, and the
third is the action after each iteration. For the first portion, you set the counter
to the starting value, the top number. For the condition, you check whether the
number continues to be greater than or equal to the final number. And for the
third portion, you decrement the counter (reduce its value by 1) rather than incre-
ment it. Thus, you would have this:

for (i=10; i»>=5; i—-)

This line starts the counter variable i at 1@. (Note the lack of spaces between i, =,
and 10—the compiler doesn’t care whether you use spaces or not, the spaces are
there, or not, for you.) The for loop decrements i by 1 after each iteration, and
thus i moves to 9, then 8, then 7, and so on. This process continues as long as i
is at least 5. Thus, i counts 10, 9, 8, 7, 6, 5. The whole application might look like
the ForCountdown example, shown here:

#include <iostream>

using namespace std;

BOOK 1 Getting Started with C++

int main()

{
for (int i=10; i>=5; i——)
{
cout << i << endl;
}
return 0;
}

When you run this code, you see the following output:

g o N 0 ©

Using multiple initialization variables

If you need multiple counter variables, the for loop can handle it. Each portion
of the for statement can have multiple items in it, separated by commas. For
example, the following code uses two counter variables, as demonstrated in the
ForLoopMultiVariable example:

#include <iostream>
using namespace std;

int main()
{
string A = "Hello";

string B "1122334455";

for (int i =@, j =0; i <5; i++, j += 2)
{
cout << A[i] << B[j] << endl;

}

return 0;

CHAPTER 5 Directing the Application Flow 123

Directing the

Application Flow

124

In this case, you work with two strings: A and B. String B is twice as long as string
A, but you want to combine the two. So, you need to access the string index of B
using j by incrementing it twice the amount of i. This type of processing can hap-
pen in C++, so it’s good to keep in mind the fact that using multiple variables in
a for loop isn’t always bad. The output you see from this example looks like this:

H1
e2
13
14
05

The problem with using multiple variables comes when you start to create really
complex and convoluted code. Here is an example of when what is happening with
the for loop becomes harder to understand:

for (int i = @, j=10; i <=5, j <=20; i++, j+=2)
{

cout << i << << j << endl;

X +=1+ j;

Look carefully at it because it’s a bit confusing (in fact, you learn a little some-
thing about the complexity shortly). To understand this example, look at each
portion separately. The first portion starts the loop. Here, the code creates two
counters — i and j; i starts at @, and j starts at 10.

So far, easy enough. The second portion says that the loop will run as long as the
following two conditions are true: i must be less than or equal to 5, and j must be
less than or equal to 20.

Again, not too bad. The final portion says what must happen at the end of each
iteration: i is incremented by 1, and j is incremented by 2.

Thus, you have two counter variables. And it’s not too bad, except that you might
imagine doing something like this instead:

for (int 1 = @, j=20; i <=5, j >= 10 ; i++, j-=2)
{

cout << i <« << j << endl;

X +=1+ j;

BOOK 1 Getting Started with C++

If you look carefully, you’ll notice that aside from i, j starts out at 20 and the loop
runs as long as j is at least 10, and that with each iteration, 2 is subtracted from
j. In other words, j is counting down by 2 from 20 to 10.

But i is counting up from @ to 5. Thus, you have two loops: one counting up and
one counting down.

Code can become extremely confusing—look at the following gem from the For-
LoopComplex example:

#include <iostream>
using namespace std;

int main()
{
int x = 9;
for (int i=0, j=10; i<=5, j<=20;
i++, j+=2, cout << i+j << endl, x+=i+j)
{
}

return 0;

}

It’s hard to tell what it does just by looking at it. Running the code will give you
an output of

13
16
19
22
25
28

The truth is, this kind of code is just too complicated — best to stick with simpler
code. Although you may know what this code means, your coworkers will only
get frustrated trying to decode it. And if you write code just for fun at home, six
months from now — when you go back and look at this code — you might have
trouble figuring it out yourself!

CHAPTER 5 Directing the Application Flow 125

Directing the

Application Flow

126

TECHNICAL
STUFF

One thing to notice about this particular example is that the for conditions reside
on two lines. At least the line isn’t so long that you need to scroll it within the edi-
tor. Using shorter code lines is usually helpful.

Putting too much inside the for statement itself is easy to do. In fact, if you’re
really clever, you can put almost everything inside the for loop and leave nothing
but an empty pair of braces, as shown in the preceding example. But remember,
just because your code is clever doesn’t mean that what you did was the best way
to do it. Instead, sticking to the common practice of using only one variable in
the for statement is a good idea (as is not using multiple statements within each
portion).

Keeping your applications clear so that other people can figure out what you were
trying to do when you wrote the code is always a good idea. Some people seem to
think that if they keep their applications complicated, they’re guaranteeing them-
selves job security. Oddly, all the people I know like that tend to leave their jobs
and have trouble getting good references. (Imagine that!)

You may recall that with the ++, you can have both i++ and ++i. The first is a post-
increment, and the second is a pre-increment. You may be tempted to try something
like this: for (int i = @; i <= 5; ++1i). Although it looks cool and some people
prefer it, the truth is that it doesn’t change anything. The ++i still takes place at
the end of the loop, not at the beginning, as you might hope. Using pre-increment
just makes code confusing; use i++ in your for loops and avoid ++i.

Working with ranges

A range is a series of values that go from one value to another value and include
the values in between. For example, the range a through d is a, b, ¢, and d. An inte-
ger range of 1 through 5is 1, 2, 3, 4, and 5. You see ranges in action multiple times
in this book, but the main discussion appears in Book 5, Chapter 6. For now, this
chapter works with an incredibly simple range.

To make this example work, you must configure GCC to use a minimum of C++
17. Choose Settings-> Compiler to display the Compiler Settings dialog box shown
in Figure 5-1. Select the Have G++ Follow the Coming C++ 1z (aka C++ 17) setting
option; then click OK. If you don’t select this option, the example will fail to build
properly. Remember that if you build a project using the wrong options, you must
rebuild it by choosing Build=>Rebuild after setting the correct options.

BOOK 1 Getting Started with C++

Compiler settings [= ===
Global compiler settings

Selected compiler

[enu Gec compiter -

Global compiler settings Compiler settings |Link.er settings | Search directories | Toolchain executables | Custom variables I Build options | a2
Palicy:
—— i

Compiler Flags ‘ Other compiler options I Other resource compiler options | #deﬁnesl

Bl General
Have g++ follow the 1998 IS0 C++ language standard [-std=c++98] [l
Have g++ follow the C++11150 C++ language standard [-std=c++11] [l
Have g++ follow the C++14 150 C++ language standard [-std=c++14] O
Have g++ follow the coming C+-+0x (aka c++11) IS0 C++ language standard [-std=c++0x] []
Have g++ follow the coming C++1y {aka C++14) IS0 C++ language standard [std=c++1y] []
E
Have gee follow the 1990 IS0 C language standard (certain GNU extensions that conflict with IS¢ []
Have gce follow the 1992 IS0 C language standard [-std=c93]
Have gce follow the 2011150 C language standard [-std=c11]
In C mode, this is equivalent to -std=c90, in C++ mode, itis equivalent to -std=c++98 [ans] []
Puosition Independent Code [-PIC]
Static libgee [-staticdibgee]

Static lihstdr+4 [staticdihetdr+41
NOTE: Right-dlick to setup or edit compiler flags.

| »

Profiler settings

Batch builds

oo

100

FIGURE 5-1:
Configure GCC to
use the C++ 17

standard.

Now that the compiler is configured, you can use the code that follows, which also
appears in the ForLoopRange example, to test a for loop using a range. In this
case, the range is from 1 through 5:

#include <iostream>

using namespace std;

int main()

{
int range[] = {1, 2, 3, 4, 5};
for (int i : range)

{

cout << i << endl;

return 0;

Don’t worry too much about what may appear to be confusing code; it all makes
sense as you progress. The int range[] = {1, 2, 3, 4, 5}; line of code creates
an array — a series of values within a single variable. Think of it as a box with

CHAPTER 5 Directing the Application Flow 127

Directing the

Application Flow

128

REMEMBER

partitions in which you can place a single value in each partition. Book 5, Chapter 1
tells you more about working with arrays.

The for loop condition looks really strange. The condition looks like this: int i :
range. The code creates an int value i that receives one value from the range
for each iteration of the loop. The range (:) operator appears between the range
declaration (i) and the range expression (range). This is a somewhat new feature
of C++, and you’ll find it extremely useful for processing storage containers like
arrays.

After i receives a value, the code outputs it to the screen using cout. What you see
as output is the values 1 through 5 — each on a separate line. Of course, you might
think this is all smoke and mirrors. So, try changing one of the values in the array
and you see that the output changes to match the array content.

Placing a condition within the declaration

Sometimes you need to perform data manipulation within a for loop in a way
that’s more convenient than trying to manipulate it in a code block. You can actu-
ally create a special kind of condition within a for loop declaration in which the
condition does something like access a part of a string or array. The ForLoopCon-
dition example demonstrates how to perform this task, as shown here:

#include <iostream>
using namespace std;

int main()

{
string hello = "Hello";
for (int i = @; char ¢ = hello[i]; i++)
{

cout << ¢ << endl;

}

return O;

Notice that the middle condition, which normally checks for a particular value or
performs some other logical function, actually creates a new char variable, ¢, and
places a letter from the hello string into it based on the value of i. After scratch-
ing your head for a while looking for the means of ending the loop, you determine
that when the loop gets to the end of the string, it automatically ends.

BOOK 1 Getting Started with C++

TIP

This is a handy way of working with all sorts of data when you don’t know how
large the data is at the outset. The for loop continues processing the string until
it runs out of letters, so you don’t have to worry about the string size.

Letting C++ determine the type

The previous section tells you about placing a condition within a for loop to
manipulate data of uncertain size. The example assumes that the data is of a spe-
cific type, but you may not know the type. Starting with C++ 11 (which means
that you must configure GCC with the Have G++ Follow the Combine C++ 1z (aka
C++17) setting, as described in the “Working with ranges” section, earlier in this
chapter), you can tell C++ to determine what type to use automatically. You do this
using the auto keyword, as shown in the ForLoopCondition2 code here:

#include <iostream>
using namespace std;

int main()

{
string hello = "Hello";
int values[] = {1, 2, 3, 4, 5, 0};
for (int i = @; auto ¢ = hello[i]; i++)
{
cout << ¢ << endl;
}
return 0;
}

As shown, the for loop will process the values in hello just as it did for the exam-
ple in the previous section. However, this time you don’t specify that c is a char;
you use auto instead. Now, try replacing hello with values in the for loop so that
it looks like this:

for (int i = @; auto ¢ = values[i]; i+t+)
{

cout << ¢ << endl;

}

Instead of outputting Hello one letter at a time, you now see the numbers 1
through 5, one on each line. So, the same for loop now works for data of two

CHAPTER 5 Directing the Application Flow 129

Directing the

Application Flow

A

WARNING

different types: string and int. Using this approach gives you additional flex-
ibility at the cost of a little code readability.

Notice that the for loop doesn’t output the @ in the values array; rather, it uses
the 0 to determine the ending point of the array. If you didn’t include this 0, the
for loop would continue until it found a @, which means you could see quite a bit
of garbage onscreen.

Looping while

130

Often, you find that for loops work only so well. Sometimes, you don’t want a
counter variable; you just want to run a loop over and over as long as a certain
situation is true. Then, after that situation is no longer the case, you want to stop
the loop.

For example, instead of saying that you’ll have 100 people line up and each one
will give you one more dollar than the previous person, you may say that you will
continue accepting money like this as long as people are willing to give it.

In this case, you can see that the condition under which the giving continues to
operate is the statement “as long as they’re willing to give it.”

To do this in C++, you use a while statement. The while keyword is followed
by a set of parentheses containing the condition under which the application is
to continue running the loop. Whereas the general for statement’s parentheses
include three portions that show how to change the counter variable, the while
statement’s parentheses contain only a condition. The WhilelLoop example dem-
onstrates a simple while loop, as shown here:

#include <iostream>
using namespace std;

int main()

{
int i = 0Q;
while (i <= 5)
{

cout << i << endl;
i++;

BOOK 1 Getting Started with C++

REMEMBER

cout << "All Finished!" << endl;
return 0;

This code runs while i is less than or equal to 5. Thus, the output of this appli-
cation is

a s WwN -

All Finished!

Notice that you must declare i outside the while loop using int i = ©;. If you
were to try to declare the while loop using while (int i <= 5), the compiler
would complain.

The while loop is handy if you don’t have a particular number of times you need
the loop to run. For example, consider a situation in which your application is
reading data from the Internet. Unless you control the Internet data source, you
don’t know how much data it can provide. (Many other situations can arise in
which you don’t know how much data to read, but Internet applications com-
monly experience this problem.) Using a while loop, the code can continue read-
ing data until your application has read it all. The Internet data source can simply
stream the data to your application until the data transfer is complete.

Often, for this kind of situation, you create a Boolean variable called done and start
it out as false. The while statement is simply

while (!done)
This line translates easily to English as “while not done, do the following.” Then,
inside the while loop, when the situation happens that you know the loop must

finish (such as the Internet data source has no more data to read), you set

done = true;

CHAPTER 5 Directing the Application Flow 131

Directing the

Application Flow

The WhilelLoop2 example demonstrates how to do this sort of process, as shown
here:

#include <iostream>
using namespace std;

int main()

{
int i = Q;
bool done = false;
while (!done)
{
cout << i << endl;
i+t
if (i » 5)
done = true;
}
cout << "All Finished!" << endl;
return 0;
}

In the case of the Internet data example, after you encounter no more data, you
would set done to true. The variable used to control the loop condition must
change or the loop will continue to run forever. In the case of your friends giving
you money, after one of them refuses, you would set done to true.

Doing while

The while statement has a cousin in the family: the do-while statement. A loop
of this form is similar to the while loop, but with an interesting little catch: The
while statement goes at the end, which means the loop always executes at least
one time. The DowWhilelLoop example demonstrates how to use this kind of loop,
as shown here:

#include <iostream>
using namespace std;
int main()

{
int i = 15;

132 BOOK 1 Getting Started with C++

AN

WARNING

do

cout << i << endl;
LM
}
while (i <= 5);
cout << "All Finished!" << endl;
return 0;

Notice here that the loop starts with the do keyword, and then the material for the
loop follows inside braces, and finally the whi 1e statement appears at the end. The
idea is that you’re telling the computer “Do this while such-and-such is true,”
where this is the stuff inside braces and the such-and-such is the condition inside
parentheses. Because the condition is evaluated at the end, after everything else is
done, the output from this example is a little different from the other while loop
examples:

15
All Finished!

If you had used a while loop here, the loop wouldn’t have executed at all because
i is set to 15. However, because this is a do-while loop, you see the output of 15.
Having the loop run at least once can be a problem sometimes, and if you don’t
want that behavior, consider using a while loop instead of a do-while loop.

Breaking and continuing

REMEMBER

Sometimes, you may write an application that includes a loop that does more than
simply add numbers. You may find that you want the loop to end under a condi-
tion that’s separate from the condition in the loop declaration. Or you may want
the loop to suddenly skip out of the current loop and continue with the next item
in the loop when the item being processed is incorrect in some way. When you
stop a loop and continue with the code after the loop, you use a break statement.
When you quit the current cycle of the loop and continue with the next cycle, you
use a continue statement. The next two sections show you how to do this.

Even though the examples in the following sections rely on a for loop, the break
and continue statements also work for while and do-while loops.

CHAPTER 5 Directing the Application Flow 133

Directing the

Application Flow

134

Breaking

Suppose that you are writing an application that reads data over the Internet,
and the loop runs for the amount of data that’s supposed to come. But midway
through the process, you may encounter some data that has an error in it, and you
may want to get out of the for loop immediately.

C++ includes a handy little statement that can rescue you in such a situation. The
statement is called break. Now, nothing actually breaks, and it seems a bit fright-
ening to write an application that instructs the computer to break. But this use of
the term break is more like in “break out of prison” than “break the computer.”
But instead of breaking out of prison, it breaks you out of the loop.

The ForlLoop3 example that follows demonstrates this technique. This sample
checks for the special case of i equaling 5. You could accomplish the same result
by changing the end condition of the for loop, but at least it shows you how the
break statement works.

#include <iostream>
using namespace std;

int main()
{
for (int i=0; i<10; i++)
{
cout << 1 <<
if (i == 5)
{

non,
7

break;

}

cout << i x 2 << endl;
}
cout << "All Finished!" << endl;
return 0;

In the preceding code, the first line inside the for loop, cout << i << " ";,runs
when i is 5. But the final line in the for loop, cout << i * 2 << endl;, does not
run when i is 5 because you tell it to break out of the loop between the two cout
statements.

BOOK 1 Getting Started with C++

A

WARNING

Also notice that when you break out of the loop, the application does not quit. It
continues with the statements that follow the loop. In this case, it still prints the
message "All Finished!"

You can leave empty the second portion of the for statement (the condition) by
simply putting a blank between the spaces. Then, to get out of the loop, you can
use a break statement. However, doing this makes for messy code. You should
treat messy code like you treat a messy house: Although sometimes not everyone
minds it, the truth is that most people don’t care to see a messy house. And you
really don’t want other people to see your messy house — or your messy code.
Yes, as a programmer, being a little self-conscious is sometimes a good thing.

Continuing

In addition to the times when you may need to break out of a loop for a special
situation, you can also cause the loop to end its current iteration; but instead of
breaking out of it, the loop resumes with the next iteration.

For example, you may be, again, reading data from over the Internet, and doing
this by looping a specified number of times. In the middle of the loop, you may
encounter some bad data. But rather than quit out of the loop, you may want to
simply ignore the current piece of bad data and then continue reading more data.

To do this trick, you use a C++ statement called continue. The continue state-
ment says, “End the current iteration, but continue running the loop with the next
iteration.”

The ForLoop4 example that follows shows a slightly modified version of the pre-
vious example, in the “Breaking” section. When the loop gets to 5, it doesn’t exe-
cute the second cout line. But rather than break out of the loop, it continues with
6, and then 7, and so on until the loop finishes on its own:

#include <iostream»

using namespace std;

int main()

{
int i;
for (i=0; i<10; i++)
{
cout << i << " ";
if (i == 5)

CHAPTER 5 Directing the Application Flow 135

Directing the

Application Flow

cout << endl;

continue;
}
cout << i x 2 << endl;
}
cout << "All Finished!" << endl;
return 0;

Nesting loops

Many times, you need to work with more than one loop. For example, you may
have several groups of friends, and you want to bilk the individual friends of each
group for all you can get. You may host a party for the first group of friends and
make them each give you as much money as they have. Then, the next week, you
may hold another party with a different group of friends. You would do this for
each group of friends. You can draw out the logic like this:

For each group of friends,
for each person in that group
bilk the friend for all he or she is worth

This is a nested loop. But if you do this, don’t be surprised if this is the last time
your friends visit your nest.

A nested loop is simply a loop inside a loop. Suppose that you want to multiply each
of the numbers 1 through 10 by 1 and print the answer for each multiplication, and
then you want to multiply each of the numbers 1 through 10 by 2 and print the
answer for each multiplication, and so on, up to a multiplier of 10. Your C++ code
would look like the ForlLoop5 example:

#include <iostream>
using namespace std;

int main()
{
for (int x = 1; x <= 10; x++)

{

n

cout << "Products of << x <<endl;
for (int y = 1; y <= 10; y++)

136 BOOK 1 Getting Started with C++

A

WARNING

(= =)
SiS
TECHNICAL
STUFF

cout << x x y << endl;

}

cout << endl;
}
return 0;

In this example, you have a loop inside a loop. The inner loop can make use of x
from the outer loop. Beyond that, nothing is magical or bizarre about this code.
It’s just a loop inside a loop. And yes, you can have a loop inside a loop inside a
loop inside a loop. You can also place any loop inside any other loop, like a while
loop inside a for loop.

Notice you have a cout call before and after the inner loop. You can do this; your
inner loop need not be the only thing inside the outer loop.

Although you can certainly have a loop inside a loop inside a loop inside a loop, the
deeper you get, the more potentially confusing your code can become. It’s like the
dozens of big cities in America that are promising to build an outer loop (a road
that surrounds the outside of the city to help move traffic faster). Eventually, that
outer loop won’t be big enough, so the cities have to build another and another.
That’s kind of a frightening prospect, so try not to get carried away with nesting.

If you put a break statement or a continue statement inside a nested loop, the

statement applies to the innermost loop it sits in. For example, the ForLoop6

example that follows contains three loops: an outer loop, a middle loop, and an

inner loop. The break statement applies to the middle loop, as shown here:
#include <iostream>

using namespace std;

int main()

{
for (int x = 1; x <= 3; x++)
{
for (int y = 1; y < 3; y++)
{
if (y == 2)
break;
for (int z = 1; 2z < 3; z++)
{

non

cout << x <« K<Y

CHAPTER 5 Directing the Application Flow 137

Directing the

Application Flow

non

cout <« << 2z << endl;

}

return 0;

You can see that when y is 2, the for loop with they in it breaks. But the outer loop
continues to run with the next iteration.

138 BOOK 1 Getting Started with C++

IN THIS CHAPTER

» Working with functions

» Writing your own great functions
» Fun with strings

» Manipulating main()

Chapter 6

Dividing Your Work
with Functions

eople generally agree that most projects throughout life are easier when

you divide them into smaller, more manageable tasks. That’s also the case

with computer programming — if you break your code into smaller pieces,
it becomes more manageable.

C++ provides many ways to divide code into smaller portions. One way is through
the use of what are called functions. A function is a set of lines of code that per-
forms a particular job. In this chapter, you discover what functions are and how
you can use them to make your programming job easier.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the

\CPP_AIO4\BookI\Chapter@6 folder of the downloadable source. See the Intro-
rememeer duction for details on how to find these source files.

Dividing Your Work

If you have a big job to do that doesn’t involve a computer, you can divide your work
in many ways. Over the years of studying process management, people have pretty
much narrowed the division of a job to two ways: using nouns and using verbs.

CHAPTER 6 Dividing Your Work with Functions 139

140

Yes, that’s right. Back to good old English class, where everyone learned about
nouns and verbs. The idea is this: Suppose that you’re going to go out back
and build a flying saucer. You can approach the designing of the flying saucer in
two ways.

First, you could just draw up a plan of attack, listing all the steps to build the
flying saucer from start to finish. That would, of course, be a lot of steps. But
to simplify it, you could instead list all the major tasks without getting into the
details. It might go something like this:

1. Build the outer shell.

2. Build and attach the engine.

That’s it. Only two steps. But when you hire a couple dozen people to do the grunt
work for you while you focus on your day trading, would that be enough for them
to go on? No, probably not. Instead, you could divide these two tasks into smaller
tasks. For example, Step 2 might look like this:

24a. Build the antigravity lifter.

2b. Build the thruster.

2C. Connect the lifter to the thruster to form the final engine.

Zd Attach the engine to the outer shell.

That’s a little better; it has more detail. But it still needs more. How do you do the
“Build the antigravity lifter” part? That’s easy, but it requires more detail, as in
the following steps:

2aa. Unearth the antigravity particles from the ground.

2a b Compress them tightly into a superatomizing conductor.
2acC. surround with coils.

Zad. Connect a 9-volt battery clip to the coils.

And, of course, each of these instructions requires even more detail. Eventually,
after you have planned the whole thing, you will have many, many steps, but they
will be organized into a hierarchy of sorts, as shown in Figure 6-1. In this draw-
ing, the three dots represent places where other steps go — they were left off so
that the diagram could fit on the page.

This type of design is a top-down design. The idea is that you start at the upper-
most step of your design (in this case, “Build flying saucer”) and continue to
break the steps into more and more detailed steps until you have something man-
ageable. For many years, this was how computer programming was taught.

BOOK 1 Getting Started with C++

FIGURE 6-1:
Dividing a
process into a
hierarchy.

Build Flying Saucer

Build the outer shell Build and attach engine
Build antigravity Attach engine to
more steps - more steps . -
lifter outer shell

Although this process works, people have found a slightly better way. First, before
breaking the steps (which are the verbs), you divide the thing you’re building into
parts (the nouns). In this case, you kind of do that already, in the first two steps.
But instead of calling them steps, you can call them objects. One object is the outer
shell, and one object is the engine. This way, two different factories can work on
these in sort of a division of labor. Of course, the factories would have to coordi-
nate their activities; otherwise, the two parts may not fit together when they’re
ready to go. And before you figure out exactly how to build each of these objects, it
would be a good idea to describe each object: what it does, its features, its dimen-
sions, and so on. Then, when you finally have all that done, you can list the exact
features and their details. And finally, you can divide the work with each person
designing or building a different part.

As you can see, this second approach makes more sense. And that’s the way pro-
grammers divide their computer applications. But at the bottom of each method
is something in common: The methods are made of several little processes. These
processes are called functions. When you write a computer application, after you
divide your job into smaller pieces called objects, you eventually start giving these
objects behaviors. And to code these behaviors, you do just as you did in the first
approach: You break them into manageable parts, again, called functions. In com-
puter programming terms, a function is simply a small set of code that performs
a specific task. But it’s more than that: Think of a function as a machine. You can
put one or more things into the machine; it processes them, and then it spits out a
single answer, if anything at all. One of the most valuable diagrams you can have
draws a function in this manner, like a machine, as shown in Figure 6-2.

CHAPTER 6 Dividing Your Work with Functions 141

Dividing Your Work
with Functions

Possibly one
item comes
Data goes
. > —> out,orno
into function
|tems come

FIGURE 6-2: > ()) Funct!on

You can think of (machine)
a function as a
machine.

This machine (or function) has three main parts:

¥ Inputs: The function can receive data through its inputs. These data elements
can be numbers, strings, or any other type. When you create such a machine,
you can have as many inputs as you want (or even zero, if necessary).

3 Processor: The processor is the function itself. In terms of C++, this is actually
a set of code lines.

3 Output: A function can return something when it has finished doing its thing.
In C++, this output is in the form of numbers, strings, or any other type.

To make all this clear, try out the FirstFunction code in Listing 6-1. (Don’t for-
get the second line, #include<math.h>, which gives you some math capabilities.)

m Seeing a Function in Action

#include <iostream>

#include <math.h>
using namespace std;

int main()

{
cout << fabs(-10.5) << endl;
cout << fabs(10.5) << endl;
return 0;

}

142 BOOK 1 Getting Started with C++

REMEMBER

When you run this application, you see the following output:

10.5
10.5

In this code, you use a function or machine called fabs() (usually pronounced
‘“ef-abs,” for floating-point absolute). This function takes a number as input and
returns as output the absolute value of the number.

The absolute value of a number is simply the positive version of the number. The
absolute value, for example, of —5 is simply 5. The absolute value of 12 is still 12.
An absolute value is almost always positive because the absolute value of 0 is 0,
but o0 is the origin, which is neither positive nor negative (see http://www.math.
com/school/subject1/lessons/S1U1L1@DP . html for details). The reason for the
f before the name abs is that it uses floating-point numbers, which are simply
numbers with decimal points.

So the first line inside main() calls fabs() for the value -10.5. The cout then
takes the output of this function (that is, the result) and prints it to the console.

Then the second line does the same thing again, except that it takes the absolute
value of the number 10.5.

And where is the processor for this function? It’s not in your code; it’s in another
file, and the following line ensures that your application can use this function:

#include <math.h>

You have seen functions in many places. If you use a calculator and enter a num-
ber and press the square root button, the calculator runs a function that calculates
the square root.

But functions can be more sophisticated than just working with numbers. Con-
sider this statement carefully: When you are using a word processor and you high-
light a word and check the spelling of the word, the application calls a function
that handles the spelling check. This function does something like the following:

This is a function to check the spelling of a single word.
Inputs: A single word.
Look up the word
If the word is not found
Find some suggestions.
Open a dialog box through which you (the user)
can change the word by either typing a new word

CHAPTER 6 Dividing Your Work with Functions 143

Dividing Your Work
with Functions

http://www.math.com/school/subject1/lessons/S1U1L10DP.html
http://www.math.com/school/subject1/lessons/S1U1L10DP.html

or picking one of the selections, or just leaving
it the same.

If you made a change,
Return the new spelling.

Otherwise
Return nothing.

Otherwise
Return nothing

Notice how the i f statements are grouped with indentations. The final otherwise
goes with the first i f statement because its indentation matches that of the if
statement.

So that’s a function that performs a spelling check. But consider this: When you
do not highlight a word but run the spelling checker, the spelling checker runs for
the whole document. That’s another function. Here it is.

This function checks the spelling of the entire document
For each word in the document
Check the spelling of the single word

How does the computer do the step inside the for loop, “Check the spelling of the
single word?” It calls the function described earlier. This process is called code
reuse. You have no reason to rewrite the entire function again if you already have
it somewhere else. And that’s the beauty of functions.

Calling a Function

144

TIP

When you run the code in a function, computer people say that you are calling the
function. And just like every good person, a good function has a name. When you
call a function, you do so by name.

Often, when writing an application and developing code to call a function, devel-
opers say that they are calling a function. This is partly computerspeak and partly
a strange disorder in which developers start to relate just a little too much to the
computer.

