

C++
A L L - I N - O N E

4th Edition

by John Paul Mueller

C++ All-in-One For Dummies®, 4th Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2021 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without
written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE
IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020949804

ISBN: 978-1-119-60174-6

ISBN 978-1-119-60175-3 (ebk); ISBN 978-1-119-60173-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction. . 1

Book 1: Getting Started with C++ . . 7
CHAPTER 1:	 Configuring Your Desktop System. . 9
CHAPTER 2:	 Configuring Your Mobile System. . 27
CHAPTER 3:	 Creating Your First C++ Application. . 45
CHAPTER 4:	 Storing Data in C++. 69
CHAPTER 5:	 Directing the Application Flow. . 105
CHAPTER 6:	 Dividing Your Work with Functions. . 139
CHAPTER 7:	 Splitting Up Source Code Files. . 169
CHAPTER 8:	 Referring to Your Data Through Pointers . . 187

Book 2: Understanding Objects and Classes. 225
CHAPTER 1:	 Working with Classes. . 227
CHAPTER 2:	 Using Advanced C++ Features. . 269
CHAPTER 3:	 Planning and Building Objects. . 309
CHAPTER 4:	 Building with Design Patterns . . 335

Book 3: Understanding Functional Programming. 367
CHAPTER 1:	 Considering Functional Programming . . 369
CHAPTER 2:	 Working with Lambda Expressions. . 397
CHAPTER 3:	 Advanced Lambda Expressions. . 415

Book 4: Fixing Problems. . 427
CHAPTER 1:	 Dealing with Bugs. . 429
CHAPTER 2:	 Debugging an Application. . 443
CHAPTER 3:	 Stopping and Inspecting Your Code. . 457
CHAPTER 4:	 Traveling About the Stack. . 469

Book 5: Advanced Programming. . 479
CHAPTER 1:	 Working with Arrays, Pointers, and References 481
CHAPTER 2:	 Creating Data Structures. . 515
CHAPTER 3:	 Constructors, Destructors, and Exceptions. . 541
CHAPTER 4:	 Advanced Class Usage. . 571
CHAPTER 5:	 Creating Classes with Templates. . 601
CHAPTER 6:	 Programming with the Standard Library. . 637

C++ All-in-One

Book 6: Reading and Writing Files . . 681
CHAPTER 1:	 Filing Information with the Streams Library . . 683
CHAPTER 2:	 Writing with Output Streams. . 697
CHAPTER 3:	 Reading with Input Streams. . 711
CHAPTER 4:	 Building Directories and Contents. . 727
CHAPTER 5:	 Streaming Your Own Classes. . 737

Book 7: Advanced Standard Library Usage 751
CHAPTER 1:	 Exploring the Standard Library Further. . 753
CHAPTER 2:	 Working with User-Defined Literals (UDLs). . 779
CHAPTER 3:	 Building Original Templates. . 795
CHAPTER 4:	 Investigating Boost. . 817
CHAPTER 5:	 Boosting up a Step. . 849

Index. . 869

Table of Contents v

Table of Contents
INTRODUCTION . . 1

About This Book. . 1
Foolish Assumptions. . 4
Icons Used in This Book. . 4
Beyond the Book. . 5
Where to Go from Here . . 6

BOOK 1: GETTING STARTED WITH C++. . 7

CHAPTER 1:	 Configuring Your Desktop System. . 9
Obtaining a Copy of C++ 20. . 10
Obtaining Code::Blocks. . 11
Installing Code::Blocks . . 12

Working with Windows. . 12
Working with Mac OS X. . 13
Using the standard Linux installation. . 14
Using the graphical Linux installation . . 15

Touring the Essential Code::Blocks Features. . 17
Starting Code::Blocks for the first time . . 18
Opening the sample projects. . 19
Viewing the essential windows . . 20

Using Other IDEs. . 25

CHAPTER 2:	 Configuring Your Mobile System. 27
Obtaining CppDroid . . 28

Understanding why CppDroid is such a great choice 29
Getting your copy of CppDroid. . 31
Ensuring you get a good install. . 32

Considering Other Alternatives. . 32
Working with C4Droid. . 33
Getting multiple language support with AIDE. 33
Using web-based IDEs. .34

Touring the Essential CppDroid Features . . 35
Getting started with CppDroid . . 35
Accessing an example. . 37
Working with a simple online project. . 37
Accessing your source code. . 38
Considering differences with the desktop environment. 39

vi C++ All-in-One For Dummies

Obtaining CppDroid Help. . 40
Working with the Help documentation . . 40
Getting community support. . 41
Using the free examples. . 42
Accessing the tutorials . . 43

CHAPTER 3:	 Creating Your First C++ Application. 45
Code::Blocks Creating a Project. . 46

Understanding projects . . 46
Defining your first project . . 47
Building and executing your first application. 52

Typing the Code. . 53
Starting with Main. . 55
Showing Information . . 55

Doing some math . . 60
Tabbing your output. . 66

Let Your Application Run Away. . 67

CHAPTER 4:	 Storing Data in C++ . . 69
Putting Your Data Places: Variables . . 70

Creating an integer variable. . 70
Declaring multiple variables . . 73
Changing values. . 74
Setting one variable equal to another . . 74
Initializing a variable. . 75
Creating a great name for yourself. . 76

Manipulating Integer Variables. . 78
Adding integer variables. . 78
Subtracting integer variables. . 82
Multiplying integer variables. . 84
Dividing integer variables. . 86

Characters . . 88
Null character. . 89
Nonprintable and other cool characters. . 89

Strings. . 93
Getting a part of a string . . 94
Changing part of a string . . 95
Adding onto a string. . 96
Adding two strings. . 97

Making Decisions Using Conditional Operators. 98
Telling the Truth with Boolean Variables. . 100
Reading from the Console. . 102

Table of Contents vii

CHAPTER 5:	 Directing the Application Flow. . 105
Doing This or Doing That. . 106
Evaluating Conditions in C++. . 107

Finding the right C++ operators . . 108
Combining multiple evaluations. . 110

Including Evaluations in C++ Conditional Statements. 111
Deciding what if and also what else. . 112
Going further with the else and if. . 113

Repeating Actions with Statements That Loop. 115
Understanding how computers use loops 116
Looping situations. . 116

Looping for. . 117
Performing a simple for loop. . 118
Using multiple initialization variables. . 123
Working with ranges. . 126
Placing a condition within the declaration. 128
Letting C++ determine the type. . 129

Looping while. . 130
Doing while. . 132
Breaking and continuing . . 133

Breaking . . 134
Continuing . . 135

Nesting loops. . 136

CHAPTER 6:	 Dividing Your Work with Functions 139
Dividing Your Work. . 139
Calling a Function . . 144

Passing a variable . . 146
Passing multiple variables. . 147

Writing Your Own Functions . . 148
Defining the AddOne() function. .149
Seeing how AddOne() is called . . 150
Taking the AddOne() Function apart. . 150
Considering the AddOne() parameter . . 151
Understanding the AddOne() name and type. 152

Improving On the Basic Function . . 153
Using multiple parameters or no parameters 153
Returning nothing. . 156
Keeping your variables local . . 157
Forward references and function prototypes. 159
Writing two versions of the same function. 161

viii C++ All-in-One For Dummies

Calling All String Functions. . 163
Inserting a string into a string. . 163
Removing parts of a string. . 164
Replacing parts of a string. . 164
Using the string functions together . . 164

Understanding main(). . 165

CHAPTER 7:	 Splitting Up Source Code Files. . 169
Creating Multiple Source Files. . 170

Adding a new source code file. . 170
Removing an existing source code file. . 173
Creating a project with multiple existing files. 173
Getting multiple files to interact. . 177

Sharing with Header Files. . 179
Adding the header only once. . 182
Using angle brackets or quotes. . 182

Sharing Variables among Source Files. . 183
Using the Mysterious Header Wrappers. . 185

CHAPTER 8:	 Referring to Your Data Through Pointers. 187
Understanding the Changes in Pointers for C++ 20. 188

Avoiding broken code. . 188
Considering the issues. . 189
Writing cleaner and less bug-prone code 191

Heaping and Stacking the Variables. . 192
Getting a variable’s address. . 196
Changing a variable by using a pointer . . 198
Pointing at a string . . 200
Pointing to something else. .203
Tips on pointer variables . . 204

Creating New Raw Pointers. . 205
Using new. . 206
Using an initializer. . 208

Freeing Raw Pointers . . 209
Working with Smart Pointers. . 211

Creating smart pointers using std::unique_ptr
and std::shared_ptr. . 212
Defining nullable values using std::optional
and std::nullopt. . 216

Passing Pointer Variables to Functions . . 218
Returning Pointer Variables from Functions. . 221

Table of Contents ix

PART 2: UNDERSTANDING OBJECTS AND CLASSES. 225

CHAPTER 1:	 Working with Classes. . 227
Understanding Objects and Classes. . 227

Classifying classes and objects . . 230
Describing methods and data. . 231
Implementing a class . . 232
Separating method code . . 237
The parts of a class. . 240

Working with a Class. . 241
Accessing members . . 241
Using classes and raw pointers. . 244
Using classes and smart pointers. . 248
Passing objects to functions . . 249
Using const parameters in functions. . 251
Using the this pointer. . 252
Overloading methods. . 256

Starting and Ending with Constructors and Destructors. 259
Starting with constructors . . 259
Ending with destructors. . 260
Sampling constructors and destructors. . 260
Adding parameters to constructors. . 263

Building Hierarchies of Classes. . 264
Creating a hierarchy in C++ . . 265
Understanding types of inheritance. . 266

Creating and Using Object Aliases . . 267

CHAPTER 2:	 Using Advanced C++ Features. . 269
Filling Your Code with Comments. . 270
Converting Types. . 272

Understanding how int and string conversions work 272
Seeing int and string conversions in action. 273
Considering other conversion issues. . 276

Reading from the Console. . 277
Understanding Preprocessor Directives . . 282

Understanding the basics of preprocessing. 282
Creating constants and macros with #define. 283
Performing conditional compilation. . 286
Exercising the basic preprocessor directives 288

Using Constants. . 292
Using Switch Statements . . 295

x C++ All-in-One For Dummies

Supercharging enums with Classes . . 298
Working with Random Numbers. . 300
Storing Data in Arrays. . 302

Declaring and accessing an array. . 303
Arrays of pointers . . 304
Passing arrays to functions . . 306
Adding and subtracting pointers. . 307

CHAPTER 3:	 Planning and Building Objects . . 309
Recognizing Objects . . 310

Observing the Mailboxes class . . 312
Observing the Mailbox class . . 314
Finding other objects . . 315

Encapsulating Objects. .316
Considering the Application Programming Interface. 316
Understanding properties. . 316
Choosing between private and protected. 318
Defining a process. . 318
Implementing properties. . 319

Building Hierarchies . . 322
Establishing a hierarchy. . 322
Protecting members when inheriting. . 324
Overriding methods . . 330
Specializing with polymorphism. . 332
Getting abstract about things . . 333

CHAPTER 4:	 Building with Design Patterns. . 335
Delving Into Pattern History. . 336
Introducing a Simple Pattern: the Singleton. . 337

Using an existing pattern. . 337
Creating a singleton pattern class. . 338

Watching an Instance with an Observer . . 341
Understanding the observer pattern. . 341
Defining an observer pattern class. . 343
Observers and the Standard C++ Library. .346
Automatically adding an observer . . 347

Mediating with a Pattern . . 349
Defining the mediator pattern scenario. .350
Outlining the car example . . 351
Creating the car example. . 354

Table of Contents xi

BOOK 3: UNDERSTANDING FUNCTIONAL
PROGRAMMING . . 367

CHAPTER 1:	 Considering Functional Programming. 369
Understanding How Functional Programming Differs 370
Defining an Impure Language. . 373

Considering the requirements . . 373
Understanding the C++ functional limitations 374

Seeing Data as Immutable. . 375
Working with immutable variables. . 376
Working with immutability in classes and structures 377
Creating constant expressions . . 378

Considering the Effects of State . . 381
Eliminating Side Effects. .382

Contrasting declarations and functions. . 383
Associating functions with side effects. . 384
Removing side effects. . 385
Creating a declarative C++ example. . 387

Understanding the Role of auto . . 388
Passing Functions to Functions. . 390

Seeing a simple example of function input. 391
Using transforms. . 393

Using Lambda Expressions for Implementation 394

CHAPTER 2:	 Working with Lambda Expressions. 397
Creating More Readable and Concise C++ Code 398
Defining the Essential Lambda Expression. . 399

Defining the parts of a lambda expression. 399
Relying on computer detection of return type. 401
Using the auto keyword with lambda expressions 404
Using lambda expressions as macros . . 405

Developing with Lambda Expressions. . 406
Using lambda expressions with classes and structures 407
Working with the capture clause. . 408
Sorting data using a lambda expression. . 411
Specifying that the lambda expression throws exceptions. 413

CHAPTER 3:	 Advanced Lambda Expressions. . 415
Considering the C++ 20 Lambda Extensions. . 416

Defining an immediate function. . 416
Using = and this in captures. . 417
Finding other changes . . 418

xii C++ All-in-One For Dummies

Working in Unevaluated Contexts . . 418
Using Assignable Stateless Lambda Expressions. 420
Dealing with Pack Expansions. . 422

Considering the template. . 422
Processing the variables using recursion. . 423
Processing the variables using a lambda expression 424

BOOK 4: FIXING PROBLEMS. . 427

CHAPTER 1:	 Dealing with Bugs . . 429
It’s Not a Bug. It’s a Feature!. . 430
Make Your Application Features Look Like Features. 431
Anticipating (Almost) Everything. . 432

Considering menus. . 432
Dealing with textual input . . 435
Performing string processing . . 437

Avoiding Mistakes, Plain and Simple . . 441

CHAPTER 2:	 Debugging an Application. . 443
Programming with Debuggers . . 444

Running the debugger . . 446
Recognizing the parts of the Code::Blocks debugger. 453

Debugging with Different Tools. . 455
Debugging a Code::Blocks Application with Command-Line
Arguments . . 456

CHAPTER 3:	 Stopping and Inspecting Your Code. 457
Setting and Disabling Breakpoints. . 458

Setting a breakpoint in Code::Blocks . . 459
Enabling and disabling breakpoints. . 460

Watching, Inspecting, and Changing Variables. 463
Watching the variables. . 465
Changing values. . 466

CHAPTER 4:	 Traveling About the Stack. 469
Stacking Your Data . . 470

Moving about the stack . . 471
Storing local variables. . 473

Debugging with Advanced Features. . 475
Viewing threads. . 475
Tracing through assembly code . . 475

Table of Contents xiii

BOOK 5: ADVANCED PROGRAMMING. . 479

CHAPTER 1:	 Working with Arrays, Pointers,
and References. 481
Building Up Arrays. . 482

Declaring arrays. . 482
Arrays and pointers. . 484
Using multidimensional arrays. . 488
Arrays and command-line parameters . . 492
Allocating an array on the heap . . 494
Deleting an array from the heap. . 494
Storing arrays of pointers and arrays of arrays 495
Building constant arrays. . 498

Pointing with Pointers. . 498
Becoming horribly complex. . 499
Pointers to functions. . 505
Pointing a variable to a method . . 506
Pointing to static methods. . 509

Referring to References . . 510
Reference variables. . 510
Returning a reference from a function. . 511

CHAPTER 2:	 Creating Data Structures. . 515
Working with Data. . 515

The great variable roundup. . 516
Expressing variables from either side . . 518
Casting a spell on your data. . 520
Comparing casting and converting. . 521
Casting safely with C++. . 523

Structuring Your Data. . 529
Structures as component data types. . 531
Equating structures. . 531
Returning compound data types. .532

Naming Your Space. . 534
Creating a namespace . . 534
Employing using namespace. . 535
Using variables. . 537
Using part of a namespace . . 538

CHAPTER 3:	 Constructors, Destructors, and Exceptions. 541
Constructing and Destructing Objects. . 542

Overloading constructors. . 542
Initializing members. . 543
Adding a default constructor. . 548
Functional constructors . . 550

xiv C++ All-in-One For Dummies

Calling one constructor from another. . 553
Copying instances with copy constructors 555
When constructors go bad. . 557
Destroying your instances. . 558
Virtually inheriting destructors . . 560

Programming the Exceptions to the Rule . . 563
Creating a basic try. . .catch block. . 563
Using multiple catch blocks. . 565
Throwing direct instances . . 566
Catching any exception. . 567
Rethrowing an exception. . 568
Using a standard category. . 570

CHAPTER 4:	 Advanced Class Usage. . 571
Inherently Inheriting Correctly . . 572

Morphing your inheritance . . 572
Avoiding polymorphism. . 573
Adjusting access. . 574
Avoiding variable naming conflicts. . 575
Using class-based access adjustment . . 576
Returning something different, virtually speaking. 577
Multiple inheritance . . 581
Virtual inheritance. . 584
Friend classes and functions. . 588

Using Classes and Types within Classes. . 591
Nesting a class. . 591
Types within classes . . 597

CHAPTER 5:	 Creating Classes with Templates. 601
Templatizing a Class. . 602

Considering types . . 602
Defining the need for templates. . 602
Creating and using a template . . 605
Understanding the template keyword. . 607

Going Beyond the Basics . . 609
Separating a template from the function code. 609
Including static members in a template. . 611

Parameterizing a Template . . 612
Putting different types in the parameter. . 613
Including multiple parameters . . 616
Working with non-type parameters. . 619

Table of Contents xv

Typedefing a Template. . 622
Deriving Templates. . 623

Deriving classes from a class template . . 623
Deriving a class template from a class. . 626
Deriving a class template from a class template 627

Templatizing a Function. . 630
Overloading and function templates. . 632
Templatizing a method. . 635

CHAPTER 6:	 Programming with the Standard Library 637
Architecting the Standard Library. . 638
Containing Your Classes. . 638

Storing in a vector. . 639
Working with std::array. .642
Mapping your data . . 643
Containing instances, pointers, or references 644
Working with copies . . 648
Comparing instances . . 649
Iterating through a container . . 655
A map of pairs in your hand . . 658

The Great Container Showdown. . 658
Associating and storing with a set. . 658
Unionizing and intersecting sets. . 662
Listing with list. . 664
Stacking the deque. . 669
Waiting in line with stacks and queues . . 670

Copying Containers. . 673
Creating and Using Dynamic Arrays. . 675
Working with Unordered Data . . 677

Using std::unordered_set to create an unordered set. 677
Manipulating unordered sets . . 677

Working with Ranges . . 679

BOOK 6: READING AND WRITING FILES 681

CHAPTER 1:	 Filing Information with the Streams Library. 683
Seeing a Need for Streams. .684
Programming with the Streams Library. . 686

Getting the right header file. . 686
Opening a file. . 687
Reading from a file . . 690
Reading and writing a file. . 691
Working with containers. . 692

Handling Errors When Opening a File . . 693
Flagging the ios Flags . . 695

xvi C++ All-in-One For Dummies

CHAPTER 2:	 Writing with Output Streams . . 697
Inserting with the << Operator . . 698
Formatting Your Output. . 699

Formatting with flags . . 700
Specifying a precision. . 704
Setting the width and creating fields . . 707

CHAPTER 3:	 Reading with Input Streams. . 711
Extracting with Operators . . 712
Encountering the End of File. . 715

Using the record count approach. . 715
Using the EOF check approach . . 718

Reading Various Types. . 720
Understanding data reading issues . . 720
Writing and reading string-type data. . 721
Writing and reading structured data . . 724

CHAPTER 4:	 Building Directories and Contents 727
Manipulating Directories . . 728

Creating a directory. . 728
Deleting a directory. . 730

Getting the Contents of a Directory. . 731
Copying Files . . 733

Copying with windows . . 734
Using the quick-and-dirty method . . 734

Moving and Renaming Files and Directories. . 735

CHAPTER 5:	 Streaming Your Own Classes. . 737
Streaming a Class for Text Formatting. . 738

Understanding the process. . 739
Considering the insertion implementation. 739
Considering the extraction implementation. 741

Manipulating a Stream. . 742
What’s a manipulator? . . 742
Writing your own manipulator . . 744

BOOK 7: ADVANCED STANDARD LIBRARY USAGE. 751

CHAPTER 1:	 Exploring the Standard Library Further. 753
Considering the Standard Library Categories. 755

Algorithms . . 755
Atomic operations. . 757
C Compatibility. . 759
Concepts. . 759

Table of Contents xvii

Containers . . 760
Coroutines . . 760
Filesystem. . 761
Input/Output . . 761
Iterators . . 761
Localization. . 763
Numerics. . 763
Ranges. . 764
Regular Expressions . . 766
Strings. . 766
Thread Support. . 767
Utilities . . 767

Parsing Strings Using a Hash. . 768
Obtaining Information Using a Random Access Iterator. 771
Locating Values Using the Find Algorithm. . 774
Using the Random Number Generator . . 776
Working with Temporary Buffers. . 777

CHAPTER 2:	 Working with User-Defined Literals (UDLs). 779
Understanding the Need for UDLs. . 780

Prefixes and suffixes. . 781
Differentiating between raw and cooked 784

Working with the UDLs in the Standard Library. 785
std::basic_string. . 785
std::complex. . 788
std::chrono::duration . . 789

Creating Your Own UDLs. . 791
Developing a conversion UDL. . 792
Developing a custom type UDL. . 793
Using a custom UDL for side effects. . 794