To call a function, you type its name and then a set of parentheses. Inside the
parentheses, you list the items you want to send to the inputs of the function. The
term used here is pass, as in “You pass the values to the function.”

BOOK 1 Getting Started with C++

For example, if you want to call the fabs() function, you type the name, fabs, an
open parenthesis, the number you want to pass to it, and then a closed parenthe-
sis, as in the following example:

fabs(-10.5)

But by itself, this line does not do anything with regard to the application as a
whole. The fabs() function returns a value — the absolute value of -19.5, which
comes out to be 10.5 — and you probably want to do something with that value.
You could, for example, print it to the console:

cout << fabs(-10.5) << endl;

Or you could store it away in another variable. But there’s a catch. Before you can
do that, you need to know the type that the function returns. Just as with a vari-
able, a function return value has a type. In this case, the type is a special type
called double (which stands for double precision floating point). The double type
is a floating-point type that can hold many digits in a single number. To save the
result of fabs(), you need to have a variable of type double. The Fabs2 example,
shown in Listing 6-2, does this.

m Seeing Another Way to Use fabs()

#include <iostream>
#include <math.h>

using namespace std;

int main()

{
double mynumber = fabs(-23.87);
cout << mynumber << endl;
return 0;

}

This code declares a double variable called mynumber. Then it calls fabs(), pass-
ing it -23.87 and returning the value into mynumber. Next, it prints the value in
mynumber to the console.

When you run this application, you see the following, which is the absolute value
of -23.87:

23.87

CHAPTER 6 Dividing Your Work with Functions 145

Dividing Your Work
with Functions

USING AUTO FOR FUNCTIONS

In general, specifically defining the type of the variable you use to receive output from
a function makes your code more readable. However, there are situations for which
you may not know the precise output type or different versions of the function out-
put different types (which is very confusing). In this case, you begin by setting GCC to
use C++ 17, as described in the “Working with ranges” section of Book 1, Chapter 5.
Then, you can write the Fabs2 example shown in Listing 6-2, as shown in the following
UsingAuto example:

#include <iostream>
#include <math.h>

using namespace std;

int main()

{
auto mynumber = fabs(-23.87);
cout << mynumber << endl;
return 9;

}

The result is the same as the Fabs2 example. The difference is that mynumber is now of
type auto, where C++ automatically detects the data type for you, instead of double,
where you explicitly define the data type.

Passing a variable

You can also pass the value of a variable into a function. The Fabs3 example in
Listing 6-3 creates two variables: One is passed into the function, and the other
receives the result of the function.

m Seeing Yet Another Way to Use fabs()

#include <iostream>

#include <math.h>
using namespace std;

int main()

146 BOOK 1 Getting Started with C++

TIP

double start = -253.895;
double finish = fabs(start);
cout << finish << endl;
return 0;

This code creates two variables; the first is called start, and the second is
called finish. It initializes start with a value of -253.895. Next, it calls fabs(),
passing it the value of start. It saves the return value in finish, and prints the
value in finish. When Fabs3 runs, you see the following appear on the console:

253.895

Saving a function result to a variable is useful if you need to use the result several
times over. For example, if you need the absolute value of -253.895 for whatever
reason and then a few lines later you need it again, you have a choice: You can
either call fabs(-253.895) each time or call it once, save the result in a variable,
and then use the variable each time you need it. The advantage to saving it in a
variable is that you might later say, for example, “Oh, wait! I didn’t just want
the absolute value! I wanted the negative of the absolute value!” Then you only
have to change one line of code — the line where it calls fabs(). If, instead, you
had called fabs() several times, you would have had to change it every time you
called it. And by the way, in case you’re curious about how to take the negative of
the absolute value and store it in a variable, you just throw a minus sign in front
of it, like so:

finish = —fabs(start);

Passing multiple variables

Some functions like to have all sorts of goodies thrown their way, such as multiple
parameters. As with functions that take a single value, you put the values inside
a single set of parentheses. Because you have multiple values, you separate them
with commas. The Pow1 example, shown in Listing 6-4, uses a function called
pow() to calculate the third power of 10. (That is, it calculates 10 times 10 times 10.
Yes, POW!). Make sure that you include the math.h line in the include section so
that you can use the pow() function.

CHAPTER 6 Dividing Your Work with Functions 147

Dividing Your Work
with Functions

m Seeing Yet One More Function in Action

#include <iostream>
#include <math.h»>

using namespace std;

int main()
{
double number = 10.09;
double exponent = 3.0;
cout << pow(number, exponent) << endl;
return 0;

When you run the application, you see 10 to the third power, which is 1,000:

1000
You can also pass a mixture of variables and numbers, or just numbers. The fol-
lowing code snippet also calculates the third power of 10 but passes an actual

number, 3.0, for the power:

double number = 10.0;
cout << pow(number, 3.0) << endl;

Or you can pass only numbers:

cout << pow(10.0, 3.0) << endl;

Writing Your Own Functions

148

And now the fun begins! Calling functions is great, but you get real power (ooh!)
when you write your own, specialized functions. Before writing a function,
remember the parts: the inputs, the main code or processor, and the single output
(or no output). The inputs, however, are called parameters, and the output is called
a return value. The following sections fill you in on the details.

BOOK 1 Getting Started with C++

Defining the AddOne() function

The AddOne example, shown in Listing 6-5, provides both a custom function and
code in main() that calls the custom function. (The function is placed outside
main() — before it, in fact.)

m Writing Your Very Own Function

©

REMEMBER

#include <iostream>

using namespace std;

X

int AddOne(int start) 5
{ 2 g
int newnumber = start + 1; g %
return newnumber ; ung
£
} S c
2 e
as

int main()
{
int testnumber = 20;
int result = AddOne(testnumber);
cout << result << endl;
return 0;

}

Notice that this example lacks the #include <math.h> entry found in earlier
examples. You need to add an entry to the include section of your code only when
you use a feature of that include file. In this case, the example relies on standard
math features that are part of the basic C++ language, so you don’t need any addi-
tional code.

Using the downloadable source will save you time and ensure that the example
runs the first time you try it. However, you might choose to type it manually.
Because there’s a good bit of code, you may get some compiler errors at first; look
carefully at the lines with the errors and find the difference between your code and
what’s here in the book. After you run the example, you see:

21

CHAPTER 6 Dividing Your Work with Functions 149

150

TIP

Seeing how AddOne() is called

You can start reviewing this code by seeing how to call AddOne(). Look at these
lines of main():

int testnumber = 20;
int result = AddOne(testnumber);
cout << result << endl;

You can probably put together some facts and determine what the function does.
First, the example is called AddOne(), which is a good indication in itself. Second,
when you run the application, the number 21 appears on the console, which is
one more than the value in testnumber; it adds one. And that, in fact, is what the
function does. It’s amazing what computers can do these days.

When you write your own functions, try to choose a name that makes sense and
describes what the function does. Writing a function and calling it something like
process() or TheFunction() is easy, but those names don’t accurately describe
the function.

Taking the AddOne() Function apart

Now, look at the AddOne function. Here are a few high-level observations about it:

3 Position: The function appears beforemain(). Because of the way the
compiler works, it must know about a function before you call it. And thus, you
put it beforemain(). (You can do this in another way that is discussed in the
“Forward references and function prototypes” section, later in this chapter.)

3 Format: The function starts with a line that seems to describe the function
(explained later in this section), and then it has an open brace and, later, a
closing brace.

¥ Code: The function has code in it that is just like the type of code you could
put inside amain(). The code consists of these elements:

Performing a task: The code begins by performing a task, like this:
int newnumber = start + 1;

The code declares an integer variable called newnumber. Then it initializes it
tostart plus1. But what is start? That's one of the inputs.

Returning a result: This line appears at the end of the function:

return newnumber ;

BOOK 1 Getting Started with C++

This is the output of the function, or the return value. When you want to
return something from a function, you just type the word return and then
indicate what you want to return. From the first line in the AddOne()
function, you can see that newnumber is one more than the number
passed into the function. So this line returns the newnumber.

Considering the AddOne() parameter

AddOne() takes just one parameter called start, which comes from the first line
of the function:

int AddOne(int start)

The entry in parentheses is the parameter. Notice it looks like a variable declara-
tion; it’s the word int (the type, or integer) followed by a variable name, start.
That’s the parameter — the input — to the function, and you can access this
parameter throughout the function using a variable called start. You can use the
input to the function as a variable.

If you had written result = AddOne(25); inmain(), then, throughout the func-
tion, the value of start would be 25. Likewise, if you had written

result = AddOne(152);
then, throughout the function, the value of start would be 152.
But here’s the outstanding thing about functions (or, at least, one of the loads of
outstanding things about functions): You can call the function several times over.
In the same main(), you can have the following lines

cout << AddOne(100) << endl;

cout << AddOne(200) << endl;

cout << AddOne(300) << endl;
which would result in this output:

101

201

301

In the first call to AddOne, the value of start would be 100. During the second call,
the value would be 200, and during the third call, it would be 300.

CHAPTER 6 Dividing Your Work with Functions 151

Dividing Your Work
with Functions

152

ARGUING OVER PARAMETERS

Technically, the term parameter refers strictly to the inputs to the function, from the
function’s perspective. When you call the function, the things you place in parentheses
in the call line are not parameters; rather, they are described as arguments. Thus, in the
following function header:

string ConnectNames(string first, string last)

the variables first and last are parameters. But in the following call to a function
(found in Listing 6-7)

ConnectNames("Bill", "Murray")

the strings "Bill" and "Murray" are arguments of the call.

Understanding the AddOne() name
and type

Look at the AddOne() header again:
int AddOne(int start)

The word AddOne is the name of the function, as you’ve probably figured out
already. And that leaves the thing at the beginning — the int. That’s the type of
the return value. The final line in the function before the closing brace is

return newnumber ;

The variable newnumber inside the function is an integer. And the return type is
int. That’s no accident: As programmers have all heard before, friends don’t let
friends return something other than the type specified in the function header. The
two must match in type. And further, examine this line from inside main():

int result = AddOne(testnumber);

The type of result is also an integer. All three match. Again, no accident. You can
copy one thing to another (in this case, the function’s return value to the vari-
able called result) only if they match in type. And here, they do — they’re both
integers.

BOOK 1 Getting Started with C++

Notice one more thing about the function header: It has no semicolon after it.
This is one of the places you do not put a semicolon. If you do, the compiler gets
horribly confused. The Code::Blocks compiler shows an error that says, "error:
expected unqualified-id before '{' token."

Finally, ponder this line of code for a moment:

testhumber = AddOne(testnumber);
This line takes the value stored inside testnumber, passes it into AddOne(), and
gets back a new number. It then takes that new number and stores it back into

testnumber. Thus, testnumber’s value changes based on the results of the func-
tion AddOne().

Improving On the Basic Function

Not all functions work precisely the same way. You can create functions that have
multiple parameters or no parameters. There is no law that says that a function
must absolutely provide a return value. The following sections discuss variations
on the basic function theme discussed in the previous section.

Using multiple parameters
or no parameters

You don’t need to write your functions with only one parameter each. You can
have several parameters, or you can have none. It may seem a little strange that
you would want a function — a machine — that accepts no inputs. But you may
run into lots of cases where this may be a good idea. Here are some ideas for
functions:

3 Day: Determines the day and returns it as a string, as in "Monday" or
"Tuesday"

9 Number-of-users: Figures out the current number of users logged into a
web-server computer

3 Current font: In a text editor application (such as Notepad), returns a string
containing the current font name, such as "Arial"

CHAPTER 6 Dividing Your Work with Functions 153

Dividing Your Work
with Functions

¥ Editing time: Returns the amount of time you have been using the word
processor application

¥ Username: If you are logged on to a computer, gives back your username as
a string, such as "Elisha"

All functions in this list have something in common: They look up information.
Because no parameters are in the code, for the functions to process some infor-
mation, they have to go out and get it themselves. It’s like sending people out into
the woods to find food but not giving them any tools: It’s totally up to them to
perform the required tasks, and all you can do is sit back and watch and wait for
your yummy surprise.

If a function takes no parameters, you write the function header as you would for
one that takes parameters, and you include the parentheses; you just don’t put
anything in the parentheses, as the UserName example in Listing 6-6 shows. So if
nothing good is going in, there really can be something good coming back out, at
least in the case of a function with no parameters.

m Taking No Parameters

154

#include <iostream>
using namespace std;

string Username()

{

return "Elisha";

}

int main()

{
cout << Username() << endl;
return 0;

}

When you run Listing 6-6, you see the following output:
Elisha

Your function can also take multiple parameters. The ConnectNames example,
shown in Listing 6-7, demonstrates the use of multiple parameters. Notice that
the function, ConnectNames(), takes the two strings as parameters and combines
them, along with a space in the middle. Notice also that the function uses the two
strings as variables.

BOOK 1 Getting Started with C++

m Taking Multiple Parameters

#include <iostream>
using namespace std;

string ConnectNames(string first, string last)

{
return first + " " + last;

}

int main()

{
cout << ConnectNames("Richard", "Nixon") << endl;
return 0;

}

In the function header in Listing 6-7, you see the type name string for each
parameter. Each parameter requires its own type entry or the compiler displays an
error. Here are some points about this code:

3 You didn't create variables for the two names inmain(). Instead, you just
typed them as string constants (that is, as actual strings surrounded
by quotes).

3 You can do calculations and figuring right inside the return statement.
That saves the extra work of creating a variable. In the function, you could
create a return variable of type string, setitto first + " " + last,and
then return that variable, as in the following code:

string result = first + " " + last;
return result;

But instead, the example shows how to do it all on one line, as in this line:

return first + " " + last;

Although you can save yourself the work of creating an extra variable and just put
the whole expression in the return statement, sometimes that’s a bad thing. If
the expression is really long, like the following:

return (mynumber * 100 + somethingelse / 200) x*
(yetanother + 400 / mynumber) / (mynumber + evenmore);

CHAPTER 6 Dividing Your Work with Functions 155

Dividing Your Work
with Functions

it can get just a tad complicated. Breaking it into variables, such as in this exam-

ple, is best:
double a = mynumber x 100 + somethingelse / 200;
double b = yetanother + 400 / mynumber;
double ¢ = mynumber + evenmore;
return a x b / c;

Returning nothing

In the earlier section “Using multiple parameters or no parameters,” you see a list
of functions that take no parameters; these functions go and bring back some-
thing, whether it’s a number, a string, or some other type of food.

One such example gets the username of the computer you’re logged in to. But
what if you are the great computer guru, and you are writing the application that
actually logs somebody in? In that case, your application doesn’t ask the computer
what the username is — your application tells the computer what the username
is, by golly!

In that case, your application would call a function, like SetUsername(), and pass
the new username. The resulting function could do any of the following for a
return value:

¥ It could return the name

¥ It could return a message saying that the username is not valid or something
like that

¥ It may not return anything at all
Look at the case in which a function doesn’t return anything. In C++, the way
you state that the function doesn’t return anything is by using the keyword void

as the return type in the function header. The SetUserName example, shown in
Listing 6-8, demonstrates this approach.

m Returning Nothing at All

#include <iostream>

using namespace std;

void SetUsername(string newname)

{

156 BOOK 1 Getting Started with C++

REMEMBER

n

cout << "New user is << newname << endl;

int main()

{
SetUsername("Harold");
return 0;

}

When you run the application, you see
New user is Harold

Notice the SetUsername() function header: It starts with the word void, which
means that it returns nothing at all. It’s like outer space: There’s just a big void
with nothing there, and nothing is returned, except for static from the alien air-
waves, but we won’t go there. Also notice that, because this function does not
return anything, there is no return statement.

Now, of course, this function really doesn’t do a whole lot other than print the
new username to the console, but that’s okay; it shows you how you can write a
function that does not return anything.

A function of return type void returns nothing at all.

Do not try to return something in a function that has a return type of void. Void

means that the function returns nothing at all. If you try to put a return state-
ment in your function, you get a compile error.

Keeping your variables local

Everybody likes to have their own stuff, and functions are no exception. When you
create a variable inside the code for a function, that variable will be known only to
that particular function. When you create such variables, they are called local vari-
ables, and people say that they are local to that particular function. (Well, computer
people say that, anyway.)

To see a local variable at work, consider the code in the PrintName example:

#include <iostream>

using namespace std;

CHAPTER 6 Dividing Your Work with Functions 157

Dividing Your Work
with Functions

158

void PrintName(string first, string last)

{
string fullname = first + " " + last;
cout << fullname << endl;

}

int main()

{
PrintName("Thomas", "Jefferson");
return 0;

}

Notice in the PrintName() function that you declare a variable called fullname.
You then use that variable in the second line in that function, the one starting with
cout. But you cannot use the variable inside main(). If you try to, as in the follow-
ing code, you get a compile error:

int main()

{
PrintName("Thomas", "Jefferson");
cout << fullname << endl;
return 0;

}

However, you can declare a variable called fullname inside main(), as in the
PrintName2 example. But, if you do that, this fullname is local only to main(),
whereas the other variable, also called fullname, is local only to the PrintName()
function. In other words, each function has its own variable; they just happen to
share the same name. But they are two separate variables:

#include <iostream>
using namespace std;

void PrintName(string first, string last)

{
string fullname = first + " " + last;
cout << fullname << endl;

}

int main()

{
string fullname = "Abraham Lincoln";
PrintName("Thomas", "Jefferson");

BOOK 1 Getting Started with C++

REMEMBER

A

WARNING

Q

TIP

cout << fullname << endl;
return 0;

}

When two functions declare variables by the same name, they are two separate
variables. If you store a value inside one of them, the other function does not
know about it. The other function only knows about its own variable by that name.
Think of it this way: Two people could each have a storage bin labeled Tools in
their closet. If Sally puts a hammer in her bin labeled Tools at her house and Hal
opens another bin also labeled Tools at his house, he won’t see Sally’s hammer. As
a result, the output from this example is:

Thomas Jefferson
Abraham Lincoln

If you use the same variable name in two different functions, forgetting that you
are working with two different variables is very easy. Do this only if you are sure
that no confusion can occur.

If you use the same variable name in two different functions (such as a counter
variable called index, which you use in a for loop), matching the case is usually
a good idea. Don’t use count in one function and use Count in another. Although
you can certainly do that, you may find yourself typing the name wrong when you
need it. But that won’t cause you to access the other one. (You can’t, because it is
in a different function.) Instead, you get a compile error, and you have to go back
and fix it. Being consistent is a time-saver.

Forward references and function
prototypes

All examples in this chapter place the function code above the code for main().
The reason is that the compiler scans the code from start to finish. If it has not yet
encountered a function but sees a call to it, it doesn’t know what it’s seeing, and
it issues a good old compile error.

Such an error can be especially frustrating and can cause you to spend hours yell-
ing at your computer. Nothing is more frustrating than looking at your applica-
tion and being told by the compiler that it’s wrong, yet knowing that it’s correct
because you know that you wrote the function.

You can, however, place your functions after main(); or you can even use func-

tion prototypes to put your functions in other source code files (a topic you find
in Book 1, Chapter 7).

CHAPTER 6 Dividing Your Work with Functions 159

Dividing Your Work
with Functions

What you can do is include a function prototype. A function prototype is nothing
more than a copy of the function header. But rather than follow it with an open
brace and then the code for the function, you follow the function header with a
semicolon and you are finished. A function prototype, for example, looks like this:

void PrintName(string first, string last);

Then you actually write the full function (header, code, and all) later. The full func-
tion can even be later than main(') or later than any place that makes calls to it.

Notice that this example looks just like the first line of a function. In fact, it’s pos-
sible to cheat! To write it, you simply copy the first line of the original function
you write and add a semicolon. The PrintName3 example, shown in Listing 6-9,
shows how to use this technique.

m Using a Function Prototype

160

#include <iostream>
using namespace std;
void PrintName(string first, string last);

int main()

{
PrintName("Thomas", "Jefferson");
return 0;

}

void PrintName(string first, string last)

{

string fullname = first + " " + last;
cout << fullname << endl;

}

Notice that the function header appears above main() and ends with a semicolon.
Next comes main(). Finally, you see the PrintName() function itself (again, with
the header but no semicolon this time). Thus, the function comes after main().

“Whoop-de-do,” you say. “The function comes after.” But why bother when now
you have to type the function header twice?

This step truly is useful. If you have a source code file with, say, 20 functions,
and these functions all make various calls to each other, it could be difficult to

BOOK 1 Getting Started with C++

TIP

REMEMBER

carefully order them so that each function calls only functions that are above it in
the source code file. Instead, most programmers put the functions in some logical
order (or maybe not), and they don’t worry much about the calling order. Then
they have all the function prototypes toward the top of the source code file, as
shown previously in Listing 6-9.

When you type a function prototype, many people say that you are specifying a
forward reference. This phrase simply means that you are providing a reference to
something that happens later. It’s not a big deal, and it mainly comes from some
of the older programming languages.

Writing two versions of the same function

Sometimes you may want to write two versions of the same function, with the only
difference being that they take different parameter types. For example, you may
want a function called Combine(). One version takes two strings and puts the two
strings together, but with a space in the middle. It then prints the resulting string
to the console. Another version adds two numbers and writes all three numbers —
the first two and the sum — to the console. The first version would look like this:

void Combine(string first, string second)

{

cout << first <« << second << endl;

There’s nothing magical or particularly special about this function. It’s called
Combine(); it takes two strings as parameters; it doesn’t return anything. The
code for the function prints the two strings with a space between them. Now the
second version looks like this:

void Combine(int first, int second)

{

int sum = first + second;

cout << first <« << second << << sum << endl;

Again, nothing spectacular here. The function name is Combine(), and it doesn’t
return anything. But this version takes two integers, not two strings, as param-
eters. The code is also different from the previous code in that it first computes
the sum of the inputs and then prints the different numbers.

Overloading, or using one name for multiple functions, is somewhat common in

C++. The Combine example, shown in Listing 6-10, contains the entire code. Both
functions are present in the listing.

CHAPTER 6 Dividing Your Work with Functions 161

Dividing Your Work
with Functions

m Writing Two Versions of a Function

162

REMEMBER

#include <iostream>
using namespace std;

void Combine(string first, string second)

{
cout << first << " " << second << endl;
}
void Combine(int first, int second)
{
int sum = first + second;
cout << first << " " << second << " " << sum << endl;
}
int main()
{
Combine("David", "Letterman");
Combine(15,20);
return 0;
}

You see each function called in main(). The compiler chooses which function to
call based on the arguments you provide. For example, when viewing this call:

Combine("David", "Letterman");

you see two strings. So, the compiler knows to use the first version, which takes
two strings. Now look at the second function call:

Combine(15,20);

This call takes two integers, so the compiler knows to use the second version of
the function.

When you overload a function, the parameters must differ (or must appear in a
different order). For example, the functions can take the same type of informa-
tion but use a different number of parameters. Of course, the previous exam-
ple shows that the parameters can also vary by type. You can also have different
return types, though they must differ by more than just the return type, and vary-
ing the parameter names doesn’t count. The compiler will see Combine(string A,
string B) and Combine(string First, string Second) as the same function.

BOOK 1 Getting Started with C++

Calling All String Functions

LD,
TECHNICAL
STUFF

REMEMBER

To get the most out of strings, you need to make use of some special functions
that cater to the strings. However, using these functions is a little different from
the other functions used so far in this chapter. Rather than just call the function,
you first type the variable name that holds the string, and then a period (or dot),
and then the function name along with any arguments.

The reason you code string functions differently is because you’re making use
of some object-oriented programming features. Book 2, Chapter 1 describes in
detail how these types of functions (called methods) work. The following sections
describe some common functions and tell you how to use them.

Inserting a string into a string

One function that you can use is insert(). You can use this function if you want
to insert more characters into another string. For example, if you have the string
"Something interesting and bizarre" and you insert the string "seriously "
(with a space at the end) into the middle of it starting at index 10, you get the
string "Something seriously interesting and bizarre".

When you work with strings, the first character is the oth index, and the second
character is the 1st index, and so on. The following lines of code perform an insert
by using the insert() function at index 10, even though you perform the inser-
tion at letter 11:

string words = "Something interesting and bizarre";
words.insert(10, "seriously ");

The first of these lines simply creates a string called words and stuffs it full with
the phrase "Something interesting and bizarre". The second line does the
insert. Notice the strange way of calling the function: You first specify the vari-
able name, words, and then a dot, and then the function name, insert. Next, you
follow it with the parameters in parentheses, as usual. For this function, the first
parameter is the index where you want to insert the string. The second parameter
is the actual string you are going to insert. After these two lines run, the string
variable called words contains the string "Something seriously interesting
and bizarre".

CHAPTER 6 Dividing Your Work with Functions 163

Dividing Your Work
with Functions

Removing parts of a string

You can also erase parts of a string by using a similar function called erase().
The following line of code erases 16 characters from the words string starting at
index 19:

words .erase(19,16);

Consequently, if the variable called words contains the string "Something
seriously interesting and bizarre", after this line runs, it will contain
"Something seriously bizarre".

Replacing parts of a string

Another useful function is replace(). This function replaces a certain part of the
string with another string. To use replace, you specify where in the string you
want to start the replacement and how many characters you want to replace. Then
you specify the string with which you want to replace the old, worn-out parts.

For example, if your string is "Something seriously bizarre" and you want to
replace the word "thing" with the string "body", you tell replace() to start at
index 4 and replace 5 characters with the word "body". To do this, you enter:

words.replace(4, 5, "body");
Notice that the number of characters you replace does not have to be the same as
@ the length of the new string. If the string starts out with "Something seriously

bizarre", after this replace() call the string contains "Somebody seriously
TIP bizarre".

Using the string functions together

The OperatingOnStrings example, shown in Listing 6-11, demonstrates all these
functions working together.

m Operating on Strings

#include <iostream>

using namespace std;

int main()

{

164 BOOK 1 Getting Started with C++

string words = "Something interesting and bizarre";
cout << words << endl;

words.insert(10, "seriously ");

cout << words << endl;

words.erase(19,16);

cout << words << endl;

words.replace(4, 5, "body");

cout << words << endl;

return 0;

When you run this application, you see the following output:

Something interesting and bizarre

Something seriously interesting and bizarre
Something seriously bizarre

Somebody seriously bizarre

The first line is the original string. The second line is the result of the insert()
function. The third line is the result of the erase() function. And the final line is
the result of the replace() function.

Understanding main()

All applications so far in this chapter have had a main(), which is a function.
Notice its header, which is followed by code inside braces:

int main()

You can see that this is definitely a function header: It starts out with a return
type and then the function name, main(). This is just one form of the main()
function — the form that Code::Blocks uses by default. However, you may decide
that you want to give users the ability to provide input when they type the name
of your application at the console. In this case, you use this alternative form of the
main() function that includes two parameters:

int main(int argc, char xargv[])

CHAPTER 6 Dividing Your Work with Functions 165

Dividing Your Work
with Functions

166

WHO, WHAT, WHERE, AND WHY RETURN?

Themain() function header starts with the type int. This means that the function
main() returns something to the caller. The result of main() is sometimes used by the
computer to return error messages if the application, for some reason, didn’t work or
didn't do what it was supposed to do. But here's the inside scoop: Outputting a return
value doesn't work in the graphical environment that most people use.

For Windows computers, the return value isn't normally used when you run the
application outside Code::Blocks. The return type is specifically designed to work

with batch files (files with a BAT extension that originally appeared as part of DOS,

or Disk Operating System). You also see them used in scripts and as part of PowerShell.
Consequently, unless you plan to work with command line utilities (and many people
still do), just return @. (The other time you want to return a non-zero value is when
working in Code::Blocks. A non-zero return value appears highlighted in red in the
Build Log, alerting you to the error condition.)

Some Unix and Linux systems also use the return value of main() for the same reason
that Windows does — to indicate success or failure and to provide an error code when
there is a failure. These computers may run hundreds of command-line applications.

If one of these applications returns something other than @, another application detects
the error and notifies somebody.

Notice that the second form of main() has two parameters:

¥ int argc: Tells you how many arguments appear on the command line.

¥ char *argv|]: Provides a list of the command-line arguments in an array.

A command-line argument is something you type in the Windows Command Prompt
or at the Linux Terminal window after the name of the application (the command
you want to execute). When you run an application, especially from the command
prompt, you type the name of the application and press Enter. But before pressing
Enter, you can follow the application name with other words that are generally
separated by spaces.

Many of the commands you use in Terminal window and the Command Prompt
have an application name and then various arguments. The command usually tells
you about these arguments when you enter a special argument such as /? or —-h.
An argument preceded by a slash (/) or two dashes (--) is a switch because it affects
how the command works. Figure 6-3 shows an example of the dir (directory)
command using the /? switch to tell you about the other arguments (including
other switches) available with dir.

BOOK 1 Getting Started with C++

FIGURE 6-3:
Command-line
apps often have
switches and
arguments.

@8 Administrator: C d Prompt oo Es
CinJdir /7 o
Displays a list of files and subdirectories in a directory.

DIR [drive:1[pathl[filenamel [-ALL:lattributes1] [+B1 [~C1 [-D]1 [/L]1 [-N] 2
[~OLL: lsortorder1] [/P1 [-Q1 [/R1 [/81 L[/TLL:1timefield1] L[U1 [-K1 [~4]

[drive: 1[pathllfilenane]
pecifies drive. directory. andsor files to list.

Py Displays files with specified attributes.

attributes I Directories Read-only files
H Hidden files A Files ready for archiving
& Systen files I Mot content indexed files
L Reparse Points — Prefix meaning not

B Uses bare format (no heading information or summary.

FiH Display the thousand separator in file sizes. This is the
default. Use ~—C to disable display of separator.

~D Same as wide but files are list sorted by column.

/L Uses lowercase.

N NHew long list format wvhere filenames are on the far right.

~0 List by files in sorted order.

sortorder N By name (alphabetic) & By size <(smallest first)>

By extension {alphabetic> D By datestime Coldest first>

G Group directories first — Prefix to reverse order
Press any key to continue . . . &

To make these switches and their associated arguments work, the main()
function must process the input. You determine how many command-line
arguments the user supplied using argc, and then access them using argv.
Book 2, Chapter 2 deals with the topic arrays. An array is a sequence of vari-
ables stored under one name. The argv variable is one such animal. To access
the individual variables stored under the single umbrella known as argv, you do
something like this:

cout << argv[@] << endl;

In this example, you use brackets as you did when accessing the individ-
ual characters in a string. When working with the /? switch, you see /? as
the output. You can access the command-line parameters using a for loop. The
CommandLineParameters example, shown in Listing 6-12, demonstrates this
technique.

m Accessing the Command-Line Parameters

#include <iostream>
#include <stdlib.h»>

using namespace std;

int main(int argc, char xargv[])

{
for (int index=1; index < argc; index++)
{

cout << argv[index] << endl;

return 0;

CHAPTER 6 Dividing Your Work with Functions 167

Dividing Your Work
with Functions

168

SETTING THE COMMAND-LINE
PARAMETERS IN CODE::BLOCKS

If you attempt to run the example in Code::Blocks by choosing Build = Run with the
default settings, the example doesn't output anything. To add command-line arguments,
choose Project = Set Program’s Arguments. You see the Select Target dialog box, where
you can type the command-line arguments in the Program Arguments field. Type Hello
World | Love You! in this field, one argument to a line, as shown in the figure, and click
OK. You're ready to run the example, which outputs:

Hello
World
I
Love
You!

Select target

Release

| This target provides the project's main executable

Program arguments:
Hello

World

1

Love

You!

Host application:
Run host in terminal

| o Cancel]

Notice that the for loop begins at index = 1 rather than index = 0. The first item

in the argv list is always the execution path and the name of the application. This

information can come in handy at times, but normally you want the remaining
rememeer arguments to change the way your application works.

BOOK 1 Getting Started with C++

IN THIS CHAPTER

» Creating multiple source code files

» Creating header files
» Sharing variables among source files

» Making use of the mysterious header
wrappers

Chapter 7
Splitting Up Source
Code Files

REMEMBER

ust as you can divide your work into functions, so you can divide your work

into multiple source code files. The main reason to do so is to help keep your

project manageable. Also, with multiple source code files, you can have several
people working on a single project, each working on a different source code file
at the same time.

The key to multiple source files is knowing where to break the source code into
pieces. As with anything else, if you break the source code in the wrong place, it
will, well, break.

In this chapter, you discover how to divide your source code into multiple files
(and in all the right places). The examples use Code::Blocks, but most modern
IDEs work in about the same manner. You create multiple files and import them
into a project (a description of what you want to do), which then manages the files
for you and ensures that the right files are compiled at the right time.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookI\Chapter@7 folder of the downloadable source. See the
Introduction for details on how to find these source files.

CHAPTER 7 Splitting Up Source Code Files 169

Creating Multiple Source Files

170

©

REMEMBER

In the sections that follow, you see how to create multiple source code files using
one of two techniques: You can rely on the IDE to perform all the required setups
for you, or you can manually add the file and perform the required setups by
editing a build file.

When you create a second source code file, this code becomes part of your project.
And when you compile, the compiler compiles all the source code files in your
project, assuming that you have changed them since the last time you compiled.
You can put your functions in separate source code files, and they can call each
other. In this way, they all work together in the single application. The section
“Sharing with Header Files,” later in this chapter shows how you can have a
function call another function in a different source file.

You can’t break up a single function and put it into two source files. The compiler
requires that your functions stay in one piece in a single source file.

Adding a new source code file

If you’re using Code::Blocks, cutting your application into multiple source code
files is as easy as cutting a cake. The AddFiles example assumes that you have
started with an existing project using the process found in Book 1, Chapter 2.
The following steps show how to add another file to this existing project.

1 . Choose File>New-=> File.

You see the New from Template dialog box, shown in Figure 7-1. Notice that
you can choose from a header, a source code, or an empty file (among other
non-C++ possibilities). Normally, you choose either the C/C++ Header or C/C++
Source option. The Empty File option is for non-source files, such as a text file
used as a ReadMe.

2. Highlight the template you want to use and click Go.

You see a wizard associated with the particular file you've chosen. The example
uses a new C++ Header File named my_stuff.h.

3. Click Next to get past the initial Welcome page.

If you chose the Empty File template, skip to Step 7. When using the C/C++
Header or C/C++ Source templates, you see a language selection page.

BOOK 1 Getting Started with C++

New from template =

Projects Category: [<All categories '] Go
Build targets —
B o @ o F

Custom

User templates CfC++ header CfC++source D source Empty file Fortran source

@

Java source

View as

(@) Large icons

FIGURE 7-1:

) List
The New from =
Template d|a|0g TIP: Try right-dlicking an item
box lets you 1. Select a wizard type first on the left
2. Select a spedific wizard from the main window (filter by categories if needed)
select a new 3. Press Go
file type.

4, Highlight the language you want to use — either C or C++ — and
click Next.

The wizard asks what you want to call the file, where you want to store it, and
which builds should use the file, as shown in Figure 7-2. (More on these choices
in Steps 5-8.)

CIC++ header ==l

Please enter the file's location and name and

l“++ FILE whether to add it to the active project.

Filename with full path:
CH\CPP_AIO#\Bookl\Chapter07\AddFilestm ...

Header guard word:
MY_STUFF_H_INCLUDED

[¥] Add file to active project
In build target(s):

Release

All None

FIGURE 7-2:
Provide the file
information
required by the
wizard.

[< Back][Finish][Cancel

CHAPTER 7 Splitting Up Source Code Files 171

Splitting Up Source

Code Files

172

©

REMEMBER

TIP

If Code::Blocks doesn’t automatically open the file you added, you can open it by
double-clicking its name in the Management Window tree (see Figure 7-3). When
you do, an additional tab appears at the top of your source code files. These tabs
represent the different files that are open. You can click a tab to have that file’s
code appear in the source code window. When you click another tab, the window
shows the source for that file instead. And, thankfully, Code::Blocks remembers
any changes you make if you switch to another tab. So you can bounce all around

Type a path and filename for the file in the Filename with Full Path field.

You must provide the full path, even if you want the file in the current folder.
Click the ellipsis to display the Select Filename dialog box, where you can
choose the location of the file. The default path shown in the Select Filename
dialog box is the current folder.

(Optional) Provide a header guard word when creating a header file.

You don't need to worry about how to use headers now, but you use them to
perform tasks such as making declarations like #include statements. Adding a
header more than once into an application can cause all sorts of problems,
and the application might not compile, even though it would normally do so
without the multiple header copies. The header guard word keeps the number
of copies of the header in your application to one.

Check the individual builds that should use the file.
As an alternative, you can click All to add the file to all builds.

A debug version of your application will contain special information that you
can use to find program errors. A release version of your application is smaller
and executes faster. Each version has a purpose, so developers usually need to
create both at some point.

Click Finish.

The wizard adds the new file to your project. Code::Blocks automatically opens
the file so that you can begin editing it. You also see the file you added in the
Management window, as shown in Figure 7-3. In this case, you see both the
source files and a header file. Notice that the source files appear in dark
type and the header file appears in gray type. This shows that the source files
are compiled to create the project and the header file isn't. The “Sharing with
Header Files” section, later in this chapter, discusses in more detail how the
compiler works with header files.

the screen and switch all you want, and the computer shouldn’t get confused.

BOOK 1 Getting Started with C++

FIGURE 7-3:

The Management
window displays
the files used

to compile the
project.

Management

Projects | Symbols Files = FSymbols Resources

O Workspace
=3 AdaFiles
-1-2 Sources
i main.cpp
5-B3 Headers

After you have multiple files in your project, you can put some of your source in
one file and some in another. But before you do, you may want to read some of the
other sections in this chapter because they explain how to properly divide your
source code without having it end up like cake that got smooshed while you were
trying to cut it.

Removing an existing source code file

If you add a file to Code::Blocks that you really don’t need, right-click the file in
the Management window and choose Remove File from Project from the context
menu. The file will disappear from the project but still appear in the directory in
which you created it.

If you later decide that you really do want that file, right-click the project entry
in the Management window, choose Add Files from the context menu, and select
the file you want to add back into the project using the options in the Add Files to
Project dialog box.

Creating a project with multiple
existing files

Sometimes you have a number of existing files, but no project to hold them. For
example, you might be moving from another IDE to Code::Blocks. That would
mean that you’d have the source files from the other IDE, but no project file
that Code::Blocks would recognize. Don’t worry: You can put existing files into
a Code::Blocks project. The following steps tell you how to perform this process
(you can see the result by opening the CopiedFiles project):

1. choose Create a New Project on the Code::Blocks Start page.

You see the New from Template dialog box used to create all the examples so
far in this book.

CHAPTER 7 Splitting Up Source Code Files 173

Splitting Up Source

Code Files

FIGURE 7-4:
Supply a project
name for your
new application.

2.

Choose the Empty Project template and click Go.

You see an Empty Project welcome dialog. You can skip this dialog box the next
time by selecting Skip this Page Next Time. The Empty Project template lets you
create a project shell without any files in it.

Click Next.

You see the Empty Project configuration dialog box, shown in Figure 7-4. This is
where you supply the name of the project, not the files used in the project.

Empty project (==

FPlease select the folder where you want the new project
m COI'ISOIe to be created as well asits title.

Project title:

Folder to create projectin: o
C:\CPP_AIO4\Bookl \Chapter0 7\ LJ

Project filename:

Resulting filename:
<invalid path=

< Back][Next =]l Cancel

Type a name for the project in the Project Title field.

The example uses CopiedFiles. Notice that the wizard automatically fills in
the Project Filename field for you.

Click Next.

The wizard asks you to supply the usual information for the compiler, debug
configuration, and release configuration. The default settings will work fine in
most cases.

Click Finish.

Code::Blocks creates an empty project for you where you can add files as
needed.

Right-click the CopiedFiles project entry in the Management window and
choose Add Files from the context menu.

174 BOOK 1 Getting Started with C++

FIGURE 7-5:

The current
directory doesn't
contain any
code files.

TIP

You see the Add Files to Project window, shown in Figure 7-5. Only the project
(.cbp) file appears because this is an empty project.

Of course, you need to add files to your project to make it useful. For the
purposes of this example, you can use the files found in the AddFiles example
created in the previous section of the chapter. For real-world use, you need to
know the locations of the files you want to use to create your new project.

5 Add files to project... =
i
2] [l « Bookl » Chapter7 + CopiedFiles v|#,.|| Search CopiedFiles 2|
Organize « New folder > [@
Boost.Build S Mame -
. BP4D _
[P— M CopiedFiles.cop
COLLAGE
. Config.Msi
. Countdown
CPP_AID L
| CPP_AIO4
. Bookl
Chapter03
Chapter04
Chapterds
Chapter06
Chapter07
AddFiles
CopiedFiles
[2). Documents and Settings - 4 m 3
File name: | [Aifites ¢ -
[Open ‘v] [Cancel J

8. Navigate to the AddFiles folder, shown in Figure 7-5.

Notice that you see amain.cpp and my_stuff.h file in the folder. (You may
also see other files that you can safely ignore for now.)

9. Locate and highlight the files you want to copy to the new project, which
aremain.cpp andmy_stuff.h in this case.

Use the Ctrl+click method to select multiple files from the list. Code::Blocks
makes it easy to select multiple files in a single pass so that you don't have to
open the Add Files to Project dialog box multiple times.

10. click Open.

Code::Blocks displays a dialog box asking which builds to add the files to, as
shown in Figure 7-6. The exact appearance of the dialog box will vary by the
number of files you select.

CHAPTER 7 Splitting Up Source Code Files 175

Splitting Up Source

Code Files

FIGURE 7-6:
Select the builds
where the files
are used.

FIGURE 7-7:

The new project
now contains
references to the
selected files.

A

WARNING

176

= [EEs]

|| Wildcard select
Toggle selection

Select All

Multiple selection

¥ Release

Deselect Al

0
i

b

i

5

r

11. select the builds you want to use and click OK.

Code::Blocks adds the required file references to the project, as shown in
Figure 7-7.

Management =]
FSymbols

Projects | Symbols Files Resources

@ Workspace
-1 Mg CopiedFiles
= Sources
=B AddFiles
; main.cpp
= Headers
- AddFiles

Notice that the references in Figure 7-7 still show the original location of the files.
In this case, these files come from the AddFiles project. If you change the file in
the original project, it also changes in the new project.

You also notice that the File> Save command is disabled. That’s because you can’t
save changes to file references in the project that references them; you must make
changes in the original project. However, now that you have a reference to the file,
you can make changes to it, and then use the File> Save As command to create
local copies of the files with your changes in them. Don’t use the File=> Save com-
mand; create a local copy using File=> Save As instead.

Unfortunately, just creating the local copies doesn’t change your project. To
remove the references from the original project, right-click the project entry in the
Management window (which is CopiedFiles for the example) and choose Remove
Files from the context menu. You see the Multiple Selection dialog box, shown in
Figure 7-8, where you can choose which references to remove and which to keep.

BOOK 1 Getting Started with C++

FIGURE 7-8:
Remove the
references you
no longer need.

Multiple selection = (=] =]

v .. \Addi .cpp | | Wildeard select
¥ | . \AddFilesmy_stuff.h m
Select All
Deselect Al

Selected: 2

Ok Cancel

After you remove the references you no longer need, you can use Steps 7 through
11 in the preceding list to add the local copies of the files to the current project.
The Management window will change to show that you’re using local copies of the
files, rather than copies found in another project.

Getting multiple files to interact

Before two source files can work together, they must somehow find out about each
other. Just because they’re both sitting on the computer doesn’t mean that they
know about each other. Computers are kind of goofy about that sort of thing. To
get two source files to finally open up and get to know each other, you need to tell
each of them about what’s in the other file.

When you write a function, normally the function must appear before any calls
to it appear within the same source file. That’s because of the way the compiler
parses the code: If the compiler encounters a call to a function but has not yet
heard of that function, it issues an error. But the way around this is to use a
function prototype. A function prototype is simply the header line from a function,
ending with a semicolon, as in the following:

void BigDog(int KibblesCount);
Later in the source file is the actual function, with this header line duplicated. But
instead of a semicolon, the function would have an open brace, the function code,

and a closing brace, as in the following:

void BigDog(int KibblesCount)

{
cout << "I'm a lucky dog" << endl;
cout << "I have " << KibblesCount << " pieces of food"
<< endl;
}

CHAPTER 7 Splitting Up Source Code Files 177

Splitting Up Source

Code Files

REMEMBER

So, after the function prototype, you can call the function whether the function
code itself is before or after the call.

For the compiler to understand a function call, all it needs at the point that the code
makes the call is a function prototype. It’s up to the linker (the special application
that takes the object file created by the compiler and creates an executable from it
by linking everything together) to determine whether that function really exists.

Because the function call needs only a function prototype, you can put the func-
tion itself in another source code file. You could, therefore, have two separate
source code files, as in the MultipleSourceFiles example, shown in Listings 7-1
and 7-2. (The first source code file — main.cpp — is shown in Listing 7-1, and the
second source code file — mystuff.cpp — is shown in Listing 7-2.)

m Calling a Function with Only a Prototype

void BigDog(int KibblesCount);

int main() {
BigDog(3);
return 0;

}

m Using a Function from a Separate File

178

#include <iostream>
using namespace std;

void BigDog(int KibblesCount) {
cout << "I'm a lucky dog" << endl;
cout << "I have " << KibblesCount <«
<< endl;

pieces of food"

Listings 7-1 and 7-2 break the function away from the prototype. When you
compile these two files together as a single application (either by pressing F9 in
Code::Blocks or by choosing Build=>Build and Run), they all fit together nicely.
You can then run the application, and you see this somewhat interesting output:

I'm a lucky dog
I have 3 pieces of food

BOOK 1 Getting Started with C++

REMEMBER

A QUICK OVERVIEW OF NAMESPACES

Theusing namespace std; linein Listing 7-2 tells the compiler to use a specific
namespace, std. A namespace is a grouping of classes and functions. The std, or
standard, namespace contains a host of useful classes and functions, such as string.
If you don't include this declaration, you need to preface every use of the classes

or functions found in std by typing std::<class or function>. For example, to use
astring, you need to type std::string. Because this is a painful way to write code,
you add the using namespace std; line.

Notice that main.cpp doesn’t contain either #include <iostream> or using
namespace std; because it doesn’t have any calls to cout, just the call to
BigDog(). You do have to put the #include <iostream> and using namespace
std; lines at the start of the mystuff.cpp file because mystuff.cpp does
use cout.

Sharing with Header Files

Breaking apart source code into multiple files is easy, but soon you may run into
a problem. If you have a function — say, SafeCracker() — and this function is
extremely useful and is likely to be called many times from within several other
source code files, you would need a prototype for SafeCracker() in every file that
calls it. The prototype may look like this:

string SafeCracker(int SafelD);

But there is an easier way of adding the prototype instead of adding it to every
file that uses the function. Simply put this line inside its own file, called a header
file, and give the filename an . h or . hpp extension. (It’s your choice which exten-
sion you use, because it really doesn’t matter; most developers use .h.) For this
example, you place the line string SafeCracker (int SafelID); in a file called
safestuff.h.

Then, instead of typing the header line at the start of each file that needs the
function, you type

#include "safestuff.h"

CHAPTER 7 Splitting Up Source Code Files 179

Splitting Up Source

Code Files

You would then have the three source code files used for the MultipleSource
Files2 example, shown in Listings 7-3, 7-4, and 7-5:

¥ main.cpp: Calls the function

¥ safestuff.h: Contains the function prototype

¥ safestuff.cpp: Contains the actual code for the function whose prototype
appears in the header file

Lots of files, but now the code is broken into manageable pieces. Also, make sure
that you save all three of these files in the same directory.

m Including the Header File in the main File

#include <iostream>

#include "safestuff.h"
using namespace std;

int main()

{
cout << "Surprise, surprise!" << endl;
cout << "The combination for Safe 12 is: " << endl;
cout << SafeCracker(12) << endl;
cout << "Let's check on Safe 11 too: " << endl;
cout << SafeCracker(11) << endl;
return 0;

}

m Containing the Function Prototype in the Header File

#1fndef SAFESTUFF_H_INCLUDED
#define SAFESTUFF_H_INCLUDED

using namespace std;
string SafeCracker(int SafelD);

#endif // SAFESTUFF_H_INCLUDED

180 BOOK 1 Getting Started with C++

m Containing the Actual Function Code

REMEMBER

#include <iostream>
using namespace std;

string SafeCracker(int SafelD)
{
if (SafelD == 12)
return "13-26-16";
else
return "Safe Combination Unknown";

Before you compile this application, you need to know a few things about how the
compilation process works:

3 When you compile a . cpp file, the compiler outputs a .o (for object) file that is
then linked by the linker with all the other . o files to create an . exe (execut-
able) file. In addition to the . o files from your project, the linker also links in
any library files or external code that your application accesses.

¥ The compiler doesn't compile the header file into a separate . o file. With the
application in Listings 7-3 through 7-5, the compiler creates only two output
files:main.o and safestuff.o (you can see them in the CPP_AI04\BookI\
Chapter@7\MultipleSourceFiles2\obj\Debug folder).

3 When the compiler reads themain. cpp file and reaches the #include
"safestuff.h" line for the header file, it verifies that it hasn't read the
safestuff.h file before and included it within the . o file.

¥ Ifthesafestuff.h file hasn't been read before, the compiler temporarily
switches over and reads the header file, pretending that it's still reading the
samemain.cpp file. As it continues, it compiles everything as if it's all part of
themain.cpp file.

If you include the safestuff.h header file in other source code files, the com-
piler adds the content to those source files as well. Compile and run the code in
Listings 7-3 through 7-5. When you run the application, you see the following
output:

Surprise, surprise!

The combination for Safe 12 is:
13-26-16

Let's check on Safe 11 too:
Safe Combination Unknown

CHAPTER 7 Splitting Up Source Code Files 181

Splitting Up Source

Code Files

182

TIP

©

REMEMBER

If you have a source file containing some functions, creating a header file that
contains the associated function prototypes is generally a good practice. Then you
can name the header file the same as the source file, except with a different exten-
sion. In this example, you use the safestuff.h file to hold the prototype for the
safestuff.cpp file.

Adding the header only once

Code::Blocks includes several lines in the header file by default. These lines create
a symbol that tells the compiler whether a header file is already included in the
source file so that the compiler doesn’t add it twice. Adding a header twice is an
error because then you’d define the forward reference for a function twice. Here is
what you see when you initially create a header file with Code::Blocks:

#ifndef SAFESTUFF_H_INCLUDED
#define SAFESTUFF_H_INCLUDED
#endif // SAFESTUFF_H_INCLUDED

When you type the header code into Code::Blocks, type it between the #define
SAFESTUFF_H_INCLUDED and #endif // SAFESTUFF_H_INCLUDED lines. The section
“Using the Mysterious Header Wrappers,” later in this chapter, describes these
automatic entries in detail.

Using angle brackets or quotes

You may have noticed something about the code in Listing 7-3. When including
the safestuff.h file, you don’t put it inside angle brackets, as with the #include
<iostream> line. Instead, you put it inside quotes:

#include "safestuff.h"

That’s because programmers for years have been fighting over the rules of where
exactly on the hard drive to put the header files. The question is whether to put
them in the same directory or folder as your project or to place them in a directory
all by themselves.

Regardless of where you put your header files, here is the rule for when to use
quotes and when to use brackets: The compiler looks in several directories to find
header files. And it can, possibly, look in the same directory as the source file. If
you use angle brackets (that is, less-than and greater-than signs), as in #include
<string>, the compiler doesn’t look in the same directory as the source file. But if
you use double quotes, as in #include "safestuff.h", the compiler first looks in
the same directory as the source file. And if the compiler doesn’t find the header
file there, it looks in the remaining directories, as it would with angle brackets.

BOOK 1 Getting Started with C++

TIP

TIP

TIP

Some people always use double quotes. That way, whether the header file is in the
same file as the source file or not, the compiler should find it. Most professional
programmers today always use angle brackets. This forces programmers to put
their header files in a common area. With really big projects, programmers like
to have a directory dedicated to source files and another directory dedicated to
header files. No header file is ever in the same directory as the source file.

For small projects, some people like to lump all the source and header files into a
single directory. These people typically use angle brackets around system header
files (such as #include <string>) and use double quotes around their own header
files. The projects in this book generally follow this rule. The example header files
are in the same directory as the source files and use double quotes for #include
lines. System headers use angle brackets for the #include lines.

If you follow the same approach used here, you immediately know whether the
#include line refers to one of your own header files or another header file. If it
refers to your own, it has double quotes.

If you start working on a large C++ project, you will probably find that project
managers use the rule of always using angle brackets. For large projects, this is
typically the best policy.

If you try to compile and you get a No such file or directory error on the
#include line, it’s probably because you put the header file in a source file direc-
tory but used angle brackets instead of double quotes. Try switching that line to
double quotes.

Sharing Variables among Source Files

When you declare a variable inside a function, it remains local to the function. But
you may want functions to share a single global variable: One function may store
something, and another may read its contents and write it to the console. To do
this, declare the global variable outside a function. Declaring the global variable
inside a source file works until you try to share it among multiple source files. If
you’re not careful, the source files end up with a separate copy of the global vari-
able. Within a single source file, the global variable can be shared among functions
but not among source files. That could be confusing.

There’s a trick to making this work. Declare the variable inside one and only one

of the source files. Then you declare it again inside one (and only one) header file,
but you precede it with the word extern, as in extern int DoubleCheeseburgers;.

CHAPTER 7 Splitting Up Source Code Files 183

Splitting Up Source

Code Files

The GlobalVariable example, shown in Listings 7-6, 7-7, and 7-8, demonstrates
the use of a single global variable that is shared among multiple source files.

m Making Use of a Global Variable

#include <iostream>
#include "sharealike.h"

using namespace std;

int main()

{
DoubleCheeseburgers = 20;
EatAtJoes();
return 0;

}

m Using the sharealike.h Header File to Declare a Global Variable

#1fndef SHAREALIKE_H_INCLUDED
#define SHAREALIKE_H_INCLUDED

extern int DoubleCheeseburgers;
void EatAtJoes();

#endif // SHAREALIKE_H_INCLUDED

m Declaring Global Variable Storage in the sharealike.cpp File

#include <iostream>
#include "sharealike.h"

using namespace std;
int DoubleCheeseburgers = 0;

void EatAtJoes() {
cout << "How many cheeseburgers today?" << endl;
cout << DoubleCheeseburgers << endl;

}

184 BOOK1 Getting Started with C++

WARNING

Be careful when you do this; getting it exactly right is very tricky. You declare the
variable once inside the header file, but you must remember the word extern.
That tells the various files, “This variable is declared elsewhere, but here’s its
name and type so that you can use it.” (It’s okay that the file that defines the vari-
able also includes the header file, which contains the extern declaration. In this
case, extern says that the variable is declared somewhere, not that it’s declared
externally outside this file.) Then you declare the variable in one of the source
files, without the word extern; this creates the actual storage bin for the variable.
Finally, you include the header file in each of your source files that uses the global
variable.

It’s a bad idea to declare any variable without initializing it. If you don’t initial-
ize the variable, you have no idea of what it contains. Not initializing the vari-
able could lead to difficult-to-find errors. Global variables are even worse in this
regard because now you don’t even have a good idea of precisely where to search.
Fortunately, Code::Blocks does help you in this regard. You can right-click any
occurrence of a global variable and choose Find Occurrences Of: <Variable Name>
from the context menu.

Using the Mysterious Header Wrappers

©

REMEMBER

When you include a header file, you usually want to include it only once per
source file. But that can create a problem: Suppose that you have a huge soft-
ware project, and several header files include another of your header files, called
superheader . h. If you include all these other header files, how can you be sure to
pick up the superheader . h file only once?

The answer looks strange but does the trick. You start each header file with these
lines:

#1fndef SHAREALIKE_H_INCLUDED
#define SHAREALIKE_H_INCLUDED
#endif

Depending on which C++ IDE you use, your editor may add these lines automat-
ically, just as Code::Blocks does. In this case, you type the header file content
between the #define SHAREALIKE_H_INCLUDED and #endi f lines. However, if your
IDE doesn’t add the lines automatically, be sure to add them so that your code
looks like the code in Listing 7-7. Otherwise, the compiler may spout errors that
you may not recognize immediately.

CHAPTER 7 Splitting Up Source Code Files 185

Splitting Up Source

Code Files

186

©

REMEMBER

These header wrappers, as they are often called, ensure that the code in the
header gets processed only once per source code file each time you compile.
The wrappers use special lines called preprocessor directives. Basically, the second
line defines something that is sort of like a variable but is used only during
compilation; this something is called a symbol. In this case, the symbol is called
SHAREALIKE_H_INCLUDED.

The first line checks to see whether this symbol has been defined. If not, the com-
piler proceeds with the lines of code that follow. The next line defines the symbol,
so now it’s actually defined for later. Then the compiler does all the rest of the
lines in the file. Finally, the last line, #endi f, simply finishes the very first line.

Now consider what could happen if you include this same file twice, as in

#include "sharealike.h"
#include "sharealike.h"

(That can happen indirectly if you include two different files that each include
sharealike.h.) The second time the compiler goes through sharealike.h, it sees
the first line, which checks to see whether the SHAREALIKE_H symbol is defined.
But this time it is! So instead of going through all the lines again, the compiler
skips to the #endif line that normally appears at the end of the file. Thus, your
header file is processed only once per source code file. Use the following rule to
make using headers easier:

When you create a header file, be sure to put the header wrappers around it. You
can use any symbol name you like, as long as it uses only letters, numbers, and
underscores and doesn’t start with a number and isn’t already a variable name
in your source or a C++ word. But most people base their choice on some varia-
tion of the filename itself, such as MYFILE_H or MYFILE_H_ or even _MYFILE_H_.
Code::Blocks, by convention, adds _INCLUDED to each symbol name, but it’s not
necessary that you follow suit unless you want to.

BOOK 1 Getting Started with C++

IN THIS CHAPTER

» Using two types of memory: the stack
and the heap

» Accessing variable addresses through
pointers

» Creating variables on the heap by
using the new keyword

» Taking pointers as parameters and
returning pointers

Chapter 8

Referring to Your Data
Through Pointers

here do you live? Don’t say it out loud, because thousands of people are
reading this book and you don’t want them all to know. So just think
about your address. Most places have some sort of address so that the
mail service knows where to deliver your packages and the cable guy can show up
sometime between now and 5:00 next Thursday. (So make sure that you’re there.)