CHAPTER 3:	 Building Original Templates. . 795
Deciding When to Create a Template. . 796
Defining the Elements of a Good Template . . 797
Creating a Basic Math Template. . 799
Building a Structure Template. . 801
Developing a Class Template. . 804
Considering Template Specialization. . 807
Creating a Template Library . . 809

Defining the library project . . 810
Configuring the library project . . 812
Coding the library . . 813

Using Your Template Library. . 815

xviii C++ All-in-One For Dummies

CHAPTER 4:	 Investigating Boost. . 817
Considering the Standard Library Alternative. 818

Understanding why the Standard Library contains Boost
features. . 818
Defining the trade-offs of using the Standard Library. 819

Understanding Boost . . 820
Boost features. . 821
Licensing. . 822
Paid support. . 823

Obtaining and Installing Boost for Code::Blocks.823
Unpacking Boost. . 823
Using the header-only libraries. . 825
Building the libraries. . 825
Testing the installation. . 827

Creating the Boost Tools . . 833
Using Boost.Build . . 836

Getting a successful build. .836
Creating your own example. . 836

Using Inspect. . 837
Understanding BoostBook. . 840
Using QuickBook. . 841
Using bcp . . 843
Using Wave. . 845
Building Your First Boost Application Using Date Time. 846

CHAPTER 5:	 Boosting up a Step. . 849
Parsing Strings Using RegEx. . 850

Adding the RegEx library . . 851
Creating the RegEx code. . 855

Breaking Strings into Tokens Using Tokenizer 857
Performing Numeric Conversion . . 858
Creating Improved Loops Using Foreach. . 862
Accessing the Operating System Using Filesystem 864

INDEX. . 869

Introduction 1

Introduction

There are many general-purpose programming languages today, but few can
claim to be the language of the millennium. C++ can make that claim, and
for good reason:

»» It’s powerful. You can write almost any program in it.

»» It’s fast, and it’s fully compiled. That’s a good thing.

»» It’s easy to use — if you have this book.

»» It’s object oriented. If you’re not sure what that is, don’t worry. You can find
out about it by reading this very book you’re holding.

»» It supports functional programming techniques, which makes modeling math
problems considerably easier and makes parallel processing easier. This book
covers functional programming techniques, too.

»» It’s portable. Versions are available for nearly every computer.

»» It’s standardized. The American National Standards Institute (ANSI) and the
International Standards Organization (ISO) both approve an official version.

»» It’s continually updated to meet the changing challenges of the computer
community.

»» It’s popular. More people are using C++ because so many other people use it.

Sure, some people criticize C++. But most of these people don’t truly understand
C++ or are just having a bad day. Or both.

About This Book
This book is a hands-on, roll-up-your-sleeves experience that gives you the
opportunity to truly learn C++. This edition starts out by helping you get a great
C++ installation in place. A lot of readers wrote to tell me that they simply couldn’t
get C++ to work for them, and I listened by adding configuration instructions in
Book 1, Chapter 1. You can find instructions for working with the Mac, Linux, and
Windows throughout the book. The examples are also tested to work on all three
platforms.

2 C++ All-in-One For Dummies

C++ All-in-One For Dummies, 4th Edition, is devoted to working with C++ wherever
you want to use it. Book 1, Chapter 2 even includes techniques for writing C++ code
on your mobile device, although writing a complex application on your smart-
phone would be understandably difficult because of the small device size.

At the very beginning, I start you out from square one. I don’t assume any pro-
gramming experience whatsoever. Everybody has to start somewhere. You can
start here. Not to brag, but you are in the hands of a highly successful C++ devel-
oper who has shown thousands of people how to program, many of whom also
started out from square one.

You already know C++? This book is great for you, too, because although I start
discussing C++ from the beginning, I cover the important aspects of the language
in depth. Even if you’ve used C++ in the past, this book gets you up to speed with
the latest in C++ 14 and above innovations, including C++ 20 additions. Plus, this
edition of the book focuses on all the latest programming strategies while remov-
ing some of the less used functionality of the past.

If you’re interested in using the time-tested Object Oriented Programming (OOP)
techniques that C++ developers have used for years, then Book 2 is where you want
to look. You start with a view of classes, but eventually move into more advanced
topics, including the use of programming patterns in Book 2 Chapter 4.

One of the most exciting additions to this edition is the use of functional pro-
gramming techniques, which you can find in Book 3. Functional programming
has become extremely popular because it makes modeling math problems signifi-
cantly easier, and many people use functional programming techniques to solve
modern data science problems. More important, functional programming can be
a lot easier than earlier programming paradigms.

Every application out there has a bug or two. If you doubt this statement, just try
to find one that is bug free—you won’t. Book 4 includes all sorts of techniques
you can use to make your application as bug free as possible before it leaves your
machine and then help you find the bugs that others graciously point out later.

Book 5 is all about moving you from generalized programming strategies into the
advanced strategies used by modern developers. It starts with a look at standard-
ized structures for working with classes in a safe manner. The minibook takes you
through

»» Simple structures, such as arrays

»» More advanced data management

»» The use of constructors, destructors, and exceptions

Introduction 3

»» Templatized programming

»» Use of the Standard Library (originally called the Standard Template Library
or STL).

Everyone needs to work with files at some point. You use local, network, and
Internet files today on a regular basis. Book 6 is all about working with files in
various ways. This book includes topics on working with data streams as well.

The Standard Library is immense and there are entire books written about its
use. C++ All-in-One For Dummies, 4th Edition, focuses on providing you with a
really good overview that you can use to drill down into more detailed topics later.
Besides looking at the Standard Library in more detail, you discover how to work
with User Defined Literals (UDLs) and how to create your own templates. This
book also delves into the Boost library, which is the library that has added more to
Standard Library than just about any other source. Check out Book 7, Chapters 4
and 5 to learn about Boost. If you use C++ and don’t use Boost, you’re really
missing out!

C++ is standardized, and you can use the information in this book on many differ-
ent platforms. I wrote the samples using Mac OS X, SUSE Linux (some of the beta
readers used other flavors of Linux), and Windows systems (with some testing on
my ASUS tablet as well). In order to make this happen, I used a compiler called
Code::Blocks that runs on almost every computer (Windows, Linux, and Macintosh)
and CppDroid for my tablet. It doesn’t matter which device you’re using!

To make absorbing the concepts easy, this book uses the following conventions:

»» Text that you’re meant to type just as it appears in the book is in bold. The
exception is when you’re working through a step list: Because each step is
bold, the text to type is not bold.

»» Web addresses and programming code appear in monofont. If you’re reading
a digital version of this book on a device connected to the Internet, you can
click or tap the web address to visit that website, like this: https://www.
dummies.com.

»» When you need to type command sequences, you see them separated by a
special arrow, like this: File➪  New File. In this example, you go to the File menu
first and then select the New File entry on that menu.

»» When you see words in italics as part of a typing sequence, you need to
replace that value with something that works for you. For example, if you see
“Type Your Name and press Enter,” you need to replace Your Name with your
actual name.

https://www.dummies.com
https://www.dummies.com

4 C++ All-in-One For Dummies

Foolish Assumptions
This book is designed for novice and professional alike. You can either read this
book from cover to cover, or you can look up topics and treat the book as a refer-
ence guide — whichever works best for you. Keep it on your shelf, and have it
ready to grab when you need to look something up. However, I’ve made some
assumptions about your level of knowledge when I put the book together. The
most important of these assumptions is that you already know how to use your
device and work with the operating system that supports it. You also need to know
how to perform tasks like downloading files and installing applications. A famili-
arity with the Internet is also required, and you need to know how to interact with
it moderately well to locate the resources you need to work with the book. Finally,
you must know how to work with archives, such as the ZIP file format.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of
interest (or not, as the case may be). This section briefly describes each icon in
this book.

Tips are nice because they help you save time or perform some task without a
lot of extra work. The tips in this book are time-saving techniques or pointers to
resources that you should try so that you can get the maximum benefit from C++.
Most important, many of these tips will help you make sense of the overwhelm-
ing quantity of libraries and tools that C++ developers have created over the years.

I don’t want to sound like an angry parent or some kind of maniac, but you should
avoid doing anything that’s marked with a Warning icon. Otherwise, you might
find that your application fails to work as expected, you get incorrect answers
from seemingly bulletproof code, or (in the worst-case scenario) you lose data.
Given where C++ appears, you might also send the next rocket off to Mars prema-
turely, make someone’s thermostat misbehave, or cause nationwide power out-
ages. Really, warnings are for everyone!

Whenever you see this icon, think advanced tip or technique. You might find these
tidbits of useful information just too boring for words, or they could contain the
solution you need to get a program running. Skip these bits of information when-
ever you like.

Introduction 5

If you don’t get anything else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process or a
bit of information that you must know to work with C++, or to perform develop-
ment tasks successfully.

Beyond the Book
If you want to email me, please do! Make sure you send your book-specific
requests to:

John@JohnMuellerBooks.com

I get a lot of email from readers, so sometimes it takes me a while to answer.
I try very hard to answer every book-specific question I receive, though, so
I highly recommend contacting me with your questions. I want to ensure that
your book experience is the best one possible. The blog category at http://blog.
johnmuellerbooks.com/categories/263/c-all-in-one-for-dummies.aspx
contains a wealth of additional information about this book. You can check out the
website at http://www.johnmuellerbooks.com/.

This book isn’t the end of your C++ programming experience — it’s really just
the beginning. I provide online content to make this book more flexible and bet-
ter able to meet your needs. That way, as I receive email from you, I can address
questions and tell you how updates to either Code::Blocks or the C++ language
affect book content. You can also access other cool materials:

»» Cheat Sheet: You remember using crib notes in school to make a better mark
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides
you with some special notes on things you can do with C++ that not every
other developer knows. You can find the cheat sheet for this book at www.
dummies.com and typing C++ All-in-One For Dummies, 4th Edition in the
search field. It contains really neat information like the top ten mistakes
developers make when working with C++, a list of header files that you use in
most applications, and some of the C++ syntax that gives most developers
problems.

»» Updates: Sometimes changes happen. For example, I might not have seen an
upcoming change when I looked into my crystal ball during the writing of this
book. In the past, such a situation simply meant that the book would become
outdated and less useful, but you can now find updates to the book at www.
dummies.com. In addition to these updates, check out the blog posts with

mailto:John@JohnMuellerBooks.com
http://blog.johnmuellerbooks.com/categories/263/c-all-in-one-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/c-all-in-one-for-dummies.aspx
http://www.johnmuellerbooks.com/
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com

6 C++ All-in-One For Dummies

answers to reader questions and demonstrations of useful book-related
techniques at http://blog.johnmuellerbooks.com/.