Other things have addresses, too. For example, a big corporation in an office
building likely has all its cubes numbered. Offices in buildings usually have num-
bers, and apartments normally have numbers, too.

Now suppose that someone named Sam works in office number 180. Last week,
however, Sam got booted out the door for spending too much time surfing the
web. Now Sally gets first dibs on office number 180, even though she’s not tak-
ing over Sam’s position. Sam moved out; Sally moved in. Same office — different
person staying there.

The computer’s memory works similarly. Every little part of the computer’s

memory is associated with a number that represents its location, or address. In
this chapter, you discover that after you determine the address of a variable stored

CHAPTER 8 Referring to Your Data Through Pointers 187

TIP

©

REMEMBER

in memory, you can do powerful things with it, which gives you the tools to create
powerful applications.

If any single topic in C++ programming is most important, it is the notion of
pointers. Therefore, if you want to become a millionaire, read this chapter. Okay,
so it may not make you a millionaire, but suggesting it could give you the incen-
tive to master this chapter. Then you can become an ace programmer and make
lots of money.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookI\Chapter@8 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Understanding the Changes in
Pointers for C++ 20

188

If you don’t understand pointers at all, you might want to first read the rest of the
chapter, starting with “Heaping and Stacking the Variables,” and return to this
first section later.

C++ will always need pointers, of course, but long-time C++ users have always
seen pointers as a burden, while new C++ users see pointers as some sort of
heroic nightmare rite of passage. The goal, then, is to make pointers easier and
more consistent to use as C++ continues to grow and mature. The following sec-
tions discuss how C++ pointers are changing in C++ 20.

Avoiding broken code

A raw pointer, one that you allocate using the new operator, serves important pur-
poses in your code. You often see it used for these purposes:

3 Dynamic allocation: Allows an application to allocate more mem-
ory as needed

3 Runtime polymorphism: Allows an application to pass pointers that may
point to different kinds of data at different times

BOOK 1 Getting Started with C++

3 Nullable references: Handles instances in which a pointer doesn’t point to
anything

¥ Avoiding copies: Uses a single copy of an object instead of creating multiple
copies, which reduces the risk of errors

As your knowledge of C++ increases, you soon discover that these are critical appli-
cation needs, so replacing the raw pointer will be quite difficult. Fortunately, you
don’t have to use the new C++ 20 features immediately, even if you’re using a C++
compiler. You control whether your application uses the new approach through
compilation directives:

#feature <no_pointers> //opt-in to no pointers
#feature <cpp20> //opt—in to all C++20 features

Consequently, you don’t have to worry about your existing code suddenly break-
ing. The idea is to make the transition from raw pointers to something better as
smooth and transparent as possible. Given the realities of C++ development, you
likely will see some sort of legacy support for a long time. However, to move for-
ward, you must adapt to the new realities of pointers in C++.

Considering the issues

At this point, you might wonder why raw pointers are such a problem. After all, a
pointer is simply an address in memory that looks something like 0x9caef0. The
value it contains is the address, and by dereferencing the pointer, looking at the
address to which it points, you see the value that the pointer references. It’s just
like the address for your house. You send mail to the address, but the address isn’t
your house — it’s simply a pointer to your house.

At this point, it doesn’t sound as if using pointers would be a problem, despite
being a bit convoluted. The reason for using pointers in the first place is to avoid
carrying large objects around in your code. You can leave the object, like a house,
sitting in one place and simply point to it as needed. Imagine having to carry your
house around with you. Besides having a horrible backache, doing so would be
inconvenient and make your house harder to find. Instead, you give someone who
wishes to mail you a letter or visit you in your home the address. Early applica-
tions had to use every tiny bit of memory and CPU processing cycles efficiently or
face performance issues. Pointers allowed early applications to perform well by
simply pointing at big objects in memory, rather than passing them around.

CHAPTER 8 Referring to Your Data Through Pointers 189

Referring to Your Data

Through Pointers

190

PLACING A HEX ON C++

Sooner or later in your computer programming, you encounter a strange way of notat-
ing numbers on the computer. This strange way is called hexadecimal, or sometimes just
hex. In C++, you can recognize a hex number because it starts with the characters Ox.
These characters aren't actually part of the number; they just notate it in the same way
as double quotes denote a string. Whereas the usual decimal numbers consist of the
digits 0, 1,2, 3,4, 5, 6,7, 8, and 9, a hex number consists of these digits plus six more:

A, B, C, D, E, and F. That makes a total of 16 digits. A good way to picture counting with
regular decimal numbers is to use the odometer in a car, which (if you're honest) goes
only forward, not backward. It starts out with 00000000 (assuming eight digits, which is
a lot). The rightmost digit runs from 0 through 9, over and over. When any digit reaches
9 and all digits to the right of that are 9, the next digit to the left goes up by 1. For exam-
ple, when you reach 00000999, the next digit to the left goes up by 1 as each 9 goes
back to 0, to get 00001000.

With hex numbers, you count this same way, except that instead of stopping at 9 to
loop back, you then go to A, and then B, and then up to F. And then you loop back.

So the first 17 hex numbers are, using eight digits, 00000000, 00000001, 00000002,
00000003, 00000004, 00000005, 00000006, 00000007, 00000008, 00000009, 0000000A,
0000000B, 0000000C, 0000000D, 0000000E, 0000000F, 00000010. Notice that when
you hit F at the end, the number wraps around again, adding 1 to the next digit to the
left. When working with hex numbers, you may see such numbers as 0OXAAAA0000

and 0x0000A3FF. And incidentally, 1 more than each of these is 0OXAAAA0001 and
0x0000A400.

The biggest problem with pointers is the same problem incurred by house
addresses. You need to think about the number of times you’ve received your
neighbor’s mail (and vice versa). Likewise, applications can have invalid point-
ers, and when the code tries to process this invalid address, it often crashes the
application. Of course, the worst problem is the null pointer, 2x200000, which you

expect to point to something. A null pointer points to nothing.

Another problem with pointers is that you spend a lot of time managing them,
and who can remember all that code! Every time you work with pointers, you risk:

3 Creating a memory leak: By not deallocating the pointer so you can reuse
the memory, the memory becomes inaccessible to the application. You could
actually run out of memory despite having memory available. The memory
becomes available again after the operating system frees it once the applica-
tion terminates.

BOOK 1 Getting Started with C++

3 Using memory that hasn’t been initialized: The memory location could
contain anything and if you act on the data in that memory location, your
application will act oddly or simply crash.

3 Obtaining the wrong data: The application could point to the wrong location
and you might not know it. This means that the application is using the wrong
data, which could result in unanticipated output or data damage.

Writing cleaner and less bug-prone code

To write cleaner code with fewer bugs, you need to find a way to get the effects of a
pointer without any of the disadvantages of pointers. The C++ committee has been
working on this issue. For example, std: :auto_ptr is deprecated (set for deletion,
but still allowed) in C++ 11 and removed in C++ 17. Here are some modern ways of
getting past pointers:

3 Using smart pointers: Boost (explained in Book 7, Chapter 4) has provided
access to smart pointers for a long time, and many developers use them
because they make both dynamic allocation and runtime polymorphism
easier to deal with. Using a smart pointer, such asstd: :unique_ptr or
std: :shared_ptr, eliminates the need for you to manage memory manually.
Instead, the smart pointer addresses memory management needs for you so
that you can concentrate on writing business logic rather than performing
low-level programming tasks.

3 Relying on optional pointers: C++ 17 introduced std: :optional as the
means for working with nullable references. When an optional pointer is null,
it has a value of std: :nullopt, which is actually an important thing to know
when dealing with them. The only problem is that the implementation is
flawed because it lacked support for references (pointers to pointers) and
had no monadic (entity operator) interface (see http: //www.open-std.org/
jtel/sc22/wg21/docs/papers/2017/p@798r@. html for a discussion of
this extremely advanced concept not covered in this book). The short version
is that it didn't do what raw pointers could do, but these problems are fixed
in G+ 20.

3 Passing objects around: A modern computer isn't nearly as resource limited
as those in the past were, so modern languages commonly pass objects
around rather than create pointers to them. This solution addresses the need
to eliminate unwanted copies. C++ 20 provides two solutions for this task, both
of which rely on the idea of using the object ob j, which is outside the function,
to directly construct the object being initialized inside the function and that is

CHAPTER 8 Referring to Your Data Through Pointers 191

Referring to Your Data

Through Pointers

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0798r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0798r0.html

returned from it. You can view this optimization as: T obj = £();, where £()
is a function that initializes ob j of type T. Here is how the optimizations differ:

Return Value Optimization (RVO): In this case, you could have a function

o
"6" that looks like this:
TECHNICAL T f() {

STUFF
. // Do something here.

return T(constructor arguments);

}

In this case, you could create three objects of type T: the unnamed
temporary object created by the return statement; the temporary object
returned by f() to the caller; and the named object, ob j, copied from the
return from £(). Using RVO eliminates the two temporary objects by
initializing ob j directly with the arguments passed inside the body of £().
This is actually a complex topic that's well outside the purview of this book,
but you can read a discussion of the details of this topic athttps://
shaharmike.com/cpp/rvo/.

Named Return Value Optimization (NRVO): This form of optimization

OAD,
6 goes a step further than RVO when the return statement uses a named
TECHNICAL value, as shown here:
STUFF
T £() {

. // Do something here.
T result(constructor arguments);
return result;

}

This technique effectively replaces the hidden object and the named object
inside the function with the object used for holding the result. The only caveat
is that result must be unique so that the compiler knows which object inside
() to use to construct the memory inobj. NRVO is a particular kind of copy
elision (the process of joining together or merging of objects) discussed in
detail athttps://en.cppreference.com/w/cpp/language/copy_elision.

Heaping and Stacking the Variables

C++ applications use two kinds of memory:

3 Heap: A common area in memory where you can store global variables. This
is where you also store objects and variables that you allocate from memory.

192 BOOK 1 Getting Started with C++

https://shaharmike.com/cpp/rvo/
https://shaharmike.com/cpp/rvo/
https://en.cppreference.com/w/cpp/language/copy_elision

REMEMBER

¥ Stack: The area where the computer stores both function information and
local value type variables for those functions. The stack also stores pointers to
local object type variables for functions.

Function storage is a little more complicated because each function gets its own
little private area at the top of the stack. It is called a stack because it’s treated
like a stack of papers: You can put something on the top of the stack, and you can
take something off the top of the stack, but you can’t put anything in the middle
or bottom. In addition, you can’t take anything from the middle or bottom. (You
can, however, peek at the values from any place in the stack and change those
values — it’s the memory block that isn’t removed.) The computer uses this stack
to keep track of all your function calls.

Suppose that you have a function called GoFishing(). The function GoFishing()
calls StopAndBuyBait(). Depending on the complexity of the bait business,
StopAndBuyBait() may call PayForBait(), which calls GetOutCash(). How can
the computer keep track of all this mess? It uses the stack. Begin with the follow-
ing code:

int GoFishing() {
int baitMoney = 2;
int numberWorms = StopAndBuyBait(baitMoney);
if (numberWorms > @) {
return true;

}

return false;

int StopAndBuyBait(int customerMoney) ({
if (customerMoney > @) {
int wormsBought = customerMoney x 20;
return wormsBought;

}

return 0;

The customer starts out with $2.00. When stopping in the store, the clerk asks
for the money. If the customer does have money, the clerk provides 20 worms for
each $1.00. The customer determines whether there was enough money to buy any
worms. If so, it’s time to go fishing. The stack for each of these calls appears in a
stack frame, which the application treats as a single entity for that function. This
code uses two stack frames, one for each function call, as shown in Figure 8-1.

CHAPTER 8 Referring to Your Data Through Pointers 193

Referring to Your Data

Through Pointers

FIGURE 8-1:
The two
stack frames
used for the

example code.

194

REMEMBER

Application Stack

Top of Stack

StopAndBuyBait Stack Frame

int wormsBought

Return Address

int customerMoney

GoFishing Stack Frame

int numberWorms

int baitMoney

Return Address

From a stack perspective, the code begins by creating a stack frame for
GoFishing(). On this stack frame, it creates a variable holding a pointer with
the return address of the caller (which is unknown in this case). Adding a value
to the stack is called pushing. GoFishing() creates two variables, baitMoney and
numberWorms. From a stack perspective, because GoFishing() creates baitMoney
first, it also appears first on the stack.

When GoFishing() calls StopAndBuyBait(), it passes a single argument that
GoFishing() sees as baitMoney. However, StopAndBuyBait() sees the parameter
as customerMoney. The arguments that GoF ishing() passes to StopAndBuyBait()
appear first as parameters within the stack frame that the application creates
for StopAndBuyBait(), followed by the return address for GoFishing(). Conse-
quently, before StopAndBuyBait() executes even a single line of code, its stack
frame already has two variables on it.

At this point, StopAndBuyBait() optionally creates a local variable, wormsBought.
Notice that in the stack frame, parameters appear first, followed by the return
address of the caller and then the local variables. When StopAndBuyBait() deter-
mines what to return to GoFishing(), it places this value in numberWorms because
numberWorms is set to receive this return value.

BOOK 1 Getting Started with C++

CONVERTING BETWEEN HEXADECIMAL
AND DECIMAL

Every hex number has a decimal equivalent. When you make a list showing decimal
numbers side by side with hex numbers, you see, for example, that 0x0000001F is next
to the decimal number 31. Thus, these two numbers represent the same quantity of
items, such as apples.

You can represent hex numbers by using either uppercase or lowercase letters.
However, do not mix cases within a single number because it makes the number incred-
ibly hard to read and other developers will make mistakes. Don't use 0xABab0000.
Instead, use either Oxabab0000 or 0OXABABOOOO.

If you want to convert between hex and decimal, you can use the Hex to Decimal
Converter application athttps://www.binaryhexconverter .com/hex—to-
decimal-converter or the Decimal to Hex Converter application athttps: //www.
binaryhexconverter .com/decimal-to-hex—converter. These two applications
make it easy to convert between the two numbering systems, and you can use them
on any device that supports a browser.

To convert a hex number to decimal, select the Hex to Decimal Converter application
and type the hex number into the Hex Value field by using the number keys and the
letters A through F, such as FB1263. (You don't need to type the zeroes at the beginning,
such as 00FB1263 — they don't show up — nor do you type the Ox used in C++.) After
you finish typing it all, click Convert. The application instantly transforms the hex num-
ber into a decimal number! In this case, you see 16454243. You can go the other way,
too: If you have a decimal number, such as 16454243, you can select the Decimal to
Hex Converter application, type its value into the Decimal Value field, and click Convert
to convert it to hex. If you convert 16454243 to hex, you get back FB1263, which is what
you started with.

The Windows calculator also makes it easy to convert between hex and decimal

when placed in Programmer view, as shown in the following figure. The calculator
also supports binary (base 2) and octal (base 8) numbers. Just select the base you want
to use and the calculator performs the conversion automatically. (The precise Calculator
features you have for performing this task depend on your version of Windows. The
blog post athttp://blog. johnmuellerbooks.com/2012/01/30/examining—the-
calculator-in-windows-7/ complains about the changes that Windows 7 brought.
Windows 10 offers more of the same.)

(continued)

CHAPTER 8 195

Referring to Your Data

Through Pointers

https://www.binaryhexconverter.com/hex-to-decimal-converter
https://www.binaryhexconverter.com/hex-to-decimal-converter
https://www.binaryhexconverter.com/decimal-to-hex-converter
https://www.binaryhexconverter.com/decimal-to-hex-converter
http://blog.johnmuellerbooks.com/2012/01/30/examining-the-calculator-in-windows-7/
http://blog.johnmuellerbooks.com/2012/01/30/examining-the-calculator-in-windows-7/

(continued)

REMEMBER

196

.| calculator
View Edit Help

peee
63
20
31

eeee eeee

eeee 0000

Hex Mod

(1

RoR

9 Qward Or Xor

Dword
Lsh Rsh
Word

Byte Mot || And

aaee

aeee

A
B

z
D

m

eaea
a7
ee0e
15

Mc
—
7
4
1

aaee

2800

MR
CE
8
5
2

[=)E ==

123

eeee eeee
32

8111 1el11
e

MS M= M-
C + o
g o
6 1/x

Calculator

= Programmer
HEX 7B
DEC 123
ocT 173
BIN 0111 1011
QWORD
D> Bitwise ~ % Bit Shift -
<« »
()
7 8
4 5
1 2
- 0

CE

%

Ms

123

You can convert words, too (if you're bored). The hex number and disco group ABBA is
43962 in decimal. And the hex number FADE is 64222. Have fun!

The application then starts to dismantle the StopAndBuyBait() stack frame
by popping (removing) the values off the stack. It throws wormsBought away (if
StopAndBuyBait() created it) because the application has already placed this
value in numberWorms. The application saves the GoFishing() return address for

later use. It then throws customerMoney away and removes the stack frame.

The return address is a pointer to a specific place in memory that marks the
continuation point in the code for GoFishing(). So, the next step is to read the
next processing instruction for GoFishing() that comes after the return from

StopAndBuyBait().

Getting a variable’s address

Because every variable lives somewhere in memory, every variable has an address.
If you have a function that declares an integer variable called NumberOfPotholes,
then when your application calls this function, the computer will allocate space
for NumberOfPotholes somewhere in memory.

BOOK 1 Getting Started with C++

REMEMBER

If you want to find the address of the variable NumberOfPotholes, you simply
throw an ampersand (&) in front of it. Listing 8-1 shows the VariableAddress
example, which obtains the address of a variable and prints it.

m Using the & Character to Obtain the Address of a Variable

REMEMBER

#include <iostream>
using namespace std;

int main() {
int NumberOfPotholes = 532587;
cout << &NumberOfPotholes << endl;
return 0;

}

When you run this application, a hexadecimal number appears on the console.
This number may or may not match ours, and it may or may not be the same each
time you run the application. The result depends on exactly how the computer
allocated your variable for you and the order in which it did things. This could be
very different between versions of compilers. When you run Listing 8-1, you see
something like the following (it varies with each run):

0x22f£T74

The output you see from this application is the address of the variable called Num—
berOfPotholes. In other words, that number is the hex version of the place where
the NumberOfPotholes variable is stored in memory. The output is not the con-
tent of the variable or the content of the variable converted to hex; rather, it’s the
address of the variable in hex.

Knowing the address of a variable doesn’t tell you about the variable content, but
C++ programmers use addresses in other ways:

¥ Modifying the variable content directly using what are called pointer variables.
A pointer variable is just like any other variable except that it stores the address
of another variable.

¥ Performing any of the tasks mentioned in the “Avoiding broken code” section
of the chapter.

¥ Modifying values pointed at by the address indirectly using any of a number
of math techniques.

¥ Comparing entities such as objects based on their pointers.

CHAPTER 8 Referring to Your Data Through Pointers 197

Referring to Your Data

Through Pointers

198

REMEMBER

Q

To declare a pointer variable, you need to specify the type of variable it will point
to. Then you precede the variable’s name with an asterisk, as in the following:

int xptr;

This line declares a variable that points to an integer. In other words, it can contain
the address of an integer variable. And how do you grab the address of an integer
variable? Easy! By using the & notation! Thus, you can do something like this:

ptr = &NumberOfPotholes;

This line puts the address of the variable NumberOfPotholes in the ptr variable.
Remember that ptr doesn’t hold the number of potholes; rather, it holds the
address of the variable called NumberOfPotholes.

You specify the type of pointer by the type of item it points to. If a pointer variable
points to an integer, its type is pointer to integer. In C++ notation, its type is int *
(with a space between them) or int* (no space); you are allowed to enter it with or
without a space. If a pointer variable points to a string, its type is pointer to string,
and notation for this type is string x.

The ptr variable holds an address, but what’s at that address? That address is the
location in memory of the storage bin known as NumberOfPotholes. Right at that
spot in memory is the data stored in NumberOfPotholes.

Think this pointer concept through carefully. If you have to, reread this section a
few times until it’s locked in your head. Then meditate on it. Wake up in the night
thinking about it. Call strangers on the telephone and chitchat about it. The more
you understand pointers, the better off your programming career will be — and
the more likely you are to make a million dollars.

Changing a variable by using a pointer

After you have a pointer variable holding another variable’s address, you can use
the pointer to access the information in the other variable. That means you have
two ways to get to the information in a variable: Use the variable name itself (such
as NumberOfPotholes), or use the pointer variable that points to it.

If you want to store the number 6087 in NumberOfPotholes, you can do this:

NumberOfPotholes = 6087;

BOOK 1 Getting Started with C++

Or you can use the pointer. To use the pointer, you first declare it as follows:
ptr = &NumberOfPotholes;

Then, to change NumberOfPotholes, you don’t just assign a value to it. Instead,
you throw an asterisk in front of it, like so:

*xptr = 6087;

If ptr points to NumberOfPotholes, these two lines of code will have the same
effect: Both will change the value to 6087. This process of sticking the aster-
isk before a pointer variable is called dereferencing the pointer. Look at the
DereferencePointer example, shown in Listing 8-2, which demonstrates all this.

m Modifying the Original Variable with a Pointer Variable

#include <iostream>
using namespace std;
int main() {

int NumberOfPotholes;

int xptr;

ptr = &NumberOfPotholes;
*xptr = 6087;

cout << NumberOfPotholes << endl;
return 0;

In Listing 8-2, the first line of main() declares an integer variable, and the second
line declares a pointer to an integer. The next line takes the address of the inte-
ger variable and stores it in the pointer. Then the fourth line modifies the origi-
nal integer by dereferencing the pointer. And just to make sure that the process
worked, the next line prints the value of NumberOfPotholes. When you run the
application, you see the following output:

6087

You can also read the value of the original variable through the pointer. Look at
the ReadPointer example, shown in Listing 8-3. This code accesses the value

CHAPTER 8 Referring to Your Data Through Pointers 199

Referring to Your Data

Through Pointers

of NumberOfPotholes through the pointer variable, ptr. When the code gets the
value, it saves it in another variable called SaveForLater.

m Accessing a Value through a Pointer

#include <iostream>

using namespace std;

int main() {
int NumberOfPotholes;
int xptr = &NumberOfPotholes;
int SaveForlLater;

*ptr = 6087;
SaveForLater = xptr;
cout << SaveForlLater << endl;

*xptr = T7000;

cout << xptr << endl;

cout << SaveForLater << endl;
return 0;

When you run this application, you see the following output:

6087
7000
6087

Notice that the code changes the value through ptr again — this time to 7000.
When you run the application, you can see that the value did indeed change, but
the value in SaveForlLater remained the same. That’s because SaveForlLater is
a separate variable, not connected to the other two. The other two, however, are
connected to each other.

Pointing at a string

Pointer variables can point to any type, including strings. However, after you say
that a variable points to a certain type, it can point to only that type. That is, as
with any variable, you cannot change its type. The compiler won’t let you do it.

200 BOOK1 Getting Started with C++

To create a pointer to a string, you simply make the type of the variable string .
You can then set it equal to the address of a string variable. The StringPointer
example, shown in Listing 8-4, demonstrates this idea.

m Pointing to a String with Pointers

#include <iostream>
using namespace std;
int main() {

string GoodMovie;

string xptrToString;

GoodMovie = "Best in Show";
ptrToString = &GoodMovie;

cout << xptrToString << endl;
return 0;

In Listing 8-4, you see that the pointer named ptrToString points to the variable
named GoodMovie. But when you want to use the pointer to access the string, you
need to dereference the pointer by putting an asterisk () in front of it. When you
run this code, you see the results of the dereferenced pointer, which is the value
of the GoodMovie variable:

Best in Show

You can change the value of the string through the pointer, again by dereferencing
it, as in the following code:

*xptrToString = "Galaxy Quest";
cout << GoodMovie << endl;

The code dereferences the pointer to set it equal to the string "GalaxyQuest".
Then, to show that it truly changed, the code prints the GoodMovie variable. The
result of this code, when added at the end of Listing 8-4 (but prior to the

return 0), is

Galaxy Quest

CHAPTER 8 Referring to Your Data Through Pointers 201

Referring to Your Data

Through Pointers

You can also use the pointer to access the individual parts of the string, as shown
in the StringPointer2 example in Listing 8-5.

m Using Pointers to Point to a String

202

AN

WARNING

#include <iostream>
using namespace std;

int main() {
string AMovie;
string xptrToString;

AMovie = "L.A. Confidential";
ptrToString = &AMovie;

for (unsigned i = Q; i < AMovie.length(); i++) {
cout << (kptrToString)[i] << " ";
}

cout << endl;

return 0;

When you run this application, you see the letters of the movie appear with spaces
between them, as in

L.A. Confidential

When you access the characters of the string through a pointer, you need to put
parentheses around the asterisk and the pointer variable. Otherwise, the compiler
gets confused and first tries to access the index in brackets with the variable name
and afterward applies the asterisk. That’s backward, and it doesn’t make sense to
the computer, so the compiler gives you an error message. But you can make it all
better by using parentheses, as shown in Listing 8-5.

This application loops through the entire string, character by character. The string’s
length() function tells how many characters are in the string. The code inside the
loop grabs the individual characters and prints them with a space after each.

BOOK 1 Getting Started with C++

TIP

TIP

Notice that i is of type unsigned rather than int. The length() function returns
an unsigned value rather than an int value, which makes sense because a string
can’t have a negative length. If you try to use an int for i, the compiler displays
the following warning:

warning: comparison between signed and unsigned integer

The application still runs, but you need to use the correct data types for loop
variables. Otherwise, when the loop value increases over the amount that the loop
variable can support, the application will fail. Trying to find such an error can
prove frustrating even for the best developers. It’s important to not ignore warn-
ings even if they appear harmless.

You can also change the individual characters in a string through a pointer. You
can do this by using a line like (xptrToString)[5] = 'X';. Notice you still need to
put parentheses around the variable name along with the dereferencing character.

The length of a string is also available through the pointer. You can call the
length() function by dereferencing the pointer, again with the carefully placed
parentheses, such as in the following:

for (unsigned i = @; i < (#ptrToString).length(); i++) {
cout << (kptrToString)[i] << " ";
}

Pointing to something else

When you create a pointer variable, you must specify the type of data it points
to. After that, you cannot change the type of data it points to, but you can change
what it points to. For example, if you have a pointer to an integer, you can make it
point to the integer variable called ExpensiveComputer. Then, later, in the same
application, you can make it point to the integer variable called CheapComputer.
Listing 8-6 demonstrates this technique in the ChangePointer example.

m Using Pointers to Point to Something Else and Back Again

#include <iostream>
using namespace std;
int main() {

int ExpensiveComputer;
(continued)

CHAPTER 8 Referring to Your Data Through Pointers 203

Referring to Your Data

Through Pointers

204

TIP

int CheapComputer;
int xptrToComp;

ptrToComp = &ExpensiveComputer;
*ptrToComp = 2000;
cout << xptrToComp << endl;

ptrToComp = &CheapComputer;
*ptrToComp = 500;
cout << xptrToComp << endl;

ptrToComp = &ExpensiveComputer;
cout << xptrToComp << endl;
return 0;

This code starts out by initializing all the goodies involved — two integers and a
pointer to an integer.

Next, the code points the pointer to ExpensiveComputer and uses the pointer to
put 2000 inside ExpensiveComputer. It then writes the contents of Expensive-
Computer, again by using the pointer.

Then the code changes what the pointer points to. To do this, you set the pointer
to the address of a different variable, &CheapComputers. The next line stores 500
in CheapComputers. And, again, you print it.

Now, just to drive home the point, in case the computer isn’t listening, you then
point the pointer back to the original variable, ExpensiveComputer. But you don’t
store anything in it. This time, you simply print the cost of this high-powered
supermachine. You do this again by dereferencing the pointer. And when you run
the application, you see that ExpensiveComputer still has 2000 in it, which is what
was originally put in it. This means that after you point the pointer to something
else and do some finagling, the original variable remains unchanged.

Be careful if you use one pointer to bounce around several different variables. It’s
easy to lose track of which variable the pointer is pointing to.

Tips on pointer variables

This section contains tips on using pointer variables. You can declare two pointer
variables of the same type by putting them together in a single statement, as you

BOOK 1 Getting Started with C++

A

WARNING

Q

TIP

can with regular variables. However, you must precede each one with an asterisk,
as in the following line:

int xptrOne, *ptrTwo;
If you try to declare multiple pointers on a single line but put an asterisk only
before the first pointer, only that one will be a pointer. The rest will not be. This
can cause serious headaches later because this line compiles fine:

int xptrOne, Confused;

Here, Confused is not a pointer to an integer; rather, it’s just an integer. Beware!

Some people like to put the asterisk immediately after the type, as in the following
example, to emphasize the fact that the type is pointer to integer:

intx ptrOne;

However, this approach makes it easy to leave out the asterisks for any pointer
variables that follow.

Creating New Raw Pointers

It isn’t possible to predict some kinds of memory use in your application, but
the requirements aren’t known when you write the code. For example, streaming
data from the Internet or creating new records in a database are both examples of
unpredictable memory use. When working with unpredictable memory require-
ments, you allocate (request memory) and deallocate (release the memory you
requested) as needed in a process called dynamic memory management. You use the
heap, an area of unallocated memory, to perform dynamic memory management.