»» Companion files: Hey! Who really wants to type all the code in the book?
Most readers would prefer to spend their time actually working through
coding examples rather than typing. Fortunately for you, the source code is
available for download, so all you need to do is read the book to learn C++
coding techniques. Each of the book examples even tells you precisely which
example project to use. You can find these files by visiting www.dummies.com/
go/caiofd4e.

Just in case you’re worried about Code::Blocks, you can find complete
download and installation instructions for it in Book 1, Chapter 1. Don’t worry
about which platform you use. This chapter includes instructions for Mac OS
X, Linux, and Windows.

Where to Go from Here
If you’re just starting your C++ adventure, I highly recommend starting at either
Book 1, Chapter 1 (for desktop developers) or Book 1, Chapter 2 (for mobile devel-
opers). You really do need to create a solid foundation before you can tackle the
code in this book. If you’re in a hurry and already have a C++ installation, you can
always try starting with Book 1, Chapter 3.

Readers with a little more experience, who already know some C++ basics, can skip
some of these introductory chapters, but you definitely don’t want to skip Book 1,
Chapter 8 because it contains a lot of pointer-related changes in current ver-
sions of C++. If you skip this chapter, you may find later that you have a hard time
following the example code in the book because the newer examples use these
pointer features.

An advanced reader with some idea of the current changes in C++ 20 could pos-
sibly skip Book 1, but scanning Book 2 is a good idea because there are some OOP
changes you definitely want to know about. However, even for advanced read-
ers, skipping Book 3 is a bad idea because modern development really is moving
toward functional programming techniques.

http://blog.johnmuellerbooks.com/
www.dummies.com/go/caiofd4e

1Getting Started
with C++

Contents at a Glance
CHAPTER 1:	 Configuring Your Desktop System. 9

Obtaining a Copy of C++ 20. . 10
Obtaining Code::Blocks. . 11
Installing Code::Blocks . . 12
Touring the Essential Code::Blocks Features. 17
Using Other IDEs. . 25

CHAPTER 2:	 Configuring Your Mobile System. 27
Obtaining CppDroid . . 28
Considering Other Alternatives. . 32
Touring the Essential CppDroid Features . . 35
Obtaining CppDroid Help. . 40

CHAPTER 3:	 Creating Your First C++ Application. 45
Code::Blocks Creating a Project. . 46
Typing the Code. . 53
Starting with Main. . 55
Showing Information . . 55
Let Your Application Run Away. . 67

CHAPTER 4:	 Storing Data in C++. . 69
Putting Your Data Places: Variables. . 70
Manipulating Integer Variables. . 78
Characters . . 88
Strings. . 93
Making Decisions Using Conditional Operators. 98
Telling the Truth with Boolean Variables. . 100
Reading from the Console. . 102

CHAPTER 5:	 Directing the Application Flow 105
Doing This or Doing That. . 106
Evaluating Conditions in C++. . 107
Including Evaluations in C++ Conditional Statements. 111
Repeating Actions with Statements That Loop. 115
Looping for. . 117
Looping while. . 130
Doing while. . 132
Breaking and continuing . . 133
Nesting loops. . 136

and more . . .

CHAPTER 1 Configuring Your Desktop System 9

Configuring Your
Desktop System

This chapter is for those of you who have a desktop system and want to
use it to create your application code. Chapter 2 discusses how to perform
the same task using a mobile device (and provides you with some trade-

offs between the two environments). Whether you use the desktop or the mobile
solution, you need a copy of a compiler that supports C++ 20 features or some
book examples won’t work at all. This book relies on the GNU Compiler Collection
(GCC) version 8.3 compiler because it provides great C++ 20 support (see https://
en.cppreference.com/w/cpp/compiler_support). The best way to obtain the
version 8.3 compiler for your desktop system is to follow the steps in this chapter.

Before you can do anything interesting at all with C++, you need a copy of it
installed on your system. Of course, this means going online, finding the loca-
tion of the software that’s appropriate for your platform, and then downloading
it as necessary. If you use an Integrated Development Environment (IDE) such
as Code::Blocks (the IDE used throughout this book), you get a copy of C++ with
your installation, so you don’t need to worry about reading the first section of
this chapter. This book relies on your having a compiler capable of compiling C++
20 code, which is the latest version of the language available at the time of this
writing.

Chapter 1

IN THIS CHAPTER

»» Getting your own copy of C++ 20

»» Getting a copy of Code::Blocks

»» Creating a Code::Blocks work
environment on your system

»» Seeing how Code::Blocks helps you
perform tasks

»» Working with other IDEs

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

10 BOOK 1 Getting Started with C++

Even though this book focuses on working with C++ on the Mac, Windows, and
Linux platforms, you can actually use the techniques it provides on a great many
other desktop systems. With this in mind, you’ll find an overview of using C++
with other IDEs. As your platform becomes more esoteric, you’ll find that fewer
of the book examples work because your platform may require special program-
ming techniques. The best option for working with this book is using a copy of
Code::Blocks 17.12 with C++ 20 support installed on the Linux, Mac, or Windows
platform.

Obtaining a Copy of C++ 20
There is no product available named C++ 20. The C++ 20 standard simply says what
the language contains and how someone should implement it. In other words, you
can’t just go online and get a copy of C++ 20; what you need to do instead is get a
compiler vendor’s implementation of the C++ 20 standard. For example, you can
download the GNU Compiler Collection (GCC) version of C++ 20 from https://
gcc.gnu.org/releases.html.

Every vendor will have a slightly different interpretation of this standard and could
provide additions to the standard. In short, every compiler provides a unique ver-
sion of C++. However, you also have the choice of not using the special features
that the vendor provides, which means your source code is less susceptible to
problems that occur when you use multiple compilers. The examples in this book
are strictly written to the C++ 20 standard, so you shouldn’t have a problem using
them anywhere you want.

It’s important that you also understand that a compiler is not the same as an
Integrated Development Environment (IDE). The compiler is separate from the
IDE in many cases and maintained by two separate parties. For example, the
Code::Blocks IDE supports multiple compilers, and the GCC compiler works within
multiple IDEs. The compiler is the important piece of software that turns your
source code into an executable file that the operating system can run to produce
the output you want.

The compiler you choose has to support the platforms you want to work with. For
example, GCC supports Mac, Windows, and Linux development as well as some
Acorn or (later) Advanced RISC Machine (ARM) processors (ARM doesn’t officially
stand for anything today). In fact, it may support other platforms by the time you
read this chapter. Because it works in so many places, this book focuses on GCC,
even though the examples will work with other compilers with some modification
to overcome compiler differences.

https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html

Co
nfi

gu
ri

ng
 Y

ou
r

D
es

kt
op

 S
ys

te
m

CHAPTER 1 Configuring Your Desktop System 11

Obtaining Code::Blocks
The Code::Blocks IDE provides an environment in which you can write source
code, compile it, test it, and debug it as needed. The IDE doesn’t actually compile
the source code, but it does provide support for a compiler that does so. (It just so
happens that it does its job in such a way that makes it appear that the compiler is
part of the IDE.) You can choose from a number of compilers in Code::Blocks, but
this book focuses on using GCC to ensure that the examples will run on as many
platforms as possible. GCC comes with your copy of Code::Blocks when working
with Windows, so you don’t have to do anything special to work with it except
select it during the installation process. (When working on a Mac or Linux system,
you must install GCC separately — the compiler doesn’t come with Code::Blocks.)

This book is written using Code::Blocks version 17.12. That doesn’t mean you can’t
use it with earlier or later versions of Code::Blocks. However, when working with
other versions of Code::Blocks, you may find that you need to modify the code
slightly. The modification is required in order to support the compiler that comes
with that version of Code::Blocks. The IDE itself won’t affect your ability to work
with C++ 20.

Code::Blocks comes in both binary form and source code form. You can download
either form of version 17.12 from http://www.codeblocks.org/downloads/5.
The link leads you to SourceForge, where you select the platform you want to use:
Mac, Linux, or Windows. Click the folder link and you see a list of downloadable
archive files for that platform. (Linux users will also have to choose their particu-
lar version of Linux.) Choosing the correct archive is important because different
archives have different features.

When working with a Windows installation, make sure you use the codeblocks-
17.12mingw-setup.exe installer to obtain a copy of GCC with Code::Blocks. Make
absolutely certain that you don’t install it to the Program Files folder on your
system, because the application won’t work there. Code::Blocks writes data to
its host directory, and Windows won’t allow applications to perform this task in
the Program Files folder. Create a folder to which you have write privileges and
install Code::Blocks there instead.

Now that you have an appropriate archive to use, it’s time to install Code::Blocks
on your machine. The “Installing Code::Blocks” section of this chapter tells you
more about getting Code::Blocks installed on your particular system.

http://www.codeblocks.org/downloads/5

12 BOOK 1 Getting Started with C++

Installing Code::Blocks
Before you can use Code::Blocks as your IDE, you need to install it. The follow-
ing sections describe how to install Code::Blocks on each of the main platforms
supported by this book. The instructions in these sections assume that you’ve
downloaded the binary version of Code::Blocks and that you aren’t using a custom
compiled version of the product.

If you have an older version of Code::Blocks installed on your system, be sure to
uninstall it before installing the new version. Also make sure that you tell the
uninstaller to delete any old custom files in the folder so that you start with a
fresh folder. Old files can cause errors to appear when you start Code::Blocks or
perform common tasks.

Working with Windows
Code::Blocks comes with a Windows installer that will make the task of install-
ing the IDE easier. The following steps help you work with the codeblocks-
17.12mingw-setup.exe installer:

1.	 Double-click the file you downloaded from the Code::Blocks site.

You see the CodeBlocks Setup Wizard start. If you see a User Account Control
dialog box, give the application permission to proceed by clicking Yes.

2.	 Click Next.

The licensing agreement appears. Read the licensing agreement so that you
know the terms of usage for Code::Blocks.

3.	 Click I Agree.

The wizard displays a series of configuration options, as shown in Figure 1-1.
This book assumes that you’ve performed the default, full installation.

4.	 Click Next.

The installation program asks where to install Code::Blocks on your system.
Unlike many other applications, Code::Blocks will actually write data to this
folder from time to time. The best idea is to use a folder to which you have
write access. To ensure maximum compatibility, the book uses the C:\
CodeBlocks folder for installation purposes. To keep from seeing any error
messages, make sure that the path doesn’t have any spaces in it (see the blog
post at http://blog.johnmuellerbooks.com/2016/04/20/spaces-in-
paths/ for details).

http://blog.johnmuellerbooks.com/2016/04/20/spaces-in-paths/
http://blog.johnmuellerbooks.com/2016/04/20/spaces-in-paths/

Co
nfi

gu
ri

ng
 Y

ou
r

D
es

kt
op

 S
ys

te
m

CHAPTER 1 Configuring Your Desktop System 13

5.	 Type C:\CodeBlocks in the Destination Folder field. Click Install.

The installation program automatically creates the C:\CodeBlocks folder for
you when it doesn’t already exist. If the folder already exists because you
previously installed an older version of Code::Blocks, you see a dialog box
appear. Click Yes to allow installation to continue. You see all the files installed
into the C:\CodeBlocks folder on your system.

The setup wizard may display a dialog box asking whether you want to start
Code::Blocks. Click No if you see this dialog box.

6.	 Click Next.

You see a completion dialog box.

7.	 Click Finish.

The setup wizard ends.

If you find that the wizard has somehow managed not to select a compiler and/or
debugger for you, you can perform this task manually. The “Selecting a compiler”
section will help in this regard. In addition, the blog posts at http://blog.john
muellerbooks.com/2011/04/06/checking-your-compiler-in-codeblocks/
and http://blog.johnmuellerbooks.com/2013/04/12/resetting-your-code
blocks-configuration/ tell how to perform the additional setup. However, in
most cases, the wizard will perform the required setup for you.

Working with Mac OS X
Installing Code::Blocks on a Mac requires a little extra work than it does in Win-
dows. Code::Blocks requires Mac OS X 10.6 or later to install. You can get the ver-
sion 17.12 file, codeblocks-17.12_OSX64.dmg, from https://sourceforge.net/

FIGURE 1-1:
The wizard asks

you to select the
configuration

options to use.

http://blog.johnmuellerbooks.com/2011/04/06/checking-your-compiler-in-codeblocks/
http://blog.johnmuellerbooks.com/2011/04/06/checking-your-compiler-in-codeblocks/
http://blog.johnmuellerbooks.com/2013/04/12/resetting-your-codeblocks-configuration/
http://blog.johnmuellerbooks.com/2013/04/12/resetting-your-codeblocks-configuration/
https://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Mac/

14 BOOK 1 Getting Started with C++

projects/codeblocks/files/Binaries/17.12/Mac/. If you experience a Mac
Gatekeeper error during installation, please check out the blog post at http://
blog.johnmuellerbooks.com/2016/03/21/mac-gatekeeper-error/.

The following steps tell you how to get a functional Code::Blocks installation on
your Mac system.

1.	 Download and install Xcode from the App Store to obtain a copy of GCC, if
necessary.

You can verify that you have the GNU GCC compiler installed by opening a
terminal, typing gcc -v, and pressing Enter. If GCC is installed, you should see
some version information along with some compiler instructions.

2.	 Extract the Code::Blocks files into a folder.

You see a number of files, including the Code::Blocks application, a readme file
containing the latest update information, and a PDF file containing
documentation.

3.	 Open the Applications folder.

You see the applications installed on your system.

4.	 Drag the CodeBlocks.app file from the folder you used for extraction
purposes to the Applications folder.

The operating system adds Code::Blocks to the list of usable applications.

5.	 Navigate to https://developer.apple.com/downloads/.

This site requires that you sign up for a free developer ID. Simply follow the
prompts onscreen to obtain your Apple ID. The sign-up process is free.

6.	 Click the Command Line Tools for Xcode link.

The operating system downloads the file and displays a package folder for you.

7.	 Double-click the Command Line Tools package.

The operating system installs the package for you, which enables access to
GCC from Code::Blocks.

Using the standard Linux installation
There isn’t a single set of steps for installing Code::Blocks on Linux, because each
flavor of Linux has its own requirements. Code::Blocks directly supports:

»» Blag

»» Debian

https://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Mac/
http://blog.johnmuellerbooks.com/2016/03/21/mac-gatekeeper-error/
http://blog.johnmuellerbooks.com/2016/03/21/mac-gatekeeper-error/
https://developer.apple.com/downloads/

Co
nfi

gu
ri

ng
 Y

ou
r

D
es

kt
op

 S
ys

te
m

CHAPTER 1 Configuring Your Desktop System 15

»» Fedora

»» Gentoo

»» Platypux

»» Red Hat Package Manager (RPM)-based distributions (such as SUSE, Red Hat,
Yellow Dog, Fedora Core, and CentOS)

»» Ubuntu

Each distribution type has its own set of instructions that you can find at http://
wiki.codeblocks.org/index.php?title=Installing_Code::Blocks. Make sure
you download and install the compiler, debugger, and IDE as needed by carefully
following the instructions (typed at the terminal). The file that you download
from http://www.codeblocks.org/downloads/26 contains the packages for a
Code::Blocks installation, so you don’t need to download each package separately
as part of the installation process.

Some Linux installations have special requirements or experience limitations
when working with Code::Blocks. The only apparent limitation that affects
this book is the lack of Boost support for Red Hat and CentOS. Because of this
limitation, you can’t use the examples found in Book 7, Chapters 4 and 5. However,
if you experience other limitations, please let me know about them at John@
JohnMuellerBooks.com and I’ll address them as part of a blog post for this book.

Using the graphical Linux installation
All versions of Linux support the standard installation discussed in the “Using
the standard Linux installation” section of this chapter. However, a few versions
of Debian-based Linux distributions, such as Ubuntu 12.x and above, provide
a graphical installation technique as well. You’ll need the administrator group
(sudo) password to use this procedure, so having it handy will save you time. The
following steps outline the graphical installation technique for Ubuntu, but the
technique is similar for other Linux installations.

1.	 Open the Ubuntu Software Center folder (the folder may be named
Synaptics on other platforms).

You see a listing of the most popular software available for download and
installation, as shown in Figure 1-2. Your list will probably vary from the one
shown in the screenshot.

2.	 Select Developer Tools (or Development) from the All Software drop-down
list box.

You see a listing of developer tools, including Code::Blocks, as shown in
Figure 1-3.

http://wiki.codeblocks.org/index.php?title=Installing_Code::Blocks
http://wiki.codeblocks.org/index.php?title=Installing_Code::Blocks
http://www.codeblocks.org/downloads/26
mailto:John@JohnMuellerBooks.com
mailto:John@JohnMuellerBooks.com

16 BOOK 1 Getting Started with C++

FIGURE 1-2:
The Ubuntu

Software Center
contains a list of

the most popular
software when

you open it.

FIGURE 1-3:
The Developer
Tools category

contains an entry
for Code::Blocks.

Co
nfi

gu
ri

ng
 Y

ou
r

D
es

kt
op

 S
ys

te
m

CHAPTER 1 Configuring Your Desktop System 17

3.	 Double click the Code::Blocks entry.

The Ubuntu Software Center provides details about the Code::Blocks entry
and offers to install it for you, as shown in Figure 1-4.

4.	 Click Install.

Ubuntu begins the process of installing Code::Blocks. A progress bar shows the
download and installation status. When the installation is complete, the Install
button changes to a Remove button.

5.	 Close the Ubuntu Software Center folder.

You see a Code::Blocks icon added to the Desktop. The IDE is ready for use.

Touring the Essential Code::Blocks Features
No matter how you install Code::Blocks for your platform, you eventually end up
with an IDE with standardized characteristics. This is one of the best reasons to
use an IDE such as Code::Blocks — you can use the same IDE no matter which
platform you use.

FIGURE 1-4:
It’s possible to

obtain additional
information

about
Code::Blocks if

necessary.

18 BOOK 1 Getting Started with C++

Your screenshots may look different from the ones shown in this book. Even
though this book uses screenshots from the Windows version of Code::Blocks,
the same features are provided for Code::Blocks installations on other platforms,
though the IDE may not look precisely the same on those other platforms. The
following sections describe the essential features you need to know about when
working with Code::Blocks.

Starting Code::Blocks for the first time
Open the Code::Blocks executable program using the technique your platform
usually requires. For example, when working with Windows or the Mac, you
double-click the CodeBlocks icon. The first time you start Code::Blocks, you may
see a Compilers Auto-detection dialog box. Select the GNU GCC Compiler entry (it
may be the only available entry and selected by default), click Set as Default, and
then click OK.

At this point, Code::Blocks displays a File Associations dialog box, similar to the
one shown in Figure 1-5. It’s a good idea to associate the IDE with your C++ files so
that opening the file also opens the IDE — making it much easier to write applica-
tions and modify them later.

Select either of the Yes options in this list. You can associate Code::Blocks with
other source code types, but for the purposes of this book, you only need to associ-
ate it with C++ files. Click OK to complete the action. At this point, you see the IDE.

After you set the file associations, Code::Blocks usually begins by opening the
IDE and placing a tip dialog box in it, as shown in Figure 1-6. You can turn these
tips off by clearing the Show Tips at Startup check box. The Tip of the Day link
on the Start Here page (which you can display by choosing View ➪  Start Page) also
displays a tip when clicked. The tip is a random bit of information about using
Code::Blocks more efficiently. You can see the next tip in the series by clicking
Next Tip or disable the display of tips by clearing Show Tips at Startup. After you
read the tip, click Close.

FIGURE 1-5:
Associate

Code::Blocks with
your C++ files to
make it easier to

manage them.

Co
nfi

gu
ri

ng
 Y

ou
r

D
es

kt
op

 S
ys

te
m

CHAPTER 1 Configuring Your Desktop System 19

In some cases, the IDE will display a message similar to the one shown in
Figure 1-7. What this message is saying is that you’ve made changes to the
Code::Blocks configuration. Click Yes to save the changes.

Windows users may experience a problem at this point. If you install Code::Blocks
in the C:\Program Files folder and don’t have Administrator access (or if you
simply opened the application as a regular user), you may find that you can’t save
any Code::Blocks settings, making using Code::Blocks an annoying experience.
To use Code::Blocks without problems, make sure you have write access to the
folder in which you installed it. The best policy is to install Code::Blocks to
the C:\CodeBlocks folder on your system. As an alternative, you can right click
the Code::Blocks icon and choose Run As Administrator from the context menu to
run Code::Blocks with the required permissions.

Opening the sample projects
You obtain the source code for this book from the publisher site described in the
Introduction. After you download the .zip file containing the source, you simply
extract it to your hard drive. Don’t attempt to run the source code inside the .zip
file; doing so will display confusing messages in Code::Blocks and won’t allow you
to run the code.

The source code for this book is divided into books, chapters within books, and
examples within chapters. To open the first example found in Chapter 3 of this

FIGURE 1-6:
Code::Blocks

provides a tips
dialog box that

contains helpful
information.

FIGURE 1-7:
Save your

changes to disk.

20 BOOK 1 Getting Started with C++

book, for example, start by locating the \CPP_AIO\BookI\Chapter03\SayHello
folder (or the equivalent on your platform). Within this folder is SayHello.cbp.
The Code Blocks Project (.cbp) file extension contains everything that Code::Blocks
needs to open the project and present it to you. When you get to this first project,
you double-click SayHello.cbp and Code::Blocks automatically opens the project
for you, as shown in Figure 1-8.