Most modern programming languages provide a means for managing memory for
you. The reason for using this strategy is that older memory management tech-
niques are error prone. You often see these common memory errors using older
methods:

¥ Code tries to use the memory without allocating it first.
9 Memory remains allocated after use, creating a memory leak.

¥ Uninitialized memory contains random data.

CHAPTER 8 Referring to Your Data Through Pointers 205

Referring to Your Data
Through Pointers

206

Consequently, most modern languages simply allow you to create and delete
variables using one simple approach, and a process called garbage collection (the
freeing of unused memory) occurs in the background. C++ is moving in this direc-
tion. However, the transition is taking some time.

Up to this point, you allocated memory using various approaches including the
new keyword. Using new simply meant that you needed memory for a specific pur-
pose. The new keyword is deprecated in C++ 20 and will disappear altogether in C++
23. The following sections begin with two examples of using new because you see
new used in all current existing code of any complexity at this point. The remain-
ing three sections tell you about the updated C++ 20 method of managing memory.

Using new

To declare a storage bin on the heap using existing methods, first you need to set
up a variable that will help you keep track of the storage bin. This variable must
be a pointer variable.

Suppose that you already have an integer declared out on the heap somewhere.
(You see how to do that in the next paragraph.) Oddly enough, such variables
don’t have names. Just think of it as an integer on the heap. Then, with the inte-
ger variable, you could have a second variable. This second variable is not on the
heap, and it’s a pointer holding the address of the integer variable. So if you want
to access the integer variable, you do so by dereferencing (looking at the address
of) the pointer variable.

To allocate memory on the heap, you need to do two things: First, declare a pointer
variable. Second, call a function named new. The new function is a little different
from other functions in that you don’t put parentheses around its parameter. For
this reason, it’s actually an operator. Other operators are + and - and are for adding
and subtracting integers. These other operators behave similarly to functions, but
you don’t use parentheses.

To use the new operator, you specify the type of variable you want to create. For
example, the following line creates a new integer variable:

int xsomewhere = new int;

After the computer creates the new integer variable on the heap, it stores the
address of the integer variable in somewhere. And that makes sense: somewhere
is a pointer to an integer, so it’s prefaced by the x (pointer) operator. Thus,
somewhere holds the address of an integer variable. The UseNew example, shown
in Listing 8-7, demonstrates how pointers work when using new.

BOOK 1 Getting Started with C++

m Allocating Memory by Using new

#include <iostream>
using namespace std;

int main() {
int xptr = new int;
*ptr = 10;
cout << xptr << endl;
cout << ptr << endl;
return 0;

When you run this application, you see this sweet and simple output (the second
value will change each time you run the example):

10
0xT73af10

In this application, you first allocate a pointer variable, which you call ptr. Then
you call new with an int type, which returns a pointer to an integer. You save that
return value in the ptr variable.

Then you start doing your magic on it. Okay, so it’s not all that magical, but you
save a 10 in the memory that ptr points to. And then you print the value stored in
the memory that ptr points to.

To see for yourself that ptr is pointing to a memory location and not the actual
value of 10, the code also prints ptr without dereferencing it (using the x oper-
ator). The output is a hexadecimal value such as 0x9caef@, but this output will
change each time because the memory allocation occurs in a different location on
the heap each time.

As you can see, ptr contains the address of the memory allocated by the new
operator. But unlike regular variables, the variable pointed at by ptr doesn’t have
a name. And because it doesn’t have a name, the only way you can access it is
through the pointer. It’s kind of like an anonymous author with a publicist. If you
want to send fan mail to the author, you have to go through the publicist. Here,
the only way to reach this unnamed but famous variable is through the pointer.

But this doesn’t mean that the variable has a secret name such as BlueCheese and

that, if you dig deep enough, you might discover it; it just means that the variable
has no name. Sorry.

CHAPTER 8 Referring to Your Data Through Pointers 207

Referring to Your Data

Through Pointers

©

REMEMBER

Q

When you call new, you get back a pointer. This pointer is of the type that you
specify in your call to new. You can then store the pointer only in a pointer variable
of the same type.

When you use the new operator, the usual terminology is that you are allocating
memory on the heap.

By using pointers to access memory on the heap, you can take advantage of many
interesting C++ features. For example, you can use pointers along with something
called an array. An array (as described in Book 5, Chapter 1) is simply a large stor-
age bin that has multiple slots, each of which holds one item. If you set up an
array that holds pointers, you can store all these pointers without having to name
them individually. And these pointers can point to complex things, called objects.
(Book 2, Chapter 1 covers objects and Book 2, Chapter 2 discusses arrays.) You
could then pass all these variables (which could be quite large, if they’re strings)
to a function by passing only the array, not the strings themselves. That step
saves memory on the stack.

In addition to objects and arrays, you can have a function allocate memory and
return a variable pointing to that memory. Then, when you get the variable back
from the function, you can use it, and when you finish with the variable, delete it
(freeing the memory). Finally, you can pass a pointer into a function. When you do
so, the function can actually modify the data the pointer references for you. (See
“Passing Pointer Variables to Functions” and “Returning Pointer Variables from
Functions,” later in this chapter, for details.)

Using an initializer

When you call new, you can provide an initial value for the memory you are allocat-
ing. For example, when allocating a new integer, you can, in one swoop, also store
the number 10 in the integer. The Initializer, example shown in Listing 8-8,
demonstrates how to do this.

Putting a Value in Parentheses to Initialize Memory That You Allocate

208

#include <iostream>
using namespace std;

int main() {
int xptr = new int(10);
cout << xptr << endl;
return 0;

}

BOOK 1 Getting Started with C++

(= =)
SiS
TECHNICAL
STUFF

This code calls new, but also provides a number in parentheses. That number is
put in the memory initially, instead of being assigned to it later. This line of code
is equivalent to the following two lines of code:

int xptr = new int;
*ptr = 10;

When you initialize a value in the new operator, the technical phrase for what you
are doing is invoking a constructor. The reason is that the compiler adds a bunch of
code to your application — code that operates behind the scenes. This code is the
runtime library. The library includes a function that initializes an integer variable
if you pass an initial value. The function that does this is known as a constructor.
When you run it, you are invoking it. Thus, you are invoking the constructor. For
more information on constructors, see Book 2, Chapter 1.

Freeing Raw Pointers

When you allocate memory on the heap by calling the new operator and you’re
finished using the memory, you need to let the computer know, regardless of
whether it’s just a little bit of memory or a lot. The computer doesn’t look ahead
into your code to find out whether you’re still going to use the memory. So in your
code, when you are finished with the memory, you free the memory.

The way you free the memory is by calling the delete operator and passing the
name of the pointer:

delete MyPointer;

This line would appear after you’re finished using a pointer that you allocated by
using new. (Like the new operator, delete is also an operator and does not require
parentheses around the parameter.)

The FreePointer example, shown in Listing 8-9, provides a complete demon-
stration of allocating a pointer, using it, and then freeing it. Note the use of the
replace() method, which first appears in the “Replacing parts of a string” sec-
tion of Book 1 Chapter 6. You use the arrow operator (->) to access this string
method of phrase. The “Using classes and raw pointers” section of Book 2
Chapter 1 describes the arrow operator in more detail.

CHAPTER 8 Referring to Your Data Through Pointers 209

Referring to Your Data

Through Pointers

m Using delete to Clean Up Your Pointers

210

Q

TIP

A

WARNING

#include <iostream>
using namespace std;

int main() {
string xphrase =
new string("All presidents are cool!!!");
cout << xphrase << endl;

(#phrase)[20] = 'r';
phrase->replace(22, 4, "oked");
cout << xphrase << endl;

delete phrase;
return 0;

When you run this application, you see the following output:

All presidents are cool!!!
All presidents are crooked

This code allocates a new string and initializes it, saving its address in the pointer
variable called phrase. The code outputs the phrase, manipulates it, and then
writes it again. Finally, the code frees the memory used by the phrase.

Although people usually say that you’re deleting the pointer or freeing the pointer,
you’re actually freeing the memory that the pointer points to. The pointer can still
be used for subsequent new operations.

When you free memory, the memory becomes available for other tasks. How-
ever, immediately after the call to delete, the pointer still points to that particu-
lar memory location, even though the memory is free. Using the pointer without
pointing it to something else causes errors. Therefore, don’t try to use the pointer
after freeing the memory it points to until you set the pointer to point to some-
thing else through a call to new or by setting it to another variable.

Whenever you free a pointer, a good habit is to set the pointer to the value 0 or
nullptr (when using C++ 11 or above). Then, whenever you use a pointer, first
check whether it’s equal to @ (or nullptr) and use it only if it’s not 0. This strategy
always works because the computer will never allocate memory for you at address
0. So the number @ can be reserved to mean I point to nothing at all.

BOOK 1 Getting Started with C++

AN

WARNING

AN

WARNING

The following code sample shows how to use this strategy. First, this code frees
the pointer and then clears it by setting it to 0:

delete ptrToSomething;
ptrToSomething = O;

The reason to use nullptr in place of @ when you can is that nullptr is clearer —
it says precisely what you’re doing to the pointer. This code checks whether the
pointer is not 0 before using it:

ptrToComp = new int;
*xptrToComp = 10;
if (ptrToComp != @) {

cout << xptrToComp << endl;

}

Call delete only on memory that you allocated by using new. Although the
Code::Blocks compiler doesn’t seem to complain when you delete a pointer that
points to a regular variable, it serves no purpose to do so. You can free only mem-
ory on the heap, not local variables on the stack. In addition, you should avoid
freeing the same pointer multiple times because doing so can create hard-to-find
bugs; the application may have already reallocated that memory for some other
purpose.

An older method of freeing a pointer involves setting the pointer to NULL.
Code::Blocks raises an error when you attempt to use NULL normally because NULL
isn’t part of the standard and it’s considered outdated. However, you may have a
lot of older code that uses NULL. In this case, you must add #include <cstddef>
to your code to allow it to compile. However, it would be better to update the code
to use either @ or nullptr.

Working with Smart Pointers

As mentioned previously in the chapter, smart pointers are the direction that C++
is taking, so you need to use them in all new application development. The rea-
son is simple: Using smart pointers reduces the amount of code you must create,
reduces errors, makes applications more efficient, and virtually eliminates many
common application issues, such as memory leaks. The following sections offer
an overview of smart pointers. Most of the code will run with C++ 17, but some of
the items are C++ 20 specific.

CHAPTER 8 Referring to Your Data Through Pointers 211

Referring to Your Data

Through Pointers

212

©

REMEMBER

CONFIGURING CODE::BLOCKS FOR
SMART POINTERS

To use the examples in the smart pointer sections of this chapter, you must configure
Code::Blocks to use C++ 17 conventions. To do this, choose Settings => Compiler. You see
the Global Compiler Settings dialog box. Select the Have G++ Follow the Coming C++1z
(aka C++ 17) ISO C++ Language Standard option; then click OK. If you don't choose this
setting, you see error messages during the build process. Even if you add the required
#include <memory> line in your code, the compiler will act as if it knows nothing at all
about smart pointers.

Creating smart pointers using
std::unique_ptr and std::shared_ptr

Smart pointers do a lot of work for you when it comes to memory management, so
you should use them in new projects and when converting old projects. The big-
gest advantage of smart pointers is that they automatically deallocate resources
for you, so you don’t encounter problems like memory leaks in your applications.
However, they can do a lot more for you by enforcing good programming practices
through the compiler. No longer can you create code that’s easy to crash because
you’re attempting to use a pointer that doesn’t point anywhere. You also gain
access to unique functions and operators that help you better understand how
memory is used.

This section discusses two smart pointer classes from an overview perspec-
tive: unique_ptr and shared_ptr. The main difference between them is that
a unique_ptr is the only pointer that can point to a resource. If you attempt
to copy a unique_ptr to another pointer, the compiler will complain. Using a
unique_ptr keeps you from making copies that could cause problems in deal-
locating a resource. However, there are times when you actually do need to copy
pointers, such as dealing with a multithreaded environment. In this case, you use
a shared_ptr because you can copy a shared_ptr to another pointer. In fact, it
even includes a function that tells you how many references currently exist to the
resource. Whether you use unique_ptr or shared_ptr, both object types wrap a
raw pointer in an object that performs all the management tasks for you.

Normally you use unique_ptr when working in an environment where you don’t
need to copy pointers. Using unique_ptr makes your code significantly safer
and more bulletproof. The UniquePtr example, shown in Listing 8-10, gets you
started on using unique_ptr.

BOOK 1 Getting Started with C++

RESOLVING SMART POINTER
EXPERIMENTATION PROBLEMS

Working with the new pointer types can prove frustrating when you continually see
errors instead of results. When you encounter problems using Code::Blocks to work
with new pointer types, make sure you have the correct version installed and the

right settings configured. If you still have problems, consider trying the techniques on
https://wandbox.org/, which can sometimes provide better results because the
pointer methodologies are new. In some cases, you may find that old habits are getting
in the way of new processes, so it's also essential to verify that your code is written to
use the new pointer types.

Using a unique_ptr to Perform Common Tasks

#include <iostream>
#include <memory>

using namespace std;

int main() {
unique_ptr<int> ptri(new int());
*xptrl = 100;
cout << "ptrl value:

n

<< *xptrl << endl;

int myValue = 42;
unique_ptr<int> ptr2(&myValue);
cout << "ptr2 value: " << xptr2 << endl;

unique_ptr<int> ptr3 = make_unique<int>(99);
cout << "ptr3 value: " << xptr3 << endl;
cout << "ptr3 address: " << ptr3.get() << endl;

unique_ptr<int> ptr4;

ptrd = move(ptr3);

if (ptr3 == nullptr) {
cout << "ptr3 is nullptr.

}

cout << "ptr4 value:

cout << "ptr4 address:

n

<< endl;

n

<< *xptrd << endl;
" << ptr4.get() << endl;

return 0;

CHAPTER 8 Referring to Your Data Through Pointers 213

Referring to Your Data

Through Pointers

https://wandbox.org/

REMEMBER

The example shows three ways to create a unique_ptr:

¥ Use the new operator.
¥ Create a variable and point to it.

¥ Employ the make_unique() function.

In all three cases, you get a unique_ptr with the value you specify. Notice that you
must specify the pointer type using <int> (for an int value). As with other point-
ers, you can’t really create a generic pointer that can point to anything.

Aunique_ptr provides you with a number of functions. Unlike most pointers, you
can’t simply specify the pointer name and obtain its address because unique_ptr
exercises stricter control over accessing the address information. You must use
the get () function instead, as shown in the code.

As previously mentioned, you can’t make one unique_ptr equal to another
unique_ptr. However, you can use the move() function to move the address of one
unique_ptr to another unique_ptr. The swap() function simply swaps addresses
between two pointers.

This example also shows the use of nullptr. As you can see, using nullptr is
clearer than using © in your code. Here is the output from this example:

ptrl value: 100

ptr2 value: 42

ptr3 value: 99

ptr3 address: 0x5daf28
ptr3 is nullptr.

ptr4 value: 99

ptr4 address: 0x5daf28

To really understand unique_ptr versus shared_ptr, you need to compare usage
side by side. The SharedPtr example, shown in Listing 8-11, demonstrates some
differences that you need to consider when choosing between the two pointer
objects.

m Using a shared_ptr for Copying

214

#include <iostream>
#include <memory>

using namespace std;

BOOK 1 Getting Started with C++

int main() {
int myValue = 42;
shared_ptr<int> ptri(new int(myValue));

cout
cout
<<

<< "ptrl value: " << xptrl << endl;
<< "ptr1l use count: " << ptri.use_count()
endl;

shared_ptr<int> ptr2 = ptri;

cout << "ptr2 value: " << xptr2 << endl;

cout << "ptrl address: " << ptrl << endl;

cout << " ptr2 address: " << ptr2 << endl;

cout << "ptrl use count: " << ptri.use_count()
<< endl;

ptr2.reset();

cout << "ptrl use count: " << ptril.use_count()
<< endl;

ptri.reset();

cout << "ptrl use count: " << ptril.use_count()
<< endl;

return 0;

When working with a shared_ptr, you can make one pointer equal to another
pointer, as this example shows. The code demonstrates that both ptr1 and ptr2
point to the same memory location and have the same value. Consequently, the

resource (not the pointers) is shared between the two pointers.

To make it easier to determine how many references a resource has, you use the
use_count() function. Each additional reference increments the count so that

you’re never in the dark as to how many references the resource has.

Of course, now you need some way to remove references when they’re no longer
needed. To perform this task, you use reset(). The code uses ptr2.reset() to
remove the second reference to myValue. As shown in the following output, the
use count decreases each time you reset () a pointer.

ptrl
ptrl
ptr2
ptrl

value: 42

use count: 1
value: 42
address: 0x6caf08

CHAPTER 8 Referring to Your Data Through Pointers

215

Referring to Your Data

Through Pointers

ptr2 address: 0x6caf@8
ptrl use count: 2
ptrl use count: 1
ptrl use count: ©

The important thing to remember about copying pointers is that copying a pointer
& only copies the pointer address, not the underlying reference. Consequently, if
you copy a pointer to an array, there is still just one array, but now you have two
warning references to that array. To create a copy of an array, you would need to create
a second array of the same size and copy the data, index by index, from the first

array to the second array.

Some significant differences exist between the C++ 17 and the C++ 20 versions of
v the sr.nar.t pointer classes..One of the most irpportant changes from a c‘odil?g per-
spective is that C++ 20 relies on the spaceship operator (see the “Considering the
TecHnicaL new spaceship operator” sidebar of Book 1, Chapter 5 for details) in place of the !=,
STUFF <, <=, >, and >= operators. If you try to use these operators in a C++ 20 application,
you see an error message. See https://en.cppreference.com/w/cpp/memory/
unique_ptr and https://en.cppreference.com/w/cpp/memory/shared_ptr for

other version differences that could cause errors when updating your code.

Defining nullable values using
std::optional and std::nullopt

An optional value is one that may or may not be there. For example, a caller may
supply an int value when calling your function, or may send nothing at all. In
some cases, when an error occurs, the value may simply not exist. C++ developers
have tried to come up with all sorts of solutions to the problem of values not being
provided, but none of them is as good as using optional. If a value doesn’t appear
in the optional object, it’s easy to check using nullopt.

You may wonder why optional appears in this chapter. After all, it should possi-
bly appear in Book 1, Chapter 6 when working with functions. In many respects,
optional appears as a pointer because it supports many of the same features as
unique_ptr and shared_ptr do. For example, you have access to the reset()
and swap() functions, as described at https://en.cppreference.com/w/cpp/
utility/optional. It’s actually easier to understand optional after you get to
this point in the book, which is why it appears here.

The Optional example, shown in Listing 8-12, demonstrates how to create a

function that could receive a string, but then again, perhaps not. (Note that this
example may not run in Code::Blocks because of problems in GCC. Currently,

216 BOOK 1 Getting Started with C++

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional

you must change the #include <optional> to read #include <experimental/
optional> because the support is experimental. There are other necessary changes
as well, which you can see in the OptionalExperimental project in the download-
able source code.)

m Using optional to Avoid Instances of Nothing

AN

WARNING

#include <iostream>
#include <optional>

using namespace std;

void myFunction(optional<string> name = nullopt) {
if (name == nullopt) {
cout << "I wish I knew your name!" << endl;
} else {
cout << "Hello " << name.value() << "!" << endl;

int main() {
myFunction();
myFunction("Sarah");
return 0;

}

In this case, you see myFunction(), which accepts nothing or a string. If the
caller sends nothing, then name equals nullopt. On the other hand, if the caller
sends a string, the code uses name.value() to obtain the string and print it
onscreen. Note that you can’t access the string directly but must call value()
instead. Here is the output from this example:

I wish I knew your name!
Hello Sarah!

You might be tempted to think that nullopt somehow equals nullptr. How-
ever, this isn’t the case. If you try to replace the nullopt check in Listing 8-12
with (ptr1 == nullptr), the compiler will complain loudly that you’re using the
wrong data type.

CHAPTER 8 Referring to Your Data Through Pointers 217

Referring to Your Data

Through Pointers

Passing Pointer Variables to Functions

One of the most important uses for pointers is this: If a pointer points to a
variable, you can pass the pointer to a function, and the function can modify
the original variable. This functionality lets you write functions that can actu-
ally modify the variables passed to them. Even though this section discusses raw
pointers, the same techniques work with smart pointers.

Normally, when you call a function and you pass a few variables to the function,
the computer just grabs the values out of the variables and passes those values.
Take a close look at the VariablePointer example, shown in Listing 8-13.

m A Function Cannot Change the Original Variables Passed into It

218

#include <iostream>
using namespace std;

void ChangesAreGood(int myparam) {
myparam += 10;

cout << "Inside the function:" << endl;
cout << myparam << endl;
}
int main() {
int mynumber = 30;
cout << "Before the function:" << endl;

cout << mynumber << endl;
ChangesAreGood(mynumber) ;
cout << "After the function:" << endl;

cout << mynumber << endl;

return 0;

Listing 8-13 includes a function called ChangesAreGood() that modifies the
parameter it receives. (It adds 10 to its parameter called myparam.) It then prints
the new value of the parameter.

The main() function initializes an integer variable, mynumber, to 30 and prints its
value. It then calls the ChangesAreGood() function, which changes its parameter.

BOOK 1 Getting Started with C++

After coming back from the ChangesAreGood() function, main() prints the value
again. When you run this application, you see the following output:

Before the function:

30
Inside the function:
40
After the function:
30

Before the function call, mynumber is 30. And after the function call, it’s still 30.
But the function added 10 to its parameter. This means that when the function
modified its parameter, the original variable remains untouched. The two are sep-
arate entities. Only the value 30 went into the function. The actual variable did
not. It stayed in main(). But what if you write a function that you want to modify
the original variable?

A pointer contains a number, which represents the address of a variable. If you
pass this address into a function and the function stores that address into one
of its own variables, its own variable also points to the same variable that the
original pointer did. The pointer variable in main() and the pointer variable in
the function both point to the same variable because both pointers hold the same
address.

That’s how you let a function modify data in a variable: You pass a pointer. But
when you call a function, the process is easy because you don’t need to make a
pointer variable. Instead, you can just call the function, putting an & in front of
the variable. Then you’re not passing the variable or its value — instead, you’re
passing the address of the variable.

The VariablePointer2 example, shown in Listing 8-14, is a modified form of
Listing 8-13; this time, the function actually manages to modify the original
variable.

Using Pointers to Modify a Variable Passed into a Function

#include <iostream>
using namespace std;

void ChangesAreGood(int xmyparam) {
smyparam += 10;
cout << "Inside the function:

n

<< endl;
(continued)

CHAPTER 8 Referring to Your Data Through Pointers 219

Referring to Your Data

Through Pointers

B LS A (continued)

220

cout << xmyparam << endl;

int main() {

int mynumber = 30;
cout << "Before the function:

n

<< endl;
cout << mynumber << endl;

ChangesAreGood(&mynumber) ;
cout << "After the function:" << endl;

cout << mynumber << endl;

return 0;

When you run this application, you see the following output:

Before the function:

30

Inside the function:
40

After the function:
40

Notice the important difference between this and the output from Listing 8-13:
The final line of output is 40, not 30. The variable was modified by the function!

To understand how this happened, first look at main(). The only difference in
main() is that it has an ampersand (&) in front of the mynumber argument in the
call to ChangesAreGood(). ChangesAreGood() receives the address of mynumber.

Now the function has some major changes. The function header takes a pointer
rather than a number. You perform this task by adding an asterisk (x) so that the
parameter is a pointer variable. This pointer receives the address being passed
into it. Thus, it points to the variable mynumber. Therefore, any modifications
made by dereferencing the pointer will change the original variable. The follow-
ing line changes the original variable.

(*myparam) += 10;

BOOK 1 Getting Started with C++

OL\OD,
TECHNICAL
STUFF

PASSING BY VALUE VERSUS BY REFERENCE

If you work with other languages, you'll come across the terms passing by value and
passing by reference. The first term, passing by value, means sending the actual value of
a variable to a function when you call it. When working with C++, you accomplish this
task by calling the function with the variable, as shown in Listing 8-13. The second term,
passing by reference, means sending the address of the variable to the function so that
the function can modify the original content of that variable. When working with C++,
you accomplish this task by calling the function with a pointer, as shown in Listing 8-14.
C++ uses the terminology it does because C+ can work with pointers directly rather
than hide the underlying mechanics of what is happening using special techniques or
keywords.

The ChangesAreGood() function in Listing 8-14 no longer modifies its own
parameter. The parameter holds the address of the original mynumber variable,
and that never changes. Throughout the function, the pointer variable myparam
holds the mynumber address. And any changes the function performs are on the
dereferenced variable, which is mynumber.

Returning Pointer Variables
from Functions

Functions can return values, including pointers. To set up a function to return a
pointer, specify the type followed by an asterisk at the beginning of the function
header. The ReturnPointer example, shown in Listing 8-15, demonstrates this
technique. The function returns a pointer that is the result of a new operation.

Returning a Pointer from a String Involves Using an Asterisk
in the Return Type

#include <iostream>
#include <sstream>
#include <stdlib.h>

using namespace std;
string *GetSecretCode() {

string xcode = new string;
(continued)

CHAPTER 8 Referring to Your Data Through Pointers 221

Referring to Your Data

Through Pointers

code->append("CR");

int randomnumber = rand();
ostringstream converter;
converter << randomnumber;
code->append(converter.str());

code->append("NQ");
return code;

int main() {
string xnewcode;

for (int index = @; index < 5; index++) {
newcode = GetSecretCode();
cout << xnewcode << endl;

}

return 0;

}

The main() function creates a pointer to a string named newcode. GetSecret—
Code() returns a pointer to a string, so newcode and the function return value
match. When you use newcode, you must dereference it.

When you run this application, you see something like the following output:

CR41NQ
CR18467NQ
CR6334NQ

CR26500NQ
CR19169NQ

Never return from a function the address of a local variable in the function. The
& local variables live in the stack space allocated for the function, not in the heap.
When the function is finished, the computer frees the stack space used for the
warning function, making room for the next function call. If you try this, the variables will
be okay for a while, but after enough function calls follow, the variable’s data will

get overwritten.

222 BOOK 1 Getting Started with C++

LD,
TECHNICAL
STUFF

RANDOM NUMBERS AND STRINGS

Some special code appears in GetSecretCode() that requires explanation. The call
toint randomnumber = rand(); generates a random number. To obtain a random
number and convert it to a string, you add two more include lines:

#include <stdlib.h»>
#include <sstream>

The first line provides access to the rand() function. The second line provides access to
the ostringstream type. Here are the three lines that perform the magic:

int randomnumber = rand();
ostringstream converter;
converter << randomnumber;

The first of these creates a random number by calling rand(), which returns an int.
The next line creates a variable of type ostringstream, which is a type that's handy for
converting numbers to strings. A variable of this type has features similar to that of a
console. You can use the insertion operator (< <), except that instead of going to

the console, anything you write goes into a string of type ostringstream (which comes
from the words output, string, and stream; usually, things that allow the insertion oper-
ator << or the extraction operator > > to perform input and output are called streams).
You can add the resulting string onto the code string variable using:

code->append(converter.str());

The part inside parentheses — converter .str () — returns an actual string version
of the converter variable. You use the append() function to add the string to code.

Just as the parameters to a function are normally values, a function normally
returns a value. In the case of returning a pointer, the function is still returning
just a value — it is returning the value of the pointer, which is a number repre-
senting an address.

CHAPTER 8 Referring to Your Data Through Pointers 223

Referring to Your Data

Through Pointers

Understanding
Objects and
Classes

Contents at a Glance

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

Working withClasses 227
Understanding Objectsand Classes.oovviiivinn... 227
Workingwitha Class.cooviiiiin i 241
Starting and Ending with Constructors and Destructors. 259
Building Hierarchiesof Classes............ccoviiiviiinnn... 264
Creating and Using Object Aliasescooviinvnn... 267
Using Advanced C++ Features 269
Filling Your Code with Comments............... 270
CoNVerting TYPeS. . vttt ettt e e e e e 272
Reading fromtheConsole, 277
Understanding Preprocessor Directivesouu... 282
UsSiNg CoNStants. .. oot et 292
Using Switch Statementsccovii i 295
Supercharging enums with Classeso ... 298
Working with Random Numbers.o iivii... 300
Storing Data in ArraysS. ..o et e e 302
Planning and Building Objects.................... 309
Recognizing Objects ...t i e e e 310
Encapsulating Objects.t e 316
Building Hierarchieso o 322
Building with Design Patterns..................... 335
Delving Into Pattern History. ovvi i 336
Introducing a Simple Pattern: the Singleton 337
Watching an Instance with an Observer 341

MediatingwithaPattern i, 349

IN THIS CHAPTER

» Understanding objects and classes

» Becoming familiar with methods and
properties

» Making parts of a class public,
private, and protected

» Using constructors and destructors

» Building hierarchies of classes

Chapter 1
Working with Classes

ack in the early 1990s, the big buzzword in the computer world was object-

oriented. For anything to sell, it had to be object-oriented. Programming

languages were object-oriented. Software applications were object-
oriented. Computers were object-oriented. Unfortunately, object-oriented was
simply a cool catchphrase at the time that meant little in real terms. Often,
ideas begin poorly formed and gain resolution as people work to implement the
idea in the real world.

Now it’s possible to explore what object-oriented really means and how you can
use it to organize your C++ applications. In this chapter, you discover object-
oriented programming and see how you can do it in C++. Although people disagree

on the strict definition of object-oriented, in this book it means programming
with objects and classes.

Understanding Objects and Classes

Consider a pen, a regular, old pen. Here’s what you can say about it:

¥ Ink Color: Black
3 Shell Color: Light gray

CHAPTER 1 Working with Classes 227

3 Cap Color: Black

¥ Style: Ballpoint

¥ Length: Six inches

3 Brand: Paper Mate

3 Ink Level: 50 percent full

3 Capability #1: Write on paper
¥ Capability #2: Break in half
3 Capability #3: Run out of ink

Now, look around for other things, such as a printer. Here’s a description of a
printer:

¥ Kind: Laser

¥ Brand: HP

¥ Model: MFP M479fdw

3 Ink Color: Color

3 Case Color: Cream

3 Input trays: One

3 Output trays: One

3 Connection: Ethernet/Wi-Fi/ Wi-Fi Direct

3 Capability #1: Reads print job requests from the device
3 Capability #2: Prints on sheets of paper

¥ Capability #3: Prints a test page

3 Capability #4: Needs the toner cartridges replaced when empty

These lists describe the objects you might see. They provide dimensions, color,
model, brand, and other details. The lists also describe what the objects can do.
The pen can break in half and run out of ink. The printer can take print jobs, print
pages, and have its cartridges replaced.

When describing what objects can do, you carefully write it from the perspective

of the object itself, not from the perspective of the person using the object. A good
way to name the capability is to test it by preceding it with the words “I can” and

228 BOOK 2 Understanding Objects and Classes

see if it makes sense. Thus, because “I can write on paper” works from the per-
spective of a pen, the list contains write on paper for one of the pen’s capabilities.
But is seeing all the objects in the universe possible, or are some objects hidden?
Certainly, some objects are physical, like atoms or the dark side of the moon, and
you can’t see them. But other objects are abstract. For example, you may have a
credit card account. What is a credit card account, exactly? A credit card account
is abstract because you can’t touch it — it has no physical presence. The follow-
ing sections of the chapter examine various kinds of objects: those with physical
representations and those that are abstract.

USING ENUMERATIONS

Someone may think that the number 12 is a good representation of the color blue, and
the number 86 is a good representation of the color red. Purple? That's 182. Beige?
That's getting up there — it's 1047. Yes, this sounds kind of silly. But suppose that you
want to create a variable that holds the color blue. Using the standard types of inte-
gers, floating-point numbers, characters, and letters, you don't have a lot of choices. In
the old days, people would just pick a number to represent each color and store that
number in a variable. Or, you could have saved a string, as in blue. But C++ presents
a better alternative. It's called an enumeration, which mates a human-understandable
term like blue to a computer-friendly value like 12. Remember that for each type,
there’s a whole list of possible values. An integer, for example, can be a whole number
within a particular range. (This range varies between computers, but it's usually pretty
big.) Strings can be any characters, all strung together. But what if you want a value
called blue? Or red? Or even beige? Then you need enumerations. This line creates
an enumeration type:

enum MyColor {blue, red, green, yellow, black, beige};
You now have a new type called MyColor, which you can use the same way you can use
other types, such as int, double, or string. For example, you can create a variable of

type MyColor and set its value to one of the values in the curly braces:

MyColor inkcolor = blue;
MyColor shellcolor = black;

The variable inkcolor is of type MyColor, and its value is blue. The variable shell-
color is also of type MyColor, and its value is black.

CHAPTER 1 Working with Classes 229

Working with Classes

230

Classifying classes and objects

When you pick up a pen, you can ask somebody, “What type of object is this an
instance of?” Most people would probably say, “a pen.” In computer program-
ming, instead of using type of object, you say class. This thing in your hand belongs
to the pen class. Now if you point to the object parked out in the driveway and
ask, “What class does that belong to?” the answer is, “class Car.” Of course, you
could be more specific. You may say that the object belongs to class 2020 Ford
Taurus.

When you see a pen, you might ask what class this object belongs to. If you then
pick up another pen, you see another example of the same class. One class; sev-
eral examples. If you stand next to a busy street, you see many examples of the
class called car. Or you may see many examples of the class Ford Explorer, a few
instances of the class Toyota Corolla, and so on. It depends on how you classify
those objects roaring down the road. Regardless, you likely see several examples
of any given class.

So when you organize things, you specify a class, which is the type of object. And
when you’re ready, you can start picking out examples (or instances) of the class.
Each class may have several instances. Some classes have only one instance.
That’s a singleton class. For example, at any given time, the class United States
President would have one instance.

CLASS NAMES AND CLASS FILES

In Listings 1-3 and 1-5, nearby in this chapter, you see the filenames match the name

of the class. Common practice when creating a class is to put the class definition in a
header file of the same name as the class but with an . h extension. And you put the
class method code in a source code file of the same name as the class but this time with
a .cpp extension. You also capitalize the filenames the same as the class name; thus,
the files are called Pen . h and Pen . cpp. Naming the files the same as classes has lots of
advantages:

® You automatically know the name of the header file you need to include if you want
to use a certain class.

® |t provides a general consistency, which is always good in reducing the complexities
of programming.

® When you see a header file, you know what class is probably inside it.

BOOK 2 Understanding Objects and Classes

TABLE 1-1

Describing methods and data

If you choose a class, you can describe its characteristics. However, because you’re
describing only the class characteristics, you don’t actually specify them. You may
say the pen has an ink color, but you don’t actually say what color. That’s because
you don’t yet have an example of the class Pen. You have only the class itself.
When you finally find an example, it may be one color, or it may be another. So, if
you’re describing a class called Pen, you may list the characteristics presented in
the introduction to this section.

You don’t specify ink color, shell color, length, or any of these properties (terms
that describe the class) as actual values. You’re listing only general characteristics
for all instances of the class Pen. That is, every pen has these properties. But the
actual values for these properties might vary from instance to instance. One pen
may have a different ink color from another, but both might have the same brand.
Nevertheless, they are both separate instances of the class Pen.

After creating an instance of class Pen, you can provide values for the properties.
For example, Table 1-1 lists the property values of three actual pens.

Specifying Property Values for Instances of Class Pen

Property Name First Pen Second Pen Third Pen
Ink Color Blue Red Black

Shell Color Grey Red Grey

Cap Color Blue Black Black

Style Ballpoint Fountain Felt-tip
Length 5.5 inches 5inches 6 inches
Brand Office Depot Parker Paper Mate
Ink Level 30% 60% 90%

In Table 1-1, the first column holds the property names. The second column holds
property values for the first pen. The third column holds the property values for
the second pen, and the final column holds the property values for the third pen.
All the pens in the class share properties. But the values for these properties may
differ from pen to pen. When you instantiate (build or create) a new Pen, you follow
the list of properties, giving the new pen instance its own values. You may make
the shell purple with yellow speckles, or you may make it transparent. But you
would give it a shell that has some color, even if that color is transparent.

CHAPTER 1 Working with Classes 231

Working with Classes

232

TIP

TIP

BOOK 2

In Table 1-1, you didn’t see a list of methods (ways of interacting with the Pen class
to exercise its capabilities). But all these pens have the same methods:

3 Method #1: Write on paper
3 Method #2: Break in half
3 Method #3: Run out of ink

Unlike properties, methods don’t change from instance to instance. They are the
same for each class.

When you describe classes to build a computer application using a class, you are
modeling. In the preceding examples, you modeled a class called Pen. In the fol-
lowing section, you implement this model by writing an application that mimics
a pen using the Pen class.

If you work with enums (the code form of enumerations), you need to decide
what to name your new type. For example, you can choose MyColor or MyColors.
Many people, when they write a line such as enum MyColor {blue, red, green,
yellow, black, beige};, make the name plural (MyColors) because this is a list
of colors. It’s best to make the term singular, as in MyColor, because you use only
one color at a time. When you declare a variable, it makes more sense: MyColor
inkcolor; would mean that inkcolor is a color — not a group of colors.

Implementing a class

To implement a class in C++, you use the keyword class. And then you add the
name of the class, such as Pen. You then add an open brace, list your properties
and methods, and end with a closing brace.

Most people capitalize the first letter of a class name in C++, and if their class
name is a word, they don’t capitalize the remaining letters. Although you don’t
have to follow this rule, many people do. You can choose any name for a C++ class
provided it is not a C++ keyword; it consists only of letters, digits, and under-
scores; and it does not start with a number.

The PenClass example, shown in Listing 1-1, contains a C++ class description
that appears inside the Pen.h header file. (See Book 1, Chapter 7, for informa-
tion on how to put code in a header file.) Review the header file, and you see how
it implements the different characteristics. The properties of a header file are
just like variables: They have a type and a name. The methods are implemented

Understanding Objects and Classes

using functions. All this code goes inside curly brackets and is preceded by a class
header. The header gives the name of the class. And, oh yes, the word public is
stuck in there, and it has a colon after it. The “Accessing members,” section later
in this chapter explains the word public. By itself, this code isn’t very useful,
but you put it to use in Listing 1-2, an application that you can actually compile

and run.

m Pen.h Contains the Class Description for Pen

#ifndef PEN_H_INCLUDED
#define PEN_H_INCLUDED
using namespace std;
enum Color {

blue,

red,

black,

clear,

grey
¥

enum PenStyle {
ballpoint,
felt_tip,
fountain_pen

¥

class Pen {

public:
Color InkColor;
Color ShellColor;
Color CapColor;
PenStyle Style;
float Length;
string Brand;
int InkLevelPercent;

void write_on_paper(string words) {
if (InkLevelPercent <= @) {
cout << "Oops! Out of ink!" << endl;
}
else {
cout << words << endl;

(continued)

CHAPTER 1 Working with Classes 233

Working with Classes

234

REMEMBER

REMEMBER

InkLevelPercent = InkLevelPercent — words.length();

}
}

void break_in_half() {
InkLevelPercent = InkLevelPercent / 2;
Length = Length / 2.09;

}

void run_out_of_ink() {
InkLevelPercent = Q;
}
¥
#endif // PEN_H_INCLUDED

When you write a class, you always end it with a semicolon. Write that down on a
sticky note and hang it on the refrigerator. The effort spent in doing this will be
well worth avoiding the frustration of wondering why your code won’t compile.

In a class definition, you describe the characteristics and capabilities (that is, sup-
ply the properties and methods, respectively).

Note in Listing 1-1, earlier in this chapter, that the methods access the properties.
However, we said that these variables don’t have values yet, because this is just a
class, not an instance of a class. How can that be? When you create an instance of
this class, you can give values to these properties. Then you can call the methods.
And here’s the really great part: You can make a second instance of this class and
give it its own values for the properties. Yes, the two instances will each have their
own sets of properties. And when you run the methods for the second instance,
these functions operate on the properties for the second instance. Isn’t C++ smart?
Now look at Listing 1-2. This is a source file that uses the header file in Listing 1-1.
In this code, you see the Pen class in action.

main.cpp Contains Code That Uses the Class Pen

#include <iostream>
#include "Pen.h"

using namespace std;

int main() {
Pen FavoritePen;

BOOK 2 Understanding Objects and Classes

FavoritePen.InkColor = blue;
FavoritePen.ShellColor = grey;
FavoritePen.CapColor = blue;
FavoritePen.Style = ballpoint;
FavoritePen.Length = 5.5;
FavoritePen.Brand = "Office Depot";
FavoritePen.InklLevelPercent = 30;

Pen WorstPen;

WorstPen. InkColor = red;
WorstPen.ShellColor = red;
WorstPen.CapColor = black;
WorstPen.Style = fountain_pen;
WorstPen.Length = 5.0;
WorstPen.Brand = "Parker";
WorstPen. InkLevelPercent = 60;

cout << "This is my favorite pen" << endl;

cout << "Color: " << FavoritePen.InkColor << endl;

cout << "Brand:

cout << "Ink Level: " << FavoritePen.InklLevelPercent
<< "%" << endl;

FavoritePen.write_on_paper("Hello I am a pen");

cout << "Ink Level: " << FavoritePen.InklLevelPercent
<< "%" << endl;

<< FavoritePen.Brand << endl;

return 0;

There are two variables of class Pen: FavoritePen and WorstPen. To access
the properties of these objects, you type the name of the variable holding the
object, a dot (or period), and then the property name. For example, to access the
InkLevelPercent member of WorstPen, you type
WorstPen. InkLevelPercent = 60;

Remember, WorstPen is the variable name, and this variable is an object. It is an
object or an instance of class Pen. This object has various properties, including
InkLevelPercent.

You can also run some of the methods that are in these objects. This code calls:

FavoritePen.write_on_paper("Hello I am a pen");

CHAPTER 1 Working with Classes 235

Working with Classes

This called the function write_on_paper() for the object FavoritePen. Look at
the code for this function, which is in the header file, Listing 1-1:

void write_on_paper(string words) {
if (InkLevelPercent <= @) {
cout << "Oops! Out of ink!" << endl;
}
else {
cout << words << endl;
InkLevelPercent = InkLevelPercent - words.length();

This function uses the variable called InkLevelPercent. But InkLevelPercent
isn’t declared in this function. The reason is that InkLevelPercent is part of the
object and is declared in the class. Suppose you call this method for two different
objects, as in the following:

FavoritePen.write_on_paper("Hello I am a pen");
WorstPen.write_on_paper("Hello I am another pen");

The first of these lines calls write_on_paper() for the FavoritePen object;
thus, inside the code for write_on_paper(), the InkLevelPercent refers to Ink-
LevelPercent for the FavoritePen object. It looks at and possibly decreases the
variable for that object only. But WorstPen has its own InkLevelPercent property,
separate from that of FavoritePen. So in the second of these two lines,write_on_
paper () accesses and possibly decreases the InkLevelPercent that lives inside
WorstPen. In other words, each object has its own InkLevelPercent. When you
callwrite_on_paper(), the function modifies the property based on which object
you are calling it with. The first line calls it with FavoritePen. The second calls
it with WorstPen. When you run this application, you see the following output:

This is my favorite pen
Color: @

Brand: Office Depot

Ink Level: 30%

Hello I am a pen

Ink Level: 14%

You should notice something about the color line. Here’s the line of code that
writes it:

n

cout << "Color: << FavoritePen.InkColor << endl;

236 BOOK 2 Understanding Objects and Classes

REMEMBER

THE STRING CLASS

If you've been reading the previous chapters of Book 1 (and now this first chapter of
Book 2), and trying the applications, you have seen the string type. Now for the big
secret: string is actually a class. When you create a variable of type string, you are
creating an object of class string. That's why, to use the string functions, you first
type the variable name, a dot, and then the function name: You are really calling a
method for the string object that you created. Similarly, when you work with point-
ers to strings, instead of a dot you can use the —> notation to access the methods. (See
“Using classes and raw pointers,” later in this chapter, for more information.) When
working with newer versions of C++, the string class is part of the std namespace,
which is why you add using namespace std; to the beginning of your code. If you
use an older version of C++, the string class appears as part of the string file. In
this case, you include <string> to provide the necessary header files to declare the
string class.

This line outputs the InkColor member for FavoritePen. But what type is
InkColor? It’s the new Color enumerated type. But something is wrong. It printed
0 despite being set as follows:

FavoritePen.InkColor = blue;

The code sets it to blue, not @. Unfortunately, that’s the breaks with using enum.
You can use it in your code, but under the hood, it just stores numbers. When
printed, you get a number. The compiler chooses the numbers for you, and it
starts the first entry in the enum list as 0, the second as 1, then 2, then 3, and
so on. Thus, blue is stored as 9, red as 1, black as 2, clear as 3, and grey as 4.
Fortunately, people have found a way to create a new class that handles the enum
for you (that is, it wraps around the enum), and then you can print what you really
want: blue, red, black, clear, and grey. Book 2, Chapter 2 has tips on how to do
this astounding feat.

Remember that you can create several objects (also called instances) of a single
class. Each object gets its own properties, which you declare in the class. To access
the members of an object, you use a period, or dot.

Separating method code

When you work with functions, you can either make sure that the code to your
function is positioned before any calls to the function, or you can use a forward
reference, also called a function prototype. Book 1, Chapter 6 discusses this feature.

CHAPTER 1 Working with Classes 237

Working with Classes

238

Q

TIP

When you work with classes and methods, you have a similar option. Most C++
programmers prefer to keep the code for their methods outside the class defini-
tion. The reason for placing them outside is to make the code easier to read; you
don’t end up with a single, huge block of code that is incredibly difficult to follow.
In addition, someone using the class may not care about how the methods work,
so keeping things simple is the best option. The class definition contains only
method prototypes, or, at least, mostly method prototypes. If the method is one
or two lines of code, people may leave it in the class definition.

When you use a method prototype in a class definition, you write the prototype by
ending the method header with a semicolon where you would normally have the
open brace and code. If your method looks like this:

void break_in_half() {
InkLevelPercent = InklLevelPercent / 2;
Length = Length / 2.09;

a method prototype would look like this:
void break_in_half();

After you write the method prototype in the class, you write the method code
again outside the class definition. However, you need to doctor it up just a bit. In
particular, you need to throw in the name of the class, so that the compiler knows
which class this method goes with. The following is the same method described
earlier, but with the class information included. You separate the class name and
method name with a scope resolution operator (::) that links the method to the
class:

void Pen::break_in_half() {
InkLevelPercent = InkLevelPercent / 2;
Length = Length / 2.0;

You put the method after your class definition. And you would want to put the
method code inside one of your source code files if your class definition is in a
header file.

You can use the same method name in different classes. As are variables in dif-
ferent functions, method names are associated with a particular class using the
scope resolution operator. Although you don’t want to go overboard on duplicat-
ing method names, if you feel a need to, you can certainly do it without a problem.

BOOK 2 Understanding Objects and Classes

For example, toString() is a common method name and you often see it provided

with a wide range of classes in your application.

The PenClass2 example, shown in Listings 1-3 and 1-4, contains the modified
version of the Pen class that appeared earlier in this chapter in Listing 1-1. You can

use these two files together with Listing 1-2, which hasn’t changed.

m Using Method Prototypes with the Modified Pen.h file

#ifndef PEN_H_INCLUDED
#define PEN_H_INCLUDED

using namespace std;
enum Color {

blue,

red,

black,

clear,

grey
¥

enum PenStyle {
ballpoint,
felt_tip,
fountain_pen

};

class Pen {

public:
Color InkColor;
Color ShellColor;
Color CapColor;
PenStyle Style;
float Length;
string Brand;
int InkLevelPercent;
void write_on_paper(string words);
void break_in_half();
void run_out_of_ink();

};

#endif // PEN_H_INCLUDED

CHAPTER 1 Working with Classes

239

Working with Classes

m Containing the Methods for Class Pen in the New Pen.cpp File

#include <iostream>
#include "Pen.h"

using namespace std;

void Pen::write_on_paper(string words) {
if (InkLevelPercent <= @) {
cout << "Oops! Out of ink!" << endl;
}
else {
cout << words << endl;
InkLevelPercent = InkLevelPercent - words.length();
}
}

void Pen::break_in_half() {
InkLevelPercent = InklLevelPercent / 2;
Length = Length / 2.09;

}

void Pen::run_out_of_ink() {
InkLevelPercent = Q;

}

All the functions from the class are now in a separate source (.cpp) file. The
header file now just lists prototypes and is a little easier to read. The source file
includes the header file at the top. That’s required; otherwise, the compiler won’t
know that Pen is a class name, and it will get confused (as it so easily can).

The parts of a class

Here is a summary of the parts of a class and the different ways classes can work
together:

¥ Class: Aclass is a type. It includes properties and methods. Properties describe
the class, and methods describe its behaviors.

3 Object: An object is an instance of a class. Think of the class as a blueprint and
the object as the building created from the blueprint. You need only one
blueprint to build multiple buildings of precisely the same type. Each building
is an instance of that blueprint.

240 BOOK 2 Understanding Objects and Classes

¥ Class definition: The class definition describes the class. It starts with the
word class, and then has the name of the class, followed by an open brace
and closing brace. Inside the braces are the members of the class.

3 Property: A property is a characteristic in a class, such as a color, style, or
other descriptive element. You list the properties inside the class (normally
before any methods, but there is no rule that says you must do so). Each
instance of the class gets its own copy of each property.

3 Method: A method is a capability of a class — some task that the class can
perform. As with properties, you list methods inside the class. When you call a
method for a particular instance, the method accesses the properties for the
instance.

When you divide the class, you put part in the header file and part in the source
code file. The following list describes what goes where:

¥ Header file: Put the class definition in the header file. Properties appear as
part of the class definition within the header. You can include the method
code inside the class definition if it's a short method. Most people prefer not
to put any method code longer than a line or two in the header — in fact,
many don't put any method code at all in the header. You may want to name
the header file the same as the class but with an .h or . hpp extension. Thus,
the class Pen, for instance, might be in the file Pen . h.

¥ Source file: If your class has methods, and you didn't put the code in the class
definition, you need to put the code in a source file. When you do, precede the
function name with the class name and the scope resolution operator (: :). If
you named the header file the same as the class, you probably want to name
the source file the same as the class as well but with a . cpp extension.

Working with a Class

Many handy tricks are available for working with classes. In this section, you
explore several clever ways of working with classes, starting with the way you
can hide certain parts of your class from other functions that are accessing them.

Accessing members

When you work with an object in real life, there are often parts of the object that
you interact with and other parts that you don’t. For example, when you use the
computer, you type on the keyboard but don’t open the box and poke around with

CHAPTER 1 Working with Classes 241

Working with Classes

242

©

REMEMBER

a wire attached to a battery. For the most part, the stuff inside is off-limits except
when you’re upgrading it.

In object terminology, the words public and private refer to properties and meth-
ods. When you design a class, you might want to make some properties and meth-
ods freely accessible by class users. You may want to keep other members tucked
away. A class user is the part of an application that creates an instance of a class
and calls one of its methods. In Listing 1-2, earlier in the chapter, main() is a class
user. If you have a function called FlippityFlop() that creates an instance of
your class and does a few things to the instance, such as change some its proper-
ties, FlippityFlop() is a class user. In short, a user is any function that accesses
your class.

When designing a class, you may want only specific users calling certain
methods. You may want to keep other methods hidden away, to be called only
by other methods within the class. Suppose you’re writing a class called Oven.
This class includes a method called Bake(), which takes a number as a parame-
ter representing the desired oven temperature. Now you may also have a method
called TurnOnHeatingElement () and one called TurnOf fHeatingElement().

Here’s how it would work. The Bake() method starts out calling TurnOnHeating
Element(). Then it keeps track of the temperature, and when the temperature is
correct, it calls TurnOffHeatingElement (). You wouldn’t want somebody walking
in the kitchen and calling the TurnOnHeatingElement () method without touch-
ing any of the dials, only to leave the room as the oven gets hotter and hotter
with nobody watching it. You allow the users of the class to call only Bake(). The
other two methods, TurnOnHeatingElement() and TurnOffHeatingElement(),
are reserved for use only by the Bake() function.

You bar users from calling functions by making specific functions private. Func-
tions that you want to allow access to you make public. After you design a class,
if you write a function that instantiates an object based on that class that tries to
call one of an object’s private methods, you get a compiler error when you try to
compile it. The compiler won’t allow you to call it.

The OvenClass example, shown in Listing 1-5, defines a sample Oven class and a
main() that uses it. Look at the class definition. It has two sections: one private
and the other public. The code for the functions appears after the class definition.
The two private functions don’t do much other than print a message. (Although
they’re also free to call other private functions in the class.) The public function,
Bake(), calls each of the private functions, because it’s allowed to.

BOOK 2 Understanding Objects and Classes

m Using the Public and Private Words to Hide Parts of Your Class

#include <iostream>
using namespace std;

class Oven {
private:
void TurnOnHeatingElement();
void TurnOffHeatingElement();
public:
void Bake(int Temperature);

};

void Oven: :TurnOnHeatingElement() {
cout << "Heating element is now ON! Be careful!" << endl;

}

void Oven: :TurnOffHeatingElement() {
cout << "Heating element is now off. Relax!" << endl;

}

void Oven: :Bake(int Temperature) {
TurnOnHeatingElement();
cout << "Baking!" << endl;
TurnOf fHeatingElement();

}

int main() {
Oven fred;
fred.Bake(875);
return 0;

}

When you run this application, you see some messages:

Heating element is now ON! Be careful!
Baking!
Heating element is now off. Relax!

Nothing too fancy here. Now if you tried to include a line in your main() such as

the one in the following code, where you call a private function

fred.TurnOnHeatingElement();

CHAPTER 1 Working with Classes

243

Working with Classes

244

TIP

you see an error message telling you that you can’t do it because the function is
private. In Code::Blocks, you see this message:

error: 'void Oven::TurnOnHeatingElement()' is private

When you design your classes, consider making all the functions private by
default, and then only make those public that you want users to access. Some
people, however, prefer to go the other way around: Make them all public, and
only make those private that you are sure you don’t want users to access. There
are good arguments for either approach; however, the preference in this book is
to make public only what must be public. This approach minimizes the risk of
some other application that’s using that class creating errors by calling things the
programmer doesn’t really understand.

You don’t necessarily need to list the private members first followed by the public
members. You can put the public members first if you prefer. Some people put
the public members at the top so they see them first. That makes sense. Also, you
can have more than one private section and more than one public section. For
example, you can have a public section, a private section, and then another public
section, as in the following code:

class Oven {
public:
void Bake(int Temperature);
private:
void TurnOnHeatingElement();
void TurnOffHeatingElement();
public:
void Broil();

I

Using classes and raw pointers

This and other sections of the chapter discuss the use of raw pointers with objects.
In the “Understanding the Changes in Pointers for C++ 20” section of Book 1,
Chapter 8, you discover that there are other pointer types, including smart and
optional pointers. Because most code still relies on raw pointers to work with
objects, the majority of this chapter focuses on their use.

As with any variable, you can have a pointer variable that points to an object. As
usual, the pointer variable’s type must match the type of the class. This creates a

pointer variable that points to a Pen instance:

Pen xMyPen;

BOOK 2 Understanding Objects and Classes

REMEMBER

The variable MyPen is a pointer, and it can point to an object of type Pen. The vari-
able’s own type is pointer to Pen, or in C++ notation, Pen x. Because you’re always
working with pointers when interacting with objects, you leave ptr off the variable
name to save typing time and focus attention on the variable’s purpose, which is
to serve as your personal pen.

A line of code like Pen xMyPen; creates a variable that serves as a pointer to an
object. But this line, by itself, does not actually create an instance. By itself, it
points to nothing. To create an instance, you have to call new. This is a common
mistake among C++ programmers; sometimes people forget to call new and won-
der why their applications crash.

After you create the variable MyPen, you can create an instance of class Pen and
point MyPen to it using the new keyword, like so:

MyPen = new Pen;
Or you can combine both Pen xMyPen; and the preceding line:
Pen xMyPen = new Pen;

Now you have two variables: You have the actual object, which is unnamed and sit-
ting on the heap. (See the “Heaping and Stacking the Variables” section of Book 1,
Chapter 8, for more information on pointers and heaps.) You also have the pointer
variable, which points to the object: two variables working together. Because the
object is out on the heap, the only way to access it is through the pointer. To access
the members through the pointer, you use a special notation — a minus sign fol-
lowed by a greater-than sign. It bears a passing resemblance to an arrow (and is
therefore called the arrow operator), as the following line makes clear:

MyPen->InkColor = red;

This goes through the MyPen pointer to set the InkColor property of the object
tored.

As with other variables you created with new, after you are finished using an
object, you should call delete to free the memory used by the object pointed to
by MyPen. To do so, start with the word delete and then the name of the object

pointer, MyPen, as in the following:

delete MyPen;

CHAPTER 1 Working with Classes 245

Working with Classes

REMEMBER

CREATING APEN.CPP AND PEN.H
REFERENCE

To use this example and others in the chapter that reference Pen . cpp and Pen . h,

you must include Pen . cpp and Pen . h from the PenClass2 example using the tech-
nique described in the “Creating a project with multiple existing files” section of Book 1,
Chapter 7. Notice that because Pen . h doesn't appear in the current directory, you must
make a relative reference (the . . /PenClass2/ part) to it in Listing 1-6. As shown in the
following figure, if you add Pen . cpp and Pen . h to the project first, and then type the
#include " statement, Code::Blocks will actually provide the relative reference for you.

#include
il| . ./PenClassa/Pen.h o

using n accerrl.h
. . aclapi.h

int maig
aclui.h
con adsprop.h

rety adxintrin.h
algorithm
amaudio.h
ammintrin.h

amvideo.h

h
h
h
h
h
h| afzxres.h
h
h
h
h
h

array -

Store a @ in the pointer after you delete the object it points to. When you call
delete on a pointer to an object, you are deleting the object itself, not the pointer.
If you don’t store a @ in the pointer, it still points to where the object used to be.