If you have chosen to allow tips, you’ll actually see a Tip of the Day dialog box
first, like the one shown earlier, in Figure 1-6. Click Close after you read the tip
to see the project. Don’t worry about the contents of this example for now. You’ll
discover how it works in Chapter 3. The only thing you need to know for now is
how to open a project example so that you can follow along with the examples in
the book.

When working with IDEs other than Code::Blocks, you can open the C++ (.cpp) file
instead of the .cbp file. Opening the .cpp file will still display the code example
for you. C++ stores source code in .cpp files, not as part of the .cbp files.

Viewing the essential windows
There are some windows that you use with every example in the book. As the book
progresses, you’ll be introduced to other windows, but the ones covered in the

FIGURE 1-8:
Each example

has a .cbp file
associated with

it that opens
the example in

Code::Blocks
for you.

Co
nfi

gu
ri

ng
 Y

ou
r

D
es

kt
op

 S
ys

te
m

CHAPTER 1 Configuring Your Desktop System 21

following sections are the windows that you need to know about in order to get
started with Code::Blocks.

Using the Start Here window
The Start Here window, shown in Figure 1-9, does precisely as its name
indicates — it gets you started with Code::Blocks. This window is automatically
displayed when you open Code::Blocks directly, without opening a project first. It
appears immediately after you clear the Tip of the Day dialog box.

This window is important because it also provides you with access to various
Code::Blocks features and makes it possible for you to request changes. Here are
the options you can access using this window:

»» Create a New Project: Before you can use Code::Blocks effectively, you need
to create a project. A project acts as a container to hold the files used to create
the application. It also stores settings used to configure the development
environment and present that environment to you in a specific manner.

»» Open an Existing Project: Any time you want to re-create the environment
you used during a previous coding session, you open an existing project. The
project will automatically open any source code files that you had open and
perform other tasks to make it easy for you to start right back up where you
left off the previous day.

FIGURE 1-9:
Use the Start
Here window
to start a new

session.

22 BOOK 1 Getting Started with C++

»» Tip of the Day: If you missed the Tip of the Day or you simply want to
reactivate the feature, click this link. Code::Blocks displays the Tip of the Day
dialog box, shown in Figure 1-6.

»» Visit the Code::Blocks forums: You can’t communicate directly with the
makers of Code::Blocks. However, you can communicate directly with other
users and get peer support. The makers of Code::Blocks also monitor the
forums, and you’ll see them actively addressing issues that aren’t handled
with peer support.

»» Report a Bug or Request a New Feature: Every application on the planet
has bugs (programming errors), including the Code::Blocks IDE. It’s important
to report bugs when you find them so that they can be fixed.

Anyone who uses an application long enough will likely come up with a
spectacular idea for making it better. The makers of Code::Blocks want to hear
your phenomenal idea, so contact them sooner than later.

»» Recent Projects: As you work with Code::Blocks, you’ll create more than one
project. Rather than look all over your hard drive for the project you need, you
can use this feature to find it immediately. To open the project, just click on its
link in the Recent Projects list.

Even if you can’t see the Start Here window after you open a project, you can
always view it by selecting View ➪  Start Page. Keeping the Start Here window
handy makes it easy to access commonly used Code::Blocks features. However,
you can also access these features using menus. For example, to create a new
project, you choose File ➪  New ➪  Project.

Using the Management window
The purpose of an IDE is to help you manage your coding projects in various ways,
so it’s not surprising that Code::Blocks comes with a Management window, as
shown in Figure 1-10. The Management window normally resides on the left side
of the IDE’s main window, but you can move it where you want by using the title
bar to drag the window.

FIGURE 1-10:
The Management

window helps
you manage your

Code::Blocks
projects.

Co
nfi

gu
ri

ng
 Y

ou
r

D
es

kt
op

 S
ys

te
m

CHAPTER 1 Configuring Your Desktop System 23

The Management window contains four tabs. (The Fortran Symbols, FSymbols,
tab is never used in this book.) The following list describes the purpose of each tab:

»» Projects: Grouping in one place all of the files needed to create an application
is a helpful method for managing it. A grouping of applications files is called a
project, and helping you create and maintain projects is just one way in which
Code::Blocks makes application development easier.

»» Symbols: Applications contain a number of symbols, such as the names of
functions (named blocks of code). You use the Symbols tab to find specific
symbols you need within an application. Don’t worry too much about symbols
now, but eventually you’ll find that this tab helps save time and effort by
making it easier to locate specific pieces of your application.

»» Files: Locating code and resources you need to add to the current project can
be time consuming. The Files tab provides a method for navigating the file
system. You can then right-click on files you need and use the context menu
entries to perform tasks such as adding the file to your current project.

»» Resources: Graphical applications require the addition of dialog boxes and
other visual elements that C++ treats as resources. The Resources tab
contains a list of these resources so that you can find them easily and manage
them in various ways.

The Resources tab is a feature, used by advanced developers, which you
generally don’t need to worry about unless you decide to create graphical
applications using a combination of C++ and the wxWidgets plug-in (installed
automatically for Windows developers, but separately for both Mac and Linux
developers). An explanation of how to create such applications is outside the
scope of this book, but you can see a simple example of such a project at
http://wiki.codeblocks.org/index.php?title=WxSmith_tutorial:_
Hello_world.

Using the Logs & Others window
Code::Blocks helps you track all sorts of activities. For example, when you cre-
ate a new application from source code you write (a process called building), you
see messages that tell you how the process went, as shown in Figure 1-11 (your
messages may vary slightly). The examples in this book will help you understand
when to use the various log tabs and other tabs (such as the Debugger tab) to
better determine how your application works.

The tabs you see in this window depend on which options you have enabled in
Code::Blocks and what task you’re doing. Code::Blocks will usually select the tab
you need automatically. If you want to close a particular tab, click the X next to its
entry on the tab. To display a tab that you don’t see, right-click any tab in the list
and choose an entry from the Toggle option on the context menu.

http://wiki.codeblocks.org/index.php?title=WxSmith_tutorial:_Hello_world
http://wiki.codeblocks.org/index.php?title=WxSmith_tutorial:_Hello_world

24 BOOK 1 Getting Started with C++

Selecting a compiler
Code::Blocks supports a host of compilers. This book uses GCC because it works on
all of the target platforms and it provides great C++ 20 support. Most Code::Blocks
installations also select this particular compiler automatically. So there are all
kinds of great reasons to use GCC as a compiler. However, you might not have
GCC selected on your system, and that could cause problems when running the
examples. Not every compiler vendor provides great C++ 20 support, or your com-
piler vendor might implement a particular detail differently than GCC does. The
following steps help you verify that GCC is the compiler selected for your system,
and they help you change your configuration if it isn’t:

1.	 Open Code::Blocks.

It doesn’t matter if you select a project or not. Configuring the compiler will be
the same whether you have a project loaded or not.

2.	 Choose Settings ➪  Compiler.

You see the Compiler Settings dialog box, as shown in Figure 1-12.

3.	 Click Global Compiler Settings in the left pane to display the global
compiler settings.

4.	 Verify that the GNU GCC compiler (or an equivalent for your platform) is
actually selected in the Selected Compiler list.

The list could contain a number of GCC compiler entries. The best option is the
GNU GCC Compiler setting because it offers maximum compatibility with the
book examples. If the GNU GCC Compiler option (or an equivalent for your
particular platform) is selected, proceed to Step 7.

5.	 Select the GNU GCC Compiler option (or the equivalent for your platform)
in the Select Compiler list.

The Set As Default button becomes enabled after you make your selection.

6.	 Click Set As Default.

This step ensures that the GNU GCC compiler is used for all of your projects,
even if you only want to open the downloaded source code.

FIGURE 1-11:
Using the Logs &

Others window to
understand how
your application

works.

Co
nfi

gu
ri

ng
 Y

ou
r

D
es

kt
op

 S
ys

te
m

CHAPTER 1 Configuring Your Desktop System 25

7.	 Click OK.

8.	 Close Code::Blocks.

You see a Layout Changed dialog box.

9.	 Click Yes.

Your changes become permanent, and Code::Blocks closes.

Using Other IDEs
Even though this book will focus on the Code::Blocks IDE and the GCC compiler
combination, the knowledge you gain can be used with any IDE and compiler
combination. In fact, all you really need is the compiler. Most developers use an
IDE, just because it makes things easy (and we all like things easy). You may find,
though, that Code::Blocks simply doesn’t provide the functionality you want or
that it’s too hard to use.

The selection of an IDE is a personal thing, and most developers have specific
reasons for choosing a particular IDE. In fact, I use several different IDEs and
make my choice based on the needs of a particular project. So it’s not even neces-
sary to use the same IDE all the time. IDEs provide management features, while

FIGURE 1-12:
Set Code::Blocks

to use the GCC
compiler to run
the examples in

this book.

26 BOOK 1 Getting Started with C++

compilers control how the source code is interpreted and turned into an execut-
able file. The two applications perform completely different tasks.

GCC is a great choice for a compiler because a number of IDEs support it. If you
decide to use a different IDE from the one found in this book, that’s fine with us.
In fact, we congratulate you on your desire to take a different path! Here are some
alternative IDEs that you might want to consider:

»» CodeLite: https://codelite.org/

»» Dev-C++: https://dev-c.soft32.com/free-download/?dm=2

»» Eclipse: https://www.eclipse.org/downloads/ when used with C/C++
Development Tooling (CDT) (https://www.eclipse.org/cdt/)

»» Emacs: https://www.gnu.org/software/emacs/) when used with the
Emacs Code Browser (ECB) (http://ecb.sourceforge.net/)

»» Netbeans: https://netbeans.apache.org/download/index.html

»» Qt Creator: https://www.qt.io/developers/

https://codelite.org/
https://dev-c.soft32.com/free-download/?dm=2
https://www.eclipse.org/downloads/
https://www.eclipse.org/cdt/
https://www.gnu.org/software/emacs/
http://ecb.sourceforge.net/
https://netbeans.apache.org/download/index.html
https://www.qt.io/developers/

CHAPTER 2 Configuring Your Mobile System 27

Configuring Your Mobile
System

At one time, developers relied exclusively on desktop systems to perform
useful tasks because desktops provided the required computing power.
Laptops came next, but essentially a laptop is a smaller form of a desktop.

Today, however, developers rely on all sorts of mobile devices to write code. Even
though someone could conceivably use a smartphone for the task, the majority
of this activity occurs on high-powered tablet computers. The reason relates not
so much to the power, but the form factor. A tablet offers more screen real estate
to see your code and observe how it works. Keeping these two goals in mind and
looking at the available Integrated Development Environments (IDEs), this chap-
ter relies on Google CppDroid to make the leap from desktop systems to Android-
powered tablet systems, such as the ASUS ZenPad 3S 10.