The PenClass3 example, shown in Listing 1-6, demonstrates the process of
declaring a pointer, creating an object and pointing to it, accessing the object’s
members through the pointer, deleting the object, and clearing the pointer
back to @.

m Managing an Object's Life

#include <iostream>
#include "../PenClass2/Pen.h"

using namespace std;

int main() {
Pen xMyPen;
MyPen = new Pen;
MyPen->InkColor = red;

246 BOOK 2 Understanding Objects and Classes

TABLE 1-2

Q

TIP

cout << MyPen->InkColor << endl;
delete MyPen;

MyPen = 0;

return 0;

Table 1-2 reiterates the process (steps) shown in Listing 1-6 in a more formal
way. The table is called “Steps to Using Objects” rather than something more
specific such as “Using Objects with Pointers” because the majority of your work
with objects will be through pointers. Therefore, this is the most common way of
using pointers.

Steps to Using Objects

Step Sample Code Action

1 Pen *MyPen; Declares the pointer

2 MyPen = new Pen; Calls new to create the object

3 MyPen->InkColor = red; Accesses the members of the object
through the pointer

4 delete MyPen; Deletes the object

5 MyPen = Q; Clears the pointer

Now that you have an overview of the process through Listing 1-6 and understand
the basics through Table 1-2, you can see how to formalize the procedure. The fol-
lowing steps describe precisely how to work with raw pointers and objects:

1. Declare the pointer.

The pointer must match the type of object you intend to work with, except that
the pointer’s type name in C++ is followed by an asterisk, *.

2. call new, passing the class name, and store the results of new in the
pointer.

You can combine Steps 1 and 2 into a single step.

3. Access the object’'s members through the pointer with the arrow
operator, ->.

You could dereference the pointer and put parentheses around it, but
everyone uses the shorthand notation.

CHAPTER 1 Working with Classes 247

Working with Classes

4. When you are finished with the pointer, call delete.

This step frees the object from the heap. Remember that this does not delete
the pointer itself, but frees the object memory.

5. clearthe pointer by setting it to 0.

If your delete statement is at the end of the application, you don't need to

@ clear the pointer to @ because the pointer is going out of scope. The pointer
won't exist any longer, so setting it to @ isn't essential, but it's good practice
TIP because you get into the habit of doing it in places where clearing the pointer

to @ would be important.

Using classes and smart pointers

If you’re working with C++ 17 or above, you probably want to use smart pointers
with your objects, rather than the labor-intensive and error-prone raw point-
ers. The SmartPtr example, shown in Listing 1-7, shows the same process as
Listing 1-6 but uses smart pointers instead. You still need to add Pen.cpp and
Pen.h from PenClass2.

m Managing an Object's Life Using Smart Pointers

#include <iostream>

#include <memory>
#include "../PenClass2/Pen.h"

using namespace std;

int main() {
unique_ptr<Pen> MyPen;
MyPen.reset(new Pen());
MyPen->InkColor = red;
cout << MyPen->InkColor << endl;
MyPen.reset();
return 0;

You wouldn’t ordinarily assign an object to a unique_ptr as a separate step, but
this example shows you how by using reset(). In this case, you actually reset
MyPen to point to a new object, new Pen(), which must include the opening and

rememser closing parentheses. If you were to do this in an application, reset() would
take care of freeing any old object before pointing MyPen to any new object. The
“Creating smart pointers using std::unique_ ptr and std::shared_ ptr” section of
Book 1, Chapter 8 shows the standard approach to creating smart pointers.

248 BOOK 2 Understanding Objects and Classes

Notice that you still use the arrow operator to assign the color red to
MyPen->InkColor and to retrieve the value later. This part of the code appears
the same as when using a raw pointer. The final step is to free the object memory
using reset (). The pointer will automatically delete itself, saving you a line of
code in this example.

Passing objects to functions

When you write a function, normally you base your decision about using point-
ers on whether or not you want to change the original variables passed into the
function. Suppose you have a function called AddOne(), and it takes an integer as
a parameter. If you want to modify the original variable, you can use a pointer (or
you can use a reference). If you don’t want to modify the variable, just pass the
variable by value.

The following prototype represents a function that can modify the variable passed
into it:

void AddOne(int xnumber);

And this prototype represents a function that cannot modify the variable passed
into it:

void AddOne(int number);

With objects, you can do something similar. For example, this function takes a
pointer to an object and can, therefore, modify the object:

void FixFlatTire(Car *mycar);
This version doesn’t allow modification of the original object:

void FixFlatTire(Car mycar);
However, unlike a primitive type, the function gets its own instance. In other
words, every time you call this function, it creates an entirely new instance of
class Car. This instance would be a duplicate copy of the myCar object that is an
instance of class Car — it wouldn’t be the same instance.
When you work with objects, a complete copy is not always a sure thing. The orig-
inal object may have properties that are pointers to other objects, but the object

copy may not get copies of those pointers. The properties that contain pointers
may end up blank (due to a lack of proper copying technique), point to the same

CHAPTER 1 Working with Classes 249

Working with Classes

LD,
TECHNICAL
STUFF

TIP

values as the original (a shallow copy), or point to new variables (a deep copy).
The difference is the kind of copy that the object provides:

3 Shallow: C++ copies the object and its property values precisely as provided in
the original object. If the original object doesn't rely on any sort of dynamic
memory allocation, as is the case when working the primitives, the copy will
work precisely as planned.

3 Deep: C++ not only copies the original object, but also allocates memory for
any objects pointed to by the original object. So, the copy not only copies the
original object, but any objects pointed to by that object. The two copies are
completely separate.

A problem occurs when any of the subsidiary objects also have pointers to
other objects. Now you have an entirely new level of objects to worry about.
The topic of shallow and deep copying can become incredibly complex. If you
want to know more, check out the article at https://www.learncpp.com/
cpp-tutorial/915-shallow-vs-deep-copying/.

The smart move with objects is to always pass objects as pointers. Don’t pass
objects directly into functions. Yes, it risks bad code changing the object, but care-
ful C++ programmers want the actual object, not a copy. Having access to the
original outweighs the risk of an accidental change. This chapter explains how
to prevent accidental changes by using the const parameters in the next section.

Because your function receives its objects as pointers, you continue accessing
them by using the arrow operator. For example, the function FixFlatTire() may
do this:

void FixFlatTire(Car *mycar) {
mycar->RemoveTire();
mycar->AddNewTire();

}

Or, if you prefer references, you would do this:

void FixFlatTire2(Car &mycar) {
mycar .RemoveTire();
mycar . AddNewTire();

}

Remember that pointers contain the address of an object, while a reference is
simply another name (alias) for an object. Even though the reference is still an
address, it’s the actual address of the object, rather than a pointer to the object.
(Book 1, Chapter 8 discusses pointers in more detail.) In this code, because you’re

250 BOOK 2 Understanding Objects and Classes

https://www.learncpp.com/cpp-tutorial/915-shallow-vs-deep-copying/
https://www.learncpp.com/cpp-tutorial/915-shallow-vs-deep-copying/

TIP

dealing with a reference, you access the object’s members using the dot operator
(.) rather than the arrow operator (->).

Another reason to use only pointers and references as parameters for objects is
that a function that takes an object as a parameter usually wants to change the
object. Such changes require pointers or references.

Using const parameters in functions

A constant is a variable or object that another function can’t change even when
you pass a reference to it to another function. To define a variable or an object
as constant, unchangeable, you use the const keyword. For example, to define a
variable as constant, you use:

const int MyInt = 3;
If someone were to come along and try to use this code:
MyInt = 4;

The compiler would display an error message saying, error: assignment of
read-only variable 'MyInt'.The same holds true for a function using a const
primitive like this one:

void DisplaylInt(const int Value) {
cout << Value << endl;

}

It’s possible to display Value or interact with it in other ways, but trying to change
Value will raise an error. This version will raise an error because Value is being
changed:

void DisplaylInt(const int Value) {
Value += 1;
cout << Value << endl;

}

The const keyword is useful when working with objects because you generally
don’t want to pass an object directly. That involves copying the object, which is
messy. Instead, you normally pass by using a pointer or reference, which would
allow you to change the object. If you put the word const before the parameter,
the compiler won’t allow you to change the parameter. The PenClass4 example
that appears in Listing 1-8 has const inserted before the parameter. The function
can look at the object but can’t change it.

CHAPTER 1 Working with Classes 251

Working with Classes

m The Inspect Function Is Not Allowed to Modify Its Parameter

252

REMEMBER

#include <iostream>
#include "../PenClass2/Pen.h"

using namespace std;

void Inspect(const Pen xCheckitout) {
cout << Checkitout-»>Brand << endl;

}

int main() {
Pen xMyPen = new Pen();
MyPen->Brand = "Spy Plus Camera";
Inspect(MyPen);
return 0;

Now suppose that you tried to change the object in the Inspect function. You may
have put a line in that function like this:

Checkitout->Length = 10.09;

If you try this, the compiler issues an error. In Code::Blocks, you get: error:
assignment of member 'Pen::Length' in read-only object.

If you have multiple parameters, you can mix const and non-const. If you go
overboard, this can be confusing. The following line shows two parameters that
are const and another that is not. The function can modify only the members of
the object called one.

void Inspect(const Pen xCheckitout, Spy xone,
const Spy *two);

Using the this pointer

Consider a function called OneMoreCheeseGone(). It’s not a method, but it takes
an object of instance Cheese as a parameter. Its prototype looks like this:

void OneMoreCheeseGone(Cheese xBlock);

BOOK 2 Understanding Objects and Classes

This is just a simple function with no return type. It takes an object pointer as a
parameter. For example, after you eat a block of cheese, you can call:

OneMoreCheeseGone (MyBlock) ;

Now consider this: If you have an object on the heap, it has no name. You access
it through a pointer variable that points to it. But what if the code is currently
executing inside a method of an object? How do you refer to the object itself?

C++ has a secret variable that exists inside every method: this. It’s a pointer vari-
able. The this variable always points to the current object. So if code execution is
occurring inside a method and you want to call OneMoreCheeseGone(), passing in
the current object (or block of cheese), you would pass this.

The following sections discuss what you might call the standard use of this, the
version of this that exists in most code now. Once you understand the standard
use of this, you move on to modifications to this that occur in C++ 20. Like most
pointer usage in C++ 20, this has undergone changes to make it safer, smarter,
and easier.

Defining standard this pointer usage

This section tells you how this is used for application development in most appli-
cations today. The CheeseClass example, shown in Listing 1-9, demonstrates
this.

m Passing an Object from Inside Its Methods by Using the this Variable

#include <iostream>
using namespace std;

class Cheese {
public:
string status;
void eat();
void rot();

b
int CheeseCount;
void OneMoreCheeseGone(Cheese *Block) {

CheeseCount—-;
(continued)

CHAPTER 1 Working with Classes 253

Working with Classes

Block->status = "Gone";

};

void Cheese::eat() {
cout << "Eaten up! Yummy" << endl;
OneMoreCheeseGone(this);

}

void Cheese: :rot() {
cout << "Rotted away! Yuck" << endl;
OneMoreCheeseGone(this);

}

int main() {
Cheese *asiago = new Cheese();
Cheese klimburger = new Cheese();

CheeseCount = 2;
asiago->eat();
limburger—s>rot();

cout << endl;
cout << "Cheese count: "
cout << "asiago:

cout << "limburger:

<< CheeseCount << endl;

n

<< asiago->status << endl;
"

<< limburger-»>status << endl;
return 0;

The this listing has four main parts. First is the definition for the class called
Cheese. The class contains a couple of methods.

Next is the function OneMoreCheeseGone() along with a global variable that it
modifies. This function subtracts one from the global variable and stores a string
in a property, status, of the object passed to it.

Next come the actual methods for class Cheese. (You must put these functions
after OneMoreCheeseGone () because they call it. If you use a function prototype as

a forward reference for OneMoreCheeseGone(), the order doesn’t matter.)

Finally, main() creates two new instances of Cheese. Then it sets the global vari-
able to 2, which keeps track of the number of blocks left. Next, it calls the eat()

254 BOOK 2 Understanding Objects and Classes

function for the asiago cheese and rot() for the 1imburger cheese. And then it
prints the results of everything that happened: It displays the Cheese count, and
it displays the status of each object.

When you run the application in Listing 1-9, you see this output:

Eaten up! Yummy
Rotted away! Yuck

Cheese count: 0
asiago: Gone
limburger: Gone

The first line is the result of calling asiago->eat(), which prints one message.
The second line is the result of calling 1imburger->rot(), which prints another
message. The third line is simply the value in the variable CheeseCount. This vari-
able was decremented once each time the computer called OneMoreCheeseGone().
Because the function was called twice, CheeseCount went from 2 to 1 to @. The
final two lines show the contents of the status variable in the two objects. (One-
MoreCheeseGone() stores "Gone" in these variables.)

Take a careful look at the OneMoreCheeseGone() function. It operates on the cur-
rent object provided as a parameter by setting its status variable to the string
Gone. The eat () method calls it, passing the current object using this. The rot()
method also calls it, again passing the current object via this.

Changes to the this pointer in C++ 20

Unless you’re actually working with C++ 20 at a somewhat detailed level, you can
probably skip this section and not really lose much. Of course, you may just be
curious and learning something new is always a good thing.

C++ 20 brings a few changes to the this pointer with it. Even though you don’t
see anything about functional programming until Book 3, it’s important to know
that like the examples in this chapter, you can use the this pointer in a lambda
expression. A lambda expression is a mathematically based approach to dealing
with certain kinds of programming problems that is concise and easier to under-
stand than some standard C++ approaches. You can also pass a lambda expres-
sion, essentially a kind of function, to other functions as you would any other
argument. The change of the use of the this pointer for lambda expressions is
simply a clarification — you must now actually declare use of the this pointer
before you’re allowed to use it. You can get an overview of lambda expressions in

CHAPTER 1 Working with Classes 255

Working with Classes

256

LD,
TECHNICAL
STUFF

the “Using Lambda Expressions for Implementation” section of Book 3 Chapter 1
and read about using lambda expressions in your code in Book 3 Chapter 2. The
discussion at http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/
po8e6r2.html will fill in some very technical details if you’re interested.

It’s important to note that the C++ definition of an object as described in this
chapter differs from the definition used by some other languages. There is lengthy
and involved discussion of the topic at https://blog.panicsoftware.com/
objects-their-1lifetimes-and-pointers/, but the point is that if you under-
stand objects as described in this chapter, then you know how C++ developers
view them. You may have noticed that there is a great deal of emphasis in this
chapter on destroying objects by releasing their storage. The “Starting and End-
ing with Constructors and Destructors” section of this chapter discusses another
technique, which is to call a destructor. However, until C++ 20, standard objects,
such as string, don’t have a destructor as such, the calling of it is a no-op (a no
operation, nothing happens). Because the manner in which objects are destroyed
is changing, so is the use of the this pointer, which relies on the existence of an
object to work.

The this pointer can also come into play in situations that most people are unlikely
to see unless they’re performing advanced tasks. For example, you can use the
this pointer to access initialized members of a partially constructed object—one
that hasn’t had every member fully initialized.

Overloading methods

You may want a method in a class to handle different types of parameters. For
example, you might have a class called Door and a method called GoThrough().
You might want the GoThrough() method to take as parameters objects of class
Dog, class Human, or class Cat. Depending on which class is entering, you might
want to change the GoThrough() function’s behavior.

A way to handle this is by overloading the GoThrough() function. C++ lets you
design a class that has multiple methods that are all named the same. How-
ever, the parameters must differ between these methods. With the GoThrough()
method, one version will take a Human, another a Dog, and another a Cat.

View the code for the DoorClass example in Listing 1-10 and notice the
GoThrough() methods. There are three of them. To use these methods, main()
creates four different objects — a cat, a dog, a human, and a door. It then sends
each creature through the door.

BOOK 2 Understanding Objects and Classes

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0806r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0806r2.html
https://blog.panicsoftware.com/objects-their-lifetimes-and-pointers/
https://blog.panicsoftware.com/objects-their-lifetimes-and-pointers/

m Overloading Functions in a Class

#include <iostream>
using namespace std;

class Cat {
public:
string name;

};

class Dog {
public:
string name;

};

class Human {
public:
string name;

};

class Door {

private:
int HowManyInside;

public:
void Start();
void GoThrough(Cat xacat);
void GoThrough(Dog xadog);
void GoThrough(Human xahuman);

};

void Door::Start() {
HowManyInside = O;

}

void Door: :GoThrough(Cat xsomebody) {

cout << "Welcome, << somebody->name << endl;
cout << "A cat just entered!" << endl;
HowManyInside++;

}

void Door: :GoThrough(Dog xsomebody) {

cout << "Welcome, << somebody->name << endl;
cout << "A dog just entered!" << endl;

(continued)

CHAPTER 1 Working with Classes 257

Working with Classes

HowManyInside++;

}

void Door : :GoThrough(Human ksomebody) {
cout << "Welcome, " << somebody->name << endl;
cout << "A human just entered!" << endl;
HowManyInside++;

}

int main() {
Door entrance;
entrance.Start();

Cat xSneekyGirl = new Cat;
SneekyGirl->name = "Sneeky Girl";

Dog xLittleGeorge = new Dog;
LittleGeorge->name = "Little George";
Human xme = new Human;

me->name = "John";

entrance.GoThrough(SneekyGirl);
entrance.GoThrough(LittleGeorge);
entrance.GoThrough(me);

delete SneekyGirl;
delete LittleGeorge;
delete me;

return 0;

The application allows dogs and cats to enter like humans. The beginning of this
application declares three classes, Cat, Dog, and Human, each with a name mem-
ber. Next is the Door class. A private member, HowManyInside, tracks how many
beings have entered. The Start() function activates the door. Finally, the class
contains the overloaded functions. They all have the same name and the same
return type. You can have different return types, but for the compiler to recognize
the functions as unique, they must differ by parameters. These do; one takes a Cat
pointer; one takes a Dog pointer; and one takes a Human pointer.

Next is the code for the methods. The first function, Start() sets HowManyInside

to @. The next three functions are overloaded. They do similar things, but they
write slightly different messages. Each takes a different type.

258 BOOK 2 Understanding Objects and Classes

The first step inmain() is to create a Door instance. The code doesn’t use a pointer
to show that you can mix pointers with stack variables in an application. After
creating the Door instance, the code calls Start(). Next, the code creates three
creature instances: Cat, Dog, and Human, and sets the name property for each.

The calls to the entrance.GoThrough() method passes a Cat, a Dog, and a Human
(all in order). Because you can see the Door class, you know the code calls three
different methods that are all named the same. But when using the class, you con-
sider them one method that accepts a Cat, a Dog, or a Human. That’s the goal of
overloading: to create what feels like versions of the one function. Here’s what you
see when you run this application:

Welcome, Sneeky Girl

A cat just entered!
Welcome, Little George
A dog just entered!
Welcome, John

A human just entered!

Starting and Ending with Constructors
and Destructors

You can add two special methods to your class that let you provide special startup
and shutdown functionality: a constructor and a destructor. The following sections
provide details about these methods.

Starting with constructors

When you create a new instance of a class, you may want to do some basic object
setup. Suppose you have a class called Apartment, with a private property called
NumberOfOccupants and a method called ComeOnIn(). The code for ComeOnIn()
adds 1 to NumberOfOccupants.

When you create a new instance of Apartment, you probably want to start Num—
berOfOccupants at @. The best way to do this is by adding a special method, a

constructor, to your class. This method has a line of code such as

NumberOfOccupants = 0;

CHAPTER 1 Working with Classes 259

Working with Classes

260

TIP

Whenever you create a new instance of the class Apartment, the computer first
calls this constructor for your new object, thereby setting NumberOfOccupants to
0. Think of the constructor as an initialization function: The computer calls it when
you create a new object.

To write a constructor, you add it as another method to your class, and make it
public. You name the constructor the same as your class. For the class Apartment,
you name the constructor Apartment (). The constructor has no return type, not
even void. You can have parameters in a constructor; see “Adding parameters
to constructors,” later in this chapter. Listing 1-11, later in this section, shows a
sample constructor along with a destructor, which is covered in the next section.

Ending with destructors

When you delete an instance of a class, you might want some cleanup code to
straighten things out before the object memory is released. For example, your
object may have properties that are pointers to other objects. It’s essential
to delete those other objects. You put cleanup code in a special function called
a destructor. A destructor is a finalization function that the computer calls before
it deletes your object.

The destructor function gets the same name as the class, except it has a tilde, ~, at
the beginning of it. (The tilde is usually in the upper-left corner of the keyboard.)
For a class called Squirrel, the destructor would be ~Squirrel (). The destructor
doesn’t have a return type, not even void, because you can’t return anything from
a destructor (the object is gone, after all). You just start with the function name
and no parameters. The next section, “Sampling constructors and destructors,”
shows an example that uses both constructors and destructors.

Constructors and destructors are a way of life for C++ programmers. Nearly every
class has a constructor, and many also have a destructor.

Sampling constructors and destructors

The WalnutClass example, shown in Listing 1-11, uses a constructor and destruc-
tor. This application involves two classes, the main one called Squirrel that dem-
onstrates the constructor and destructor, and one called Walnut, which is used by
the Squirrel class.

BOOK 2 Understanding Objects and Classes

m Initializing and Finalizing with Constructors and Destructors

#include <iostream>
using namespace std;

class Walnut {
public:
int Size;

};

class Squirrel {
private:
Walnut xMyDinner;
public:
Squirrel();
~Squirrel();
}

Squirrel::Squirrel() {
cout << "Starting!" << endl;
MyDinner = new Walnut;
MyDinner->Size = 30;

}

Squirrel::~Squirrel() {
cout << "Cleaning up my mess!" << endl;
delete MyDinner;

}

int main() {
Squirrel xSam = new Squirrel;
Squirrel xSally = new Squirrel;

delete Sam;
delete Sally;
return 0;

The Squirrel class has a property called MyDinner that is a pointer to a Walnut
instance. The Squirrel constructor creates an instance of Walnut and stores it
in MyDinner. The destructor deletes the instance of Walnut. In main(), the code
creates two instances of Squirrel. Each instance gets its own Walnut to eat.

CHAPTER 1 Working with Classes 261

Working with Classes

262

Each Squirrel creates its Walnut when it starts and deletes the Walnut when the
Squirrel is deleted.

Notice in this code that the constructor has the same name as the class,
Squirrel(). The destructor also has the same name, but with a tilde, ~, tacked on
to the beginning of it. Thus, the constructor is Squirrel() and the destructor is
~Squirrel (). Destructors never take parameters and you can’t call them directly,
but the runtime calls them automatically when it’s time to destroy an object.

When you run this application, you can see the following lines, which were spit
up by the Squirrel in its constructor and destructor. (You see two lines of each
because main() creates two squirrels.)

Starting!
Starting!
Cleaning up my mess!
Cleaning up my mess!

If the Walnut class also had a constructor and destructor, and you made the
MyDinner property a variable in the Squirrel class, rather than a pointer, the
computer would create the Walnut instance after it creates the Squirrel instance,
but before it calls the Squirrel() constructor. It then deletes the Walnut instance
when it deletes the Squirrel instance, after calling the ~Squirrel() destructor.
The code performs these steps for each instance of Squirrel.

CONSTRUCTORS AND DESTRUCTORS
WITH STACK VARIABLES

Listing 1-11 creates two Squirrels on the heap by using pointers and calling

Squirrel xSam = new Squirrel;
Squirrel xSally = new Squirrel;

But you could also create them on the stack by declaring them without pointers:

Squirrel Sam;
Squirrel Sally;

If you do this, the application will run fine, provided that you remove the delete lines.
You do not delete stack variables. The computer calls the destructor when the main()
function ends. That's the general rule with objects on the stack: They are created when
you declare them, and they stay until the function ends.

BOOK 2 Understanding Objects and Classes

)
TECHNICAL
STUFF

Adding parameters to constructors

Like other methods, constructors allow you to include parameters. When you do,
you can use these parameters in the initialization process. To use them, you list
the arguments inside parentheses when you create the object. Because construc-
tors have parameters, you can create multiple overloaded constructors for a class
by varying the number and type of parameters.

Although int has a constructor, it isn’t a class. However, the runtime library (that
big mass of code that gets put in with your application by the linker) includes a
constructor and destructor that you can use when calling new for an integer.

Suppose that you want the Squirrel class to have a name property. Although
you could create an instance of Squirrel and then set its name property, you
can specify the name directly by using a constructor. The constructor’s prototype
looks like this:

Squirrel(string StartName);
Then, you create a new instance like so:

Squirrel *Sam = new Squirrel("Sam");

The constructor is expecting a string, so you pass a string when you create the
object.

The SquirrelClass example, shown in Listing 1-12, presents an application
that includes all the basic elements of a class with a constructor that accepts
parameters.

m Placing Parameters in Constructors

#include <iostream>
using namespace std;

class Squirrel {
private:
string Name;
public:
Squirrel(string StartName);
(continued)

CHAPTER 1 Working with Classes 263

Working with Classes

void WhatIsMyName();

};

Squirrel::Squirrel(string StartName) {
cout << "Starting!" << endl;
Name = StartName;

void Squirrel::WhatIsMyName() {
cout << "My name is " << Name << endl;

}

int main()

{
Squirrel xSam = new Squirrel("Sam");
Squirrel *Sally = new Squirrel("Sally");
Sam->WhatIsMyName();
Sally->WhatIsMyName();
delete Sam;
delete Sally;
return 0;

}

Inmain(), you pass a string into the constructors. The constructor code takes the
StartName parameter and copies it to the Name property. The WhatIsMyName()
method writes Name to the console.

Building Hierarchies of Classes

When you start going crazy describing classes, you usually discover hierar-
chies of classes. For example, you have a class Vehicle that you want to divide
into classes: Car, PickupTruck, TractorTrailer, and SUV. The Car class is fur-
ther divided into the StationWagon, FourDoorSedan, and TwoDoorHatchback
classes.

264 BOOK 2 Understanding Objects and Classes

Or you could divide Vehicle into car brands, such as Ford, Honda, and Toyota.
Then you could divide the class Toyota into models, such as Prius, Avalon,
Camry, and Corolla. You can create similar groupings of objects for the other
class hierarchies; your decision depends on how you categorize things and how
the hierarchy is used. In the hierarchy, class Vehicle is at the top. This class has
properties you find in every brand or model of vehicle. For example, all vehicles
have wheels. How many they have varies, but it doesn’t matter at this point,
because classes don’t have specific values for the properties.

Each brand has certain characteristics that might be unique to it, but each has all
the characteristics of class Vehicle. That’s called inheritance. The class Toyota,
for example, has all the properties found in Vehicle. And the class Prius has all
the properties found in Toyota, which includes those inherited from Vehicle.

Creating a hierarchy in C++

In C++, you can create a hierarchy of classes. When you take one class and create
a new one under it, such as creating Toyota from Vehicle, you are deriving a new
class, which means Toyota is a child of Vehicle in the hierarchy.

To derive a class from an existing class, you write the new class as you would any
other class, but you extend the header after the class name with a colon, :, the
word public, and then the class you’re deriving from, as in the following class
header line:

class Toyota : public Vehicle {

When you do so, the class you create (Toyota) inherits the properties and methods
from the parent class (Vehicle). For example, if Vehicle has a public property
called NumberOfWheels and a public method called Drive(), the class Toyota has
these members, although you didn’t write the members in Toyota.

The VehicleClass example, shown in Listing 1-13, demonstrates class inheri-
tance. It starts with a class called Vehicle, and a derived class called Toyota. You
create an instance of Toyota in main() and call two methods for the instance,
MeAndMyToyota() and Drive(). The definition of the Toyota class doesn’t show
aDrive() function. The Drive() function is inherited from the Vehicle class.
You can call this function like a member of the Toyota class because in many
ways it is.

CHAPTER 1 Working with Classes 265

Working with Classes

m Deriving One Class from Another

266

#include <iostream>
using namespace std;

class Vehicle {
public:
int NumberOfWheels;

void Drive() {
cout << "Driving, driving, driving...

}

<< endl;
¥

class Toyota : public Vehicle {
public:
void MeAndMyToyota() {
cout << "Just me and my Toyota!" << endl;
}
}

int main() {
Toyota MyCar;
MyCar . MeAndMyToyota();
MyCar.Drive();
return 0;

When you run this application, you see the output from two functions:

Just me and my Toyotal!
Driving, driving, driving...

Understanding types of inheritance

When you create a class, its methods can access both public and private proper-
ties and methods. Users of the class can access only the public properties and
methods. When you derive a new class, it cannot access the private members in
the parent class. Private members are reserved for a class itself and not for any
derived class. When members need to be accessible by derived classes, there’s a

specification you can use beyond public and private: protected.

BOOK 2 Understanding Objects and Classes

REMEMBER

Protected members and private members work the same way from a user perspec-
tive, but derived classes can access both protected and public members. Private
members are hidden from both users and derived classes. Always use protected
members when possible when you plan to derive classes from a parent class.

Creating and Using Object Aliases

REMEMBER

An alias is another name for something. If your name is Robert, someone could use
an alias of Bob when calling your name. Both Robert and Bob point to the same
person — you. However, the names are actually different. One is your real name,
Robert, and the other is your alias, Bob. In real life, using aliases can make things
easier: saying Bob is definitely easier than saying Robert (although not by much).
Using aliases in C++ applications can make things easier, too.

One of the most common reasons to use an alias in C++ is to change the manner
in which an object is accessed. Moving a pointer to an object is always going to
be easier than moving the object itself because a pointer is simply a number that
specifies the address of the object. The object could contain complex data and
pointers to yet other objects. Moving objects is complicated and messy, so devel-
opers try to avoid it at all cost.

However, sending a pointer to someone gives the recipient access to the original
data. The recipient could modify the data in ways that you don’t want. So, you
could create an alias of the original object that is a constant. No one can modify a
constant. The Ob jectAlias example, shown in Listing 1-14, demonstrates how to
create a constant alias of a string object. The same technique works with any other
sort of object you might want to work with.

m Creating an Object Alias

#include <iostream>
using namespace std;

int main() {
string OriginalString = "Hello";
const string &StringCopy(OriginalString);
OriginalString = "Goodbye";
cout << OriginalString << endl;
cout << StringCopy << endl;
return 0;

CHAPTER 1 Working with Classes 267

Working with Classes

268

The code begins by creating a string named OriginalString that contains a
value of Hello. It then creates a const string alias of OriginalString named
StringCopy. When the code changes the value of OriginalString, the value of
StringCopy is also changed because StringCopy points to the same location in
memory. So when you run this example, you see output of

Goodbye
Goodbye

It may not seem like you’ve accomplished anything, but if you try to modify the
value of StringCopy, Code::Blocks outputs an error message like this:

error: passing 'const string {aka const
std::basic_string<char>}' as 'this' argument of
'std::basic_string<_CharT, _Traits, _Alloc>&

std: :basic_string<_CharT, _Traits,
_Allocs : :operator=(const _CharTx) [with _CharT = char;
_Traits = std::char_traits<char>; _Alloc =
std::allocator<char>; std::basic_string<_CharT, _Traits,
_Allocy = std::basic_string<char>]' discards qualifiers
[-fpermissive] |

The point is that you can’t modify the value of StringCopy, but you can modify
the value of OriginalString. Sending StringCopy to someone who needs access
to the value is safe. Just to ensure that you understand what is happening, try
making StringCopy a standard string rather than a const string. You’ll be able
to modify the value, and the modification will now affect OriginalString as well.
StringCopy truly is an alias of OriginalString, but as a const string, it’s an
alias that prevents modification of the underlying string value.

BOOK 2 Understanding Objects and Classes

IN THIS CHAPTER

» Using comments

» Working with conversions, consoles,
and preprocessor directives

» Manipulating constants, enums, and
random numbers

» Structuring code and data with
switches and arrays

Chapter 2

Using Advanced C++
Features

his chapter will amaze you because C++ has amazing advanced features. It

begins by helping you understand how to leave notes for yourself so that

you don’t embarrass yourself in front of your boss when you forget how
your code works. Comments can do a lot more, but for the most part, they’re there
to help you remember.

The next sections are all about helping your code jump through new hoops. You
discover that you can turn an int into a string, connect with the user at the com-
mand line, and tell the compiler to do something new with your code as part of
a preprocessor directive. In case that isn’t enough, you also find out new ways to
create variables using constants, enums, and random numbers.

The final sections are about working with code using switches so that you don’t
have to keep creating huge if. . .else if statement chains. You also gain knowl-
edge of the humble array, which will make your life considerably easier in so
many ways that space doesn’t allow total disclosure. Suffice it to say that storing
lists of data elements in a convenient form is just the start.

CHAPTER 2 Using Advanced C++ Features 269

Filling Your Code with Comments

270

Your boss is irritable because that rush job you did was a little too rushed and
now the application keeps crashing. So, you have your boss standing there, right
behind you, wanting you to explain your code, except that you can’t. Your ner-
vousness makes all the code look like a jumble of alien words that you swear you
didn’t write, even though you know you did. Why can’t you remember? At this
point, you’d just love to go somewhere and hide for a while, but the boss is smok-
ing mad and you’ll never make your escape. You can avoid this situation and many
others in which your memory about your code is apt to fail. To remember what
your code does, you put comments into it. A comment is simply some words in the
code that the compiler ignores and include for the benefit of the humans reading
the code. Comments are also quite useful for colleagues who come by to help you
out of jams, or to allow someone to fix your code over the weekend when you’d
much rather spend time at the beach. Comments are essential to good coding. For
example, you may have some code like this:

total = 10;
for (i = 9@; i < 10; i++)
{

total = (total + i) * 3;

But this code may not be clear to you if you put it away for six months and come
back later to look at it. So instead, you can add some comments. You denote a
comment in C++ by starting a line with two slashes, like this:

// Initialize total to the number
// of items involved.
total = 109;

// Calculate total for the
// first ten sets.
for (i = @; i < 10; i++)
{
total = (total + i) * 3;

Now anyone working on the project can understand what the code does. Note the
white space between the groups of code. Using white space helps someone looking
at the code see where one thought ends and another begins. You should always
include white space in your code so that everyone can read the code more easily.
Of course, you could put in comments like this:

BOOK 2 Understanding Objects and Classes

TIP

TIP

// My salary is too low
// I want a raise
total = 10;

// Someday they'll recognize
// my superior talents!
for (i = @; i < 10; i++)
{
total = (total + i) * 3;

However, comments like this don’t have much use in the code; besides, they may
have the reverse effect from the one you’re hoping for! The compiler ignores
comments; they’re meant for other humans. You can write whatever you want as
comments, and the compiler pretends that it’s not even there.

A comment begins with //, and it can begin anywhere on the line. In fact, contrary
to what you might think, you can even put comments at the end of a line contain-
ing C++ code, instead of on a separate line. Using comments on a code line lets you
focus a comment on just that line, as follows:

int subtotal = 10; // Initialize subtotal to 10@.

This comment gives a little more explanation of what the line does. You usually
use line comments like this when you want to tell others what kind of information
a variable holds or explain a complex task. Normally, you explain blocks of code as
shown earlier in this section.

You can use two kinds of comments in C++. One is the double slash (as already
described). The other kind of comment begins with a slash-asterisk, /x, and ends
with an asterisk-slash, x/. The comments go between these delimiters (special
character sequences) and can span several lines, as in the following example:

/* This application separates the parts of the
sandwich into its separate parts. This
process is often called "separation of
parts".

(c) 2020 Sandwich Parts Separators, Inc.

*/

This is all one comment, and it spans multiple lines. You normally use this kind
of comment to provide an overview of a task or describe the purpose of a function.
This kind of comment also works well for the informational headings that some
large company applications require. As with other comments, you can put these

CHAPTER 2 Using Advanced C++ Features 271

Using Advanced C++

Features

WARNING

anywhere in your code, as long as you don’t break a string or word in two by putt-
ing a comment in the middle. Much of the code in the remainder of this chapter
has comments in it so that you can see how to use comments and so that you can
get a few more ideas about how the code works.

Some beginning programmers get the mistaken idea that comments appear in the
application window when the application runs. That is not the case. A comment
does not write anything to the console. To write things to the console, use cout.

Converting Types

272

Sometimes, you just don’t have the type of things you want. You might want to
trade in your 2014 Ford Taurus for that brand-new Porsche. But, needless to say,
unless you have plenty of money, that might be difficult.

But converting between different types in C++ — now, that’s a lot easier. For
example, you may have a string variable called digits, and it holds the string
"123". Further, you want to somehow get the numbers inside that string into an
integer variable called amount. Thus, you want amount to hold the value 123; that
is, you want to convert the string to a number.

Understanding how int and string
conversions work

In Listing 2-1, later in this chapter, you see how you can convert between numbers
and strings. Book 1, Chapter 8 shows some sample code for converting a number
to a string. This example employs that same technique along with a similar tech-
nique for converting a string back to a number.

Converting strings is an interesting concept in C++ because an outstanding feature
lets you write to and read from a string just as you would to and from a console.
For example, although you can write a number 12 out to a console by using code
like this:

cout << 12;

you can actually do the same thing with strings: You can write a number 12 to a
string, as in

mystring << 12;

BOOK 2 Understanding Objects and Classes

After this line runs, mystring contains the value "12". However, to do this, you
need to use a special form of string called a stringstream. In the never-ending
world of computer terminology, a stream is something that you can write to and
read from in a flowing fashion (think about bits flowing through a wire — much as
a stream flows along a waterbed). For example, you might write the word "hello"
to a stringstream, and then the number 87, and then the word "goodbye". After
those three operations, the string contains the value "hello87goodbye".

Similarly, you can read from a stream. In the section “Reading from the Con-
sole,” later in this chapter, you discover how you can read from a console by using
the > notation. When you read from the console, although your application stops
and waits for the user to enter something, the real stream technology takes place
after the user types something and presses Enter: After the console has a series
of characters, your application reads in the characters as a stream, one character
after another. You can read a string, and then a series of numbers, and another
string, and so on.

With stringstream, you can do something similar. You would fill the string with
something rather than have the user fill it, as in the case of a console. From there,
you can begin to read from the string, placing the values into variables of different
types. One of these types is int. But because the stringstream is, at heart, just
a string, that’s how you convert a string of digits to an integer: You put the digit
characters in the string and read the string as a stream into your integer.

The only catch to using these techniques is that you need to know in advance
which kind of streaming you want to do. If you want to write to the stringstream,
you create an instance of a class called ostringstream. (The o is for output.) If
you want to read from a stringstream, you create an instance of a class called
istringstream. (The i is for input.)

Seeing int and string conversions in action

The TypeConvert example, shown in Listing 2-1, demonstrates several kinds of
int and string conversions that include truncating (lopping the decimal portion
off) and rounding (bringing the number value up or down to the nearest whole
number). The listing also includes two handy functions that you may want to
save for your own programming experience later. One is called StringToNumber ()
(converts a string to a number) and the other is called NumberToString() (con-
verts a number to a string). This example includes plenty of comments as well
as demonstrates some extremely simple onscreen formatting using the tab (\t)
escape character (see the “Tabbing your output” section of Book 1, Chapter 3 for
details).

CHAPTER 2 Using Advanced C++ Features 273

Using Advanced C++

Features

m Converting Between Types Is Easy

#include <iostream>
#include <sstream> // for istringstream, ostringstream

using namespace std;

int StringToNumber(string MyString) {
// Converts from string to number.
istringstream converter(MyString);
// Contains the operation results.
int result;

// Perform the conversion and return the results.
converter »>> result;
return result;

string NumberToString(int Number) {
// Converts from number to string.
ostringstream converter;

// Perform the conversion and return the results.
converter << Number;
return converter.str();

int main() {
// Contains the theoretical number of kids.
float NumberOfKids;
// Contains an actual number of kids.
int ActualKids;

/* You can theoretically have 2.5 kids, but in the
real world, you can't. Convert the theoretical number
of kids to a real number by truncating NumberOfKids
and display the results. x/

NumberOfKids = 2.5;

ActualKids = (int)NumberOfKids;

cout << "Float to Integer" << "\tTruncated" << endl;

cout << NumberOfKids << "\t\t\t" << ActualKids << endl;

// Perform the same task as before, but use a
// theoretical 2.1 kids this time.

274 BOOK 2 Understanding Objects and Classes

NumberOfKids = 2.1;
ActualKids = (int)NumberOfKids;
cout << NumberOfKids << "\t\t\t" << ActualKids << endl;

// This time we'll use 2.9 kids.

NumberOfKids = 2.9;

ActualKids = (int)NumberOfKids;
cout<<NumberOfKids<<"\t\t\t"<<ActualKids<<endl<<endl;

// This process rounds the number, instead of

// truncating it. We do it using the same three

// numbers as before.

NumberOfKids = 2.5;

ActualKids = (int)(NumberOfKids + .5);

cout << "Float to Integer" << "\tRounded" << endl;

cout << NumberOfKids << "\t\t\t" << ActualKids << endl;

// Do it again using 2.1 kids.

NumberOfKids = 2.1;

ActualKids = (int)(NumberOfKids + .5);

cout << NumberOfKids << "\t\t\t" << ActualKids << endl;

// Do it yet again using 2.9 kids.

NumberOfKids = 2.9;

ActualKids = (int)(NumberOfKids + .5);
cout<<NumberOfKids<<"\t\t\t"<<ActualKids<<endl<<endl;

// In this case, use the StringToNumber() function to
// perform the conversion.

cout << "String to number" << endl;

int x = StringToNumber("12345") x 50;

cout << x << endl << endl;

// In this case, use the NumberToString() function to
// perform the conversion.

cout << "Number to string" << endl;

string mystring = NumberToString(80525323);

cout << mystring << endl;

return 0;

CHAPTER 2 Using Advanced C++ Features

275

Using Advanced C++

Features

REMEMBER

FIGURE 2-1:

The formatted
output shows
the difference

between

truncating and

276

rounding.

The comments in Listing 2-1 give you a complete dialogue of how the code works,
so no discussion of it here is needed. Of course, you do want to see the output,
which appears in Figure 2-1. The important thing to remember is that rounding
is different from truncating in the results that it produces, and each method is
appropriate at specific times depending on the rules you want to use. For example,
when calculating, in whole dollars, how much someone owes you, you don’t want
to rely on truncating or you’ll end up with less money.

2| CACPP_AIO4\Bookl\Chapterd2\TypeConvertibin\Debug\TypeConvert.exe [l[E =]
lgat to Integer ;Puncated -

2.1 2 E

2.9 2

Float to Integer Rounded

2.5 3

2.1 2

2.9 3

3

Ztring to nunber

617258

Hunber to string

80525323

Process returned @ (Bx0) execution time : B.824 s
Press any key to continue.

Considering other conversion issues

Another kind of conversion that’s useful is converting floating-point numbers
(that is, numbers with a decimal point) and integers and vice versa. In C++, this
conversion is easy: You just copy one to the other, and C++ takes care of the rest.

The only catch is that when C++ converts from a float to an integer, it always trun-
cates. That is, it doesn’t round up: When it converts 5.99 to an integer, it doesn’t
go up to 6; it goes down to 5. But there’s an easy trick around that: Add 0.5 to the
number before you convert it. If the number is in the upper half (that is, from 0.5
t0 ©.9999 and so on), then adding 0. 5 first takes the number above or equal to the
upper whole number. Then, when the function rounds the number, the number
rounds down to the upper whole number. For example, if you start with 4.6, just
converting it outputs 4. But if you add 0.5, the 4.6 becomes 5.1, and then when
you convert that, you get 5. It works!

Going in the other direction is even easier: To convert an integer to a float, you
just copy it. If i is an integer and f is a float, you just set it as follows to convert it:

it = i

7

BOOK 2 Understanding Objects and Classes

REMEMBER

Whenever you convert from a float to an int or from an int to float, you must
tell the compiler that you know what you’re doing by adding (int) or (float) in
front of the variable. Adding these keywords is called coercion or type conversion.
The act of coercing one type to another is called casting. For example, the following
line tells the compiler that you know you’re converting from a float to an int:

ActualKids = (int)NumberOfKids;

If you leave out the (int) part, the compiler normally displays a warning like
this one:

warning: converting to 'int' from 'float'

Using the proper coercion code is important because it also tells other developers
that you really do intend to perform the type conversion. Otherwise, other devel-
opers will point to that area of your code and deem it the source of an error, when
it might not be the true source. Using proper coding techniques saves everyone
time.

Reading from the Console

AN

WARNING

Throughout this book, you have used the console to see example output. You can
also use the console to get information from the user — a topic briefly mentioned
in the “Reading from the Console” section of Book 1, Chapter 4. To use the console
to get information from the user, instead of using the usual << with cout to write
to the console, you use the >> operator along with cin (pronounced “see-in”).

In the old days of the C programming language, reading data from the console and
placing it in variables was somewhat nightmarish because it required you to use
pointers. In C++, that’s no longer the case. If you want to read a set of characters
into a string called MyName, you just type

cin >> MyName;

That’s it! The application pauses, and the user can type something at the console.
When the user presses Enter, the string the user typed goes into the MyName string.

Reading from the console has some catches. First, the console uses spaces as
delimiters. That means that if you put spaces in what you type, only the let-
ters up to the space are put into the string. Anything after the space, the console
saves for the next time your application calls cin. That situation can be confusing.
Second, if you want to read into a number, the user can type any characters, not

CHAPTER 2 Using Advanced C++ Features 277

Using Advanced C++

Features

just numbers. The computer then goes through a bizarre process that converts any
letters into a meaningless number. Not good.

The ReadConsoleData example, shown in Listing 2-2, shows you how to read a
string and then a number from the console. Next, it shows you how you can force
the user to type only numbers. And finally, it shows how you can ask for a pass-
word with only asterisks appearing when the user types.

To make these last two tasks work correctly you use the conio library. This library
gives you better access to the console, bypassing cin. This example also uses the
StringToNumber () function, described in the “Seeing int and string conversions
in action” section, earlier in this chapter.

m Having the User Type Something

#include <iostream>

#include <sstream>
#include <conio.h>

using namespace std;

int StringToNumber(string MyString) {
// Holds the string.
istringstream converter(MyString);
// Holds the integer result.
int result;

// Perform the conversion.
converter »>> result;
return result;

string EnterOnlyNumbers() {

; // Holds the numeric string.
char ch = getch(); // Obtains a single character.

string numAsString =

// Keep requesting characters until the user presses
// Enter.
while (ch !'= '\r') { // \r is the enter key
// Add characters only if they are numbers.
if (ch »>= '@' & ch <= '9") {
cout << ch;

278 BOOK 2 Understanding Objects and Classes

numAsString += ch;

}

// Get the next character from the user.
ch = getch();

return numAsString;

}

string EnterPassword() {
// Holds the password string.
string numAsString = "";
// Obtains a single character from the user.
char ch = getch();

// Keep requesting characters until the user presses
// Enter.

while (ch != '\r') { // \r is the enter key
// Display an asterisk instead of the input character.
cout << 'x';

// Add the character to the password string.
numAsString += ch;

// Get the next character from the user.

ch = getch();

return numAsString;

int main() {
// Just a basic name-entering
string name;
cout << "What is your name? ";
cin >> name;
cout << "Hello " << name << endl;

// Now you are asked to enter a number,

// but the computer allows you to enter anything!
int x;

cout << endl;

cout << "Enter a number, any number! ";

(continued)

CHAPTER 2 Using Advanced C++ Features 279

Using Advanced C++

Features

EIEITEEIN (continued

280

cin >> x;
cout << "You chose

n

<< X << endl;

// This time you can only enter a number.
cout << endl;

cout << "This time enter a number!" << endl;
cout << "Enter a number, any number! ";
string entered = EnterOnlyNumbers();
int num = StringToNumber (entered);

cout << endl << "You entered " << num << endl;

// Now enter a password!

cout << endl;

cout << "Enter your password! ";
string password = EnterPassword();

cout << endl << "Shhhh, it's " << password << endl;
return 0;

The first parts of main() are straightforward. It calls cin >> name; to read a
string, name, from the console; then main() prints Hello plus name to the console.
Next,main() callscin >> x; toread and print an integer from the console.

Calling EnterOnlyNumbers() ensures that the user can enter only digits. The first
thing EnterOnlyNumbers() does is declare a string called numAsString. When the
user types a letter or number, it comes in as a character, so the code saves them
one by one in a string variable (because a string is really a character string). To
find out what the user types, EnterOnlyNumbers() calls getch(), which returns a
single character. (For example, if the user presses Shift+A to produce a capital A,
getch() returns the character A.)

@ AVOIDING GETCH() FUNCTION PROBLEMS
060

TECHNICAL Some compilers complain if you use the getch() function. If you want to use it, try the
STUFF _getch() function instead. Both functions perform the same task. Some vendors claim
that _getch() is compliant with the International Standards Organization (ISO), but it
isn't. The getch() and _getch() functions are useful, low-level library functions that
you can use without hesitation, but they don’t appear as part of any standard. The GNU
GCC compiler, provided with Code::Blocks, can use either form of the function.

BOOK 2 Understanding Objects and Classes

TIP

After retrieving a single character, EnterOnlyNumbers() starts a loop, watching
for the '\r' character, which represents a carriage return. The loop continues
processing characters until the user presses the Enter key. At that point, the char-
acter received by getch() is '\r', so the loop exits and returns the number as a
string.

Inside the loop, EnterOnlyNumbers() tests the value of the character, seeing
whether it’s in the range '@' through '9'. Yes, characters are associated with a
sequence, and fortunately, the digits are all grouped together. So it’s possible to
determine whether the character is a digit character by checking to see whether
it’s in the range '@' through '9':

if (ch >= 'Q@' && ch <= '9")

If the user presses a number key, the code enters the i f statement. Because the
user pressed a number key, the code writes the value to the console and adds
the digit character to the end of the string. The code has to write it to the console
because, when it calls getch(), the computer doesn’t automatically print any-
thing. But that’s a good thing here, because after leaving the if statement, the
code calls getch() again for another round. Thus, if the user pressed something
other than the Enter key or a number, the character the user pressed doesn’t even
appear on the console, and it doesn’t get added to the string, either.

The EnterPassword() routine is similar to the EnterOnlyNumbers() routine,
except that it allows the user to enter any character (including spaces). Sono if
statement is filtering out certain letters. And further, instead of printing only the
character that the user types, it prints an asterisk: . That gives the feeling of a
password entry, which is a good feeling.

When you run this application, you get output similar to the following:

What is your name? Hank
Hello Hank

Enter a number, any number! abc123
You chose 0

This time you'll only be able to enter a number!
Enter a number, any number! 5001

You entered 5001

Enter your password! sskksxsk
Shhhh, it's hello

CHAPTER 2 Using Advanced C++ Features 281

Using Advanced C++

Features

The first line went well; there aren’t any spaces so the name Hank made it into
the output. But then when asked to enter a number, the user types abc123. The
output of @ indicates that cin can’t convert the input to an int. If you type 123abc
instead, you see 123 as the output. The next section doesn’t allow the user to type
anything but numbers because it calls EnterOnlyNumbers(). In the final two lines,
the user enters a password, and you can see that the computer displays asterisks
after each key press. This is because EnterPassword() contains the line cout <«
"x' ;. You see the actual password output as the last on the screen.

Understanding Preprocessor Directives

282

When you compile an application, the first thing the compiler does is run your
code through something called a preprocessor. The preprocessor simply looks for
certain statements in your code that start with the # symbol. You have already
seen one such statement in every one of your applications: #include. These pre-
processor statements are known as directives because they tell the preprocessor
to do something; they direct it. The following sections tell you more about the
preprocessor and describe how it works.

Understanding the basics of preprocessing

Think of the preprocessor as just a machine that transforms your code into a tem-
porary, fixed-up version that’s all ready to be compiled. For example, look at this
preprocessor directive:

#include <iostream>
If the preprocessor sees this line, it inserts the entire text from the file called
iostream (yes, that’s a filename; it has no extension) into the fixed-up version of

the source code. Suppose that the iostream file looks like this:

int hello = 10;
int goodbye = 20;

Just two lines are all that’s in it. (Of course, the real iostream file is much more
sophisticated.) And suppose that your own source file, MyProgram. cpp, has this in
it (as found in the Preprocessor example):

#include <iostream>

int main()

BOOK 2 Understanding Objects and Classes

std: :cout << "Hello world!" << std::endl;
return 0;

}

Then, after the preprocessor finishes its preprocessing, it creates a temporary
fixed-up file (which has the lines from the iostream file inserted into the MyPro-
gram.cpp file where the #include line had been) to look like this:

int hello = 10;
int goodbye = 20;

int main()

{
std::cout << "Hello world!" << std::endl;
return 0;

}

In other words, the preprocessor replaced the #include line with the contents of
that file. Now, the iostream file could have #include lines, and those lines would
be replaced by the contents of the files they refer to. As you may imagine, what
started out as a simple application with just a few lines could actually have hun-
dreds of lines after the preprocessor gets through with it.

Creating constants and macros
with #define

The preprocessor also provides you with a lot of other directives besides #include.
One of the more useful ones is the #define directive. Here’s a sample #define
line:

#define MYSPECIALNUMBER 42

After the preprocessor sees this line, every time it encounters the word MYSPE-
CIALNUMBER, it replaces it with the word 42 (that is, whatever sequence of letters,
numbers, and other characters follow the definition). In this case, #define creates
a kind of constant where the word is easier to understand than the value associ-
ated with it. But #define also lets you create what are called macros, which are a
sort of script. This line defines the o1dmax () macro:

#define oldmax(x, y) ((x)>(y)2(x):(y))

CHAPTER 2 Using Advanced C++ Features 283

Using Advanced C++

Features

SEEING THE PREPROCESSOR IN ACTION

You may want to see how the preprocessor actually works. To see it in action, you
must open a Windows command prompt or a terminal window to the location of your
source code, such as C: \CPP_AI04\BookII\Chapter@2\Preprocessor. The next
thing you need to know is where Code::Blocks is located on your system, such asC: \
CodeBlocks\MinGW\bin. At this point, you can type a special GCC compiler command
with the name of the . CPP file you want to check out, such asMain.cpp, and a special
command-line switch, —E. For a Windows system, you can probably type \CodeBlocks\
MinGW\bin\GCC -E main.cpp >> Preprocessed.cpp and press Enter.

The —-E command-line switch tells the GCC compiler you normally use with Code::Blocks
to output only preprocessed code. The > > operator tells Windows to place the out-

put in Preprocessed.cpp rather than display it onscreen. When you run the default
Code::Blocks code through the preprocessor it contains somewhere around 16,497
lines! You can see the output in Preprocessed. cpp, which is included in the
Preprocessor folder of the downloadable source code. Many of those are blank lines,
for various reasons, but nevertheless, it's a very big file!

You actually have access to a second preprocessor. To access the second preprocessor,
type \CodeBlocks\MinGW\bin\CPP main.cpp >> Preprocessed2.cpp and press Enter
in the same folder as your source code (as in the previous example using GCC). CPP
stands for C preprocessor and it's interesting to look at its output, which is precisely the
same as using GCC with the —-E command-line switch.

In looking at the preprocessor output, you see a combination of actual code and what
are called line markers. A line marker is a kind of preprocessor comment that tells you
where something comes from. Here is a small sample of what you see when you pre-
process themain.cpp file of the Preprocessor example. Some lines have been pur-
posely shortened, with the missing content replaced by an ellipsis (. . .):

1 "main.cpp"

1 "<built-in>"

1 "<command-line>"

1 "main.cpp"

1 "C:/CodeBlocks/MinGW/1lib/.../include/c++/iostream" 1 3
36 "C:/CodeBlocks/MinGW/1ib/.../include/c4++/iostream" 3

#

The comments all take the same form: the line number within the target file; the name
of the target file; and processing flags used with the target file. So, the example starts
inmain.cpp line 1, looks for the built-in and command-1ine entries but doesn't find

284 BOOK?2

AN

WARNING

them, and then starts again withmain. cpp line 1. None of these entries has flags. The
next line does. It appears onmain.cpp line 1 with the #include <iostream> direc-
tive. The preprocessor opens iostream and starts processing it on line 36. Both these
lines have flags with these meanings:

1. Start a new file (iostream in the example code).
2. Return to the previous file.

3. The following text comes from a system header file, so the compiler should ignore
certain warnings.

4. The following text should be treated as if it is wrapped in an extern "C" block.

This is enough information to get you started in understanding how preprocessed out-
put works. You can learn more athttps://gcc.gnu.org/onlinedocs/gcc-3.4.6/
cpp/Preprocessor—-Output.html.

After the preprocessor sees this line, it replaces every occurrence of oldmax()
followed by two arguments with ((x)>(y)?(x):(y)), using the appropriate sub-
stitutes for x and y. For example, if you then have this line

q = oldmax(abc, 123);
the preprocessor replaces the line with
q = ((abc)>(123)?(abc):(123));

and does nothing more with the line. Book 1, Chapter 4, refers to the output code
as a conditional operator. The variable q is set to the value in abc if the abc value
is greater than 123; otherwise, the q gets set to 123.

However, the preprocessor doesn’t have an understanding of the conditional oper-
ator, and q doesn’t get set to anything during preprocessing. All the preprocessor
knows is how to replace text in your source code file. The preprocessor replaced
the earlier line of code that contained oldmax() with the next line containing the
conditional operator. That’s it. The preprocessor doesn’t run any code, it does-
n’t make the comparison, and it doesn’t put anything in q. The preprocessor just
changes the code.

Notice that #define oldmax(x, y) places x andy in parentheses. This is because
oldmax() takes two arguments, x and y, and the parentheses serve to tell the

CHAPTER 2 Using Advanced C++ Features 285

Using Advanced C++

Features

https://gcc.gnu.org/onlinedocs/gcc-3.4.6/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/gcc-3.4.6/cpp/Preprocessor-Output.html

286

WARNING

compiler that they are arguments. Consequently, g = oldmax(abc, 123); is
oldmax() with the required arguments, abc and 123.

Although you can still use #define statements in C++, in general you should
simply create a function instead of a macro or use a constant instead of a symbol.
Symbols and macros are used in older and outdated styles of programming.
However, you still see them used for some purposes, such as conditional compi-
lation, which appears in the next section of the chapter.

Performing conditional compilation

At times, you may want to compile one version of your application for one situa-
tion and compile another for a different situation. For example, you may want to
have a debug version of your application that has in it some extra goodies that spit
out special information for you that you can use during the development of your
application. Then, after your application is ready to ship to the masses so that
millions of people can use it, you no longer want