However, you shouldn’t get the idea that CppDroid is the only game in town. You
also find a description of a few other offerings in this chapter, and you can cer-
tainly try them if you like. The consistent issue with all of these offerings, though,
is that they all currently lack C++ 20 support, so some book examples won’t run
on your tablet at all. If you want to ensure maximum compatibility with the book’s
code, procedures, and screenshots, you still need to rely on Code::Blocks run-
ning GCC.

Chapter 2

IN THIS CHAPTER

»» Getting and using CppDroid

»» Working with other mobile IDEs

»» Using CppDroid to write code

»» Getting CppDroid help

28 BOOK 1 Getting Started with C++

After you get CppDroid installed, you need to know how to perform some basic
tasks with it. This chapter doesn’t provide a complete tutorial on using CppDroid,
which is why it also discusses how to obtain help. However, you do discover how
to interact with the book’s code in this chapter, which is an essential part of the
learning experience.

Obtaining CppDroid
Many IDEs are available for you to use to work with C/C++ code. However, most of
them rely on the Windows, Linux, Mac OS X, and Solaris platforms (with Solaris
appearing as an option far less often than the others). In addition, most of them
are paid options, with Code::Blocks (http://www.codeblocks.org/) and Visual
Studio Code (https://code.visualstudio.com/) being notable exceptions.
However, to program on your Android device, you need an IDE that works with
Android and provides some sort of cloud-based storage for the most part (PC-
based IDEs use local storage). CppDroid offers a good Android-based solution that
you can use in both online and offline mode without problem. Plus, the free option
actually does work (but with limits; see the “Free versus paid software” sidebar
for details). The following sections give you insights into working with CppDroid.

FREE VERSUS PAID SOFTWARE
You can often get by using free software on your mobile device. In some cases, you
don’t actually have a paid choice, but in other cases the paid option may offer features
you won’t use. Game software falls into this category, as do some kinds of productivity
software. The paid version of an app often lacks ads, offers additional storage space,
and frees up a few new features. You may also receive some level of support directly
from the vendor, rather than rely on community support. Whether the paid version is
worth your time depends on which features you use.

The free-versus-paid question skews toward paid when you start to work with an
IDE. Many of the CppDroid features discussed in this chapter come with only the paid
version, and the book assumes that you have the paid version when working with the
code. However, you can probably work with a majority of the examples using the free
version if you’re willing to put up with the loss of some functionality, like real-time diag-
nostics and static analysis.

http://www.codeblocks.org/
https://code.visualstudio.com/

Co
nfi

gu
ri

ng
 Y

ou
r

M
ob

ile
 S

ys
te

m

CHAPTER 2 Configuring Your Mobile System 29

Understanding why CppDroid is such a
great choice
You can find a number of C/C++ IDEs for Android in the Google Play Store. However,
the choices come down to three products for most people (in order of preference):

»» CppDroid

»» C4Droid

»» CxxDroid

None of these products will completely replace a desktop IDE, but CppDroid comes
very close. For example, CppDroid is the only one of the three products that has
built-in support for graphics. You can obtain graphics support in CxxDroid using
Qt (https://www.qt.io/) and a nonstandard header, graphics.h, but this means
working in a manner that doesn’t easily translate between desktop and mobile
device. You can also use CxxDroid with Simple DirectMedia Layer (SDL) (https://
www.libsdl.org/). C4Droid supports SDL using only a non-standard graphics.h
file. You use Qt to develop business graphics software, while SDL works great for
2-D games.

If you want to develop 3-D games, you must use DirectX through Wine (https://
www.androidpolice.com/2020/01/21/windows-compatibility-layer-wine-
hits-v5-0-on-android/) or OpenGL (https://developer.android.com/guide/
topics/graphics/opengl). There are add-ons, such as Unity (https://developer.
android.com/games/develop/build-in-unity) and Unreal (https://docs.
unrealengine.com/en-US/Platforms/Mobile/Android/index.html), but they
actually layer on DirectX or OpenGL, so you’re still using one of these two tech-
nologies, despite using them indirectly. Using any of these products on Android is
difficult, and you should plan plenty of time to integrate these APIs into your IDE.

It’s helpful to know precisely what CppDroid provides. Table 2-1 lists basic func-
tionality, whether this functionality comes only with the paid version, and a brief
overview of what you obtain with the basic functionality. As you work with Cpp-
Droid, you encounter some deficiencies, especially when running the standardized
code in this book, but you also discover that you can run a lot of it without any
sort of modification.

https://www.qt.io/
https://www.libsdl.org/
https://www.libsdl.org/
https://www.androidpolice.com/2020/01/21/windows-compatibility-layer-wine-hits-v5-0-on-android/
https://www.androidpolice.com/2020/01/21/windows-compatibility-layer-wine-hits-v5-0-on-android/
https://www.androidpolice.com/2020/01/21/windows-compatibility-layer-wine-hits-v5-0-on-android/
https://developer.android.com/guide/topics/graphics/opengl
https://developer.android.com/guide/topics/graphics/opengl
https://developer.android.com/games/develop/build-in-unity
https://developer.android.com/games/develop/build-in-unity
https://docs.unrealengine.com/en-US/Platforms/Mobile/Android/index.html
https://docs.unrealengine.com/en-US/Platforms/Mobile/Android/index.html

30 BOOK 1 Getting Started with C++

TABLE 2-1:	 CppDroid Features
Feature Paid Only Description

Add-ons manager Even though CppDroid comes with all the basics you need, at some
point you’ll want to go beyond the basics, which is where add-ons
come into play. An add-ons manager makes the task of knowing what
you need to add a lot easier. Plus, you can easily get rid of items that
you no longer need.

Auto indentation Trying to keep your code readable means using indentation to see
things like the start and finish of an if statement or other code
block. Having configurable auto indentation means that you can
choose how the code is indented, but you don’t have to indent
it manually.

Auto pairing Locating a missing parenthesis or brace can drive you slowly nuts.
Configurable auto pairing means that you determine how elements
are paired, but the IDE helps you ensure that nothing needed to
compile the code is missing.

Auto updates Getting the latest software updates helps you write code that works
with the newest trends in C/C++ development. You also get bug
fixes, which is essential for the reliability and security of the code
you create.

C/C++ code
examples included

X Because working with tablet-based IDEs can sometimes come with
quirks, having a full set of C/C++ code examples is essential. These
examples show how to work around the quirks so that you can
execute your C/C++ code with just a few small modifications when
necessary.

C++ tutorial and learn
guide included

X If you plan to work offline, it’s essential to have a tutorial and learning
guide for those times when you almost, but not quite, remember
how to perform a particular task. Of course, you’ll also want to keep
this book handy.

Code complete X Automatically suggests how to complete statements that you type
based on previous content. This feature reduces potential typos and
makes you considerably more efficient, especially when working on
the tiny keyboards found in tablets.

Compile C/C++ code In some cases, such as when working with a web-based IDE,
the C++ code you create is interpreted by ROOT (see https://
en.wikitolearn.org/ROOT_for_beginners for more
information about ROOT). Some tablet IDEs also require ROOT, but
with CppDroid you get fully compiled C/C++ code output instead.

Dropbox support X Sharing your code with others is a lot easier when you have
Dropbox support.

File and
tutorial navigator

This feature provides an index into the documentation to tell you
about C/C++ code constructs, including variables and methods.

https://en.wikitolearn.org/ROOT_for_beginners
https://en.wikitolearn.org/ROOT_for_beginners

Co
nfi

gu
ri

ng
 Y

ou
r

M
ob

ile
 S

ys
te

m

CHAPTER 2 Configuring Your Mobile System 31

Getting your copy of CppDroid
You obtain CppDroid from the Google App Store by searching for CppDroid. Unfor-
tunately, it doesn’t support every version of Android, so you may not actually see
it if your device doesn’t support it. Figure 2-1 shows how the page appears when
you find it. To obtain a copy, all you need to do is tap Install.

Feature Paid Only Description

Google Drive support X Working from anywhere on a single piece of code means having
access to that code from every environment you use. If your desktop
system also supports Google Drive, you can switch between your
desktop and tablet as the need arises.

Portrait/landscape UI A tablet presents a constrained screen real estate environment.
When an IDE forces you to use it in landscape mode only, you often
see the IDE informational panes at the expense of seeing the code.
Working in portrait mode lets you ignore most of the IDE panes while
focusing on the code.

Problem fix
suggestions

X You get suggestions for a variety of coding issues, even if those issues
may not necessarily result in a compilation error.

Real-time diagnostics
(warnings and errors)

X Real-time diagnostics enable you to find certain classes of errors in
your code without having to compile it. The IDE monitors what you
type and can point out issues like typos without compilation, which
saves considerable time.

Smart syntax
highlighting

Highlighting makes your code stand out so that you can see things
like variables and keywords more easily.

Static analysis X Static analysis helps locate truly difficult-to-find bugs that include:
memory leaks, mismatching allocation and deallocation, uninitialized
variables usage, and array index out-of-bounds errors.

Theme-based code
syntax highlighting

X Themes let you highlight code syntax in a manner that makes sense
to you. If you have visual problems, using themes can turn a difficult
viewing experience into one that works well with your vision. The use
of themes means that no one is stuck using a particular theme to
highlight syntax; you see it the way that works best for you.

Works offline The ability to work without an Internet connection means that you
gain flexibility in where you can work. However, it also means that
you must have access to everything you need as part of the local
installation, which is something that CppDroid provides at the
expense of additional local storage use.

32 BOOK 1 Getting Started with C++

Ensuring you get a good install
After the CppDroid app installs on your tablet, you see the Open button as usual.
However, instead of opening the app, you see something like the view in Figure 2-2.
To work offline, CppDroid needs to install a number of libraries on your system.
This process can take a while, so just wait for it to complete.

Considering Other Alternatives
You aren’t limited to working with CppDroid, even though it’s the tablet IDE used
for the book. Most tablet IDEs will let you perform a basic set of tasks that will work
well for the majority of the book examples. The only time you’ll encounter dif-
ficulty is when working with examples that use new C++ features, rely on graphics

FIGURE 2-1:
Locating

CppDroid in
the Google Play

Store.

FIGURE 2-2:
Loading the

CppDroid
libraries for
offline use.

Co
nfi

gu
ri

ng
 Y

ou
r

M
ob

ile
 S

ys
te

m

CHAPTER 2 Configuring Your Mobile System 33

in some way, or employ standard features not found in the tablet IDE. One of
the advantages of these alternatives is that they might support your device when
CppDroid doesn’t. The following sections tell you about the best alternatives that
provide maximum compatibility with the book examples.

Working with C4Droid
C4Droid has many of the same features as CppDroid. For example, it compiles your
C/C++ code, so you don’t need ROOT support. However, you can use it if desired. As
with CppDroid, the app targets the educational market, but C4Droid doesn’t enjoy
the strong community support that CppDroid does (see the article at https://
www.androidrank.org/compare/c4droid_c_c_compiler_ide/cppdroid_c_c_
ide/com.n0n3m4.droidc/name.antonsmirnov.android.cppdroid for details). In
contrast to CppDroid, no free version of C4Droid exists, but when compared to the
price charged for most desktop IDEs, C4Droid is a bargain.

Beside the graphics limitations noted earlier in the chapter, C4Droid has some
other limits as well. The most important of these is that it currently supports only
C++ 11, which means that any newer examples in the book won’t run on it. You also
need to download and separately install more products to get a fully functional
IDE. The limited number of examples can also be a problem. Because the tablet
environment can be different from working on the desktop, having a great list of
examples can really help.

Getting multiple language support
with AIDE
If you’re looking for a single IDE that can do everything you need on your tablet,
Android IDE (AIDE) (https://www.android-ide.com/) might be what you need.
Unlike the other IDEs listed in this chapter, this one works with a slew of lan-
guages, including Java, C/C++, HTML5, CSS, and JavaScript. AIDE is also Android
Studio and Eclipse compatible (limited to API level 27), so if you plan to create
Android apps using a language such as Java, this might be the right choice for you.
(Unfortunately, Google is focusing on the Kotlin language for Android develop-
ment and has no plans to add Kotlin support to AIDE now.)

However, with such a flexible range of features comes complexity, which seems
to be the major criticism of AIDE. The well-designed tutorials tend to help a little,
but obviously not enough for a novice developer. Many users also complain that
there is a plug-in for every need and all the plug-ins are paid, so this IDE can
nickel-and-dime you to death.

https://www.androidrank.org/compare/c4droid_c_c_compiler_ide/cppdroid_c_c_ide/com.n0n3m4.droidc/name.antonsmirnov.android.cppdroid
https://www.androidrank.org/compare/c4droid_c_c_compiler_ide/cppdroid_c_c_ide/com.n0n3m4.droidc/name.antonsmirnov.android.cppdroid
https://www.androidrank.org/compare/c4droid_c_c_compiler_ide/cppdroid_c_c_ide/com.n0n3m4.droidc/name.antonsmirnov.android.cppdroid
https://www.android-ide.com/

34 BOOK 1 Getting Started with C++

The C/C++ language support for AIDE comes from the Android Java C++ APK 3.2,
which means that you can expect differences in support from the GNU Compiler
Collection (GCC) used with Code::Blocks for the desktop application in this book.
You may find that some examples won’t work properly because of these differ-
ences, but all the simple (earlier) examples will work fine.

Using web-based IDEs
You can use a web-based IDE from any device, including your desktop, so in some
cases, they represent the best in terms of device compatibility. A web-based IDE
also provides an interpreted environment through ROOT in most cases. Conse-
quently, when learning to develop apps in C/C++, you get instant feedback, which
can save considerable time. As shown in Figure 2-3, the web-based offerings also
tend to provide a simple interface that allows you to get right to work.

The example in Figure 2-3 is JDoodle (https://www.jdoodle.com/online-
compiler-c++17/), which is one of the best C/C++ online offerings. This particular
online IDE supports 72 programming languages. How well it supports all of them
depends on the interpreter used. For the most part, you find that the JDoodle IDE
provides an acceptable method of working with the code in the book. Because it
also supports C++ 17, you can also run more of the examples than you can using
a C/C++ app.

FIGURE 2-3:
Web-based IDEs
tend to provide

a very simple
interface.

https://www.jdoodle.com/online-compiler-c++17/
https://www.jdoodle.com/online-compiler-c++17/

Co
nfi

gu
ri

ng
 Y

ou
r

M
ob

ile
 S

ys
te

m

CHAPTER 2 Configuring Your Mobile System 35

The problem with every one of the web-based IDEs is that you must use them
online. In addition, there is a very good chance you won’t be able to save your
code, so they’re mostly useful for experimentation and not long-term learning.
However, even with these issues, here are some of the web-based IDEs you might
consider as replacements for CppDroid in addition to JDoodle:

»» C++ Shell (C++ 14): http://cpp.sh/

»» CodeChef (C++ 14): https://www.codechef.com/ide

»» Ideone (C++ 14): https://ideone.com/SXNfC0

»» OnlineGBD (C++ 17): https://www.onlinegdb.com/online_c_compiler

»» Rextester.com (Varies according to C compiler selected): https://
rextester.com/l/c_online_compiler_gcc

»» RepLit (C++ 11): https://repl.it/languages/cpp11

»» TutorialsPoint (C++ 11): https://www.tutorialspoint.com/compile_
cpp11_online.php

Touring the Essential CppDroid Features
After you have CppDroid downloaded, you want to begin working with it. The fol-
lowing sections get you started with the basic features you need to work with the
examples in this book. However, the IDE provides a lot more functionality than
you find here, so spending time with the various examples and tutorials is a good
idea as well.

Getting started with CppDroid
When the libraries are finally loaded, you see a screen similar to the one shown
in Figure 2-4. The top left of this screen displays the name of the file (which you
can change if you want). The top right contains buttons to Save, Compile, and Run
your app.

Along the bottom of the screen, you see the current phase of working with your
code:

»» Diagnostics: Shows errors that occur in your typing.

»» Analysis: Outputs the results of a compilation.

»» Output: Displays the output from your app.

http://cpp.sh/
https://www.codechef.com/ide
https://ideone.com/SXNfC0
https://www.onlinegdb.com/online_c_compiler
https://rextester.com/l/c_online_compiler_gcc
https://rextester.com/l/c_online_compiler_gcc
https://repl.it/languages/cpp11
https://www.tutorialspoint.com/compile_cpp11_online.php
https://www.tutorialspoint.com/compile_cpp11_online.php

36 BOOK 1 Getting Started with C++

Tap the ellipsis button in the top-right corner and you see the menu shown
in Figure 2-5. To obtain full functionality from CppDroid, you need to tap the
Purchase entry and select the optional features you want to buy (see Table 2-1
for details). Choosing Premium will give you access to all the extra features at a
reduced cost.

FIGURE 2-4:
Accessing the

basic CppDroid
user interface

features.

FIGURE 2-5:
Use the menu

to locate the
CppDroid

features and
options.

Co
nfi

gu
ri

ng
 Y

ou
r

M
ob

ile
 S

ys
te

m

CHAPTER 2 Configuring Your Mobile System 37

Accessing an example
CppDroid comes with both examples and tutorials you can use to learn more
about the IDE and C/C++ in general. The tutorials work much like the examples—
just with more content. To access the Hello World example, choose ... ➪  Proj-
ect ➪  Examples ➪  C++ ➪  For Beginners ➪  HelloWorld. The display will now contain
the code shown in Figure 2-6.

To compile this code, you touch the lightning icon. After it has compiled, you can
run it by tapping the right-pointing arrow. The display will change to show the
output. To clear the output, tap the left-pointing arrow in the upper left corner
of the display.

Working with a simple online project
You can place the source code for this book on your Google Drive or Dropbox. Of
course, you’ll still need some method of accessing it. The following steps assume
that you use Google Drive, but they also work with Dropbox. (When working with
Dropbox, you place the code in the Dropbox\Apps\CppDroid folder.)

1.	 Choose ... ➪  Project ➪  Open ➪  From Google Drive.

You may have to log in at this point. After you log in, you may see a dialog box
like the one shown in Figure 2-7 in which you give permission to access Google
Drive from CppDroid. Tap Allow to allow the access. (This is a one-time step.)

2.	 Locate the folder containing the code you want to access.

You see one or more .cpp files. For example, when working with the book’s
source code, you might choose the BookI\Chapter03\SayHello folder.

3.	 Highlight the file you want to open and then tap Select.

CppDroid opens the file for you. Figure 2-8 shows an example of the
HelloWorld.cpp file for Book 1, Chapter 3.

At this point, you can compile and run your application just as if you used
Code::Blocks. The only difference is that you’re doing it on your tablet.

FIGURE 2-6:
Loading an

example provides
a quick way

to see code in
action.

38 BOOK 1 Getting Started with C++

Accessing your source code
To begin creating a new source code file, you choose ... ➪  File ➪  New. When you
create a new file, CppDroid automatically gives it a default name. You can change
the name by choosing ... ➪  File ➪  Rename. A single file can be part of a project, but
you can also make a single file the entire project. For example, a Hello World app
would consist of a single file.

FIGURE 2-7:
Give permission

to access your
Google Drive.

FIGURE 2-8:
The file is

available for use
with your local

copy of CppDroid.

Co
nfi

gu
ri

ng
 Y

ou
r

M
ob

ile
 S

ys
te

m

CHAPTER 2 Configuring Your Mobile System 39

You can store your source code locally, on Google Drive, or on Dropbox. When
working online, the process is the same as when working with online source as
described in the “Working with a simple online project” section of the chapter.
The following list tells how you can store your source code locally to make it avail-
able at all times.

»» To create a new project: Choose ... ➪  Project ➪  New. When you see the New
Project dialog box shown in Figure 2-9, type a project name and then tap
either Create C Project or Create C++ Project.

»» To open an existing project: Choose ... ➪  Project ➪  Open, select one of the
project sources: Recent, From Device, From Dropbox, or From Google Drive,
and then select the project you want to open.

»» To save an existing project: Choose ... ➪  Project➪  Save or ... ➪  Project ➪  Save
As. When using Save As, you can choose a different location, such as Dropbox
or Google Drive, and a new project name.

»» To close an existing project: Choose ... ➪  Project ➪  Close. CppDroid automati-
cally saves your project to the default location with the current name if you
haven’t done so.

»» To delete an existing project: Choose ... ➪  Project ➪  Delete while the project is
open for editing.

Considering differences with the desktop
environment
When you compare CppDroid with Code::Blocks, you find that CppDroid provides a
much simpler interface with far fewer features. It works as a means to write code
while on the road and for testing simple applications. You can’t use CppDroid as
a full-fledged development environment simply because it doesn’t contain the
features that such an environment provides, especially when it comes to things
like debugging. In fact, the limits clearly present themselves on the Actions menu
shown in Figure 2-10, where CppDroid limits you to completing code, performing
analysis, compiling, and running the code with or without arguments.

FIGURE 2-9:
Define a new
local project.

40 BOOK 1 Getting Started with C++

Even with the limits, you can easily work with any example in the book that con-
sists of a single file or doesn’t rely on the latest C++ functionality. You need the
desktop environment, however, to make most multifile examples work and to
perform complex tasks. By working through the examples in this book on your
tablet, you gain insights into what is and isn’t possible for CppDroid, giving you
another useful tool that you can use to code wherever and whenever you want.

Obtaining CppDroid Help
No matter how simple and straightforward the interface, no matter how many
examples and tutorials supplied, every app will generate some number of ques-
tions. Consequently, you need access to help at some point to make things work.
The following sections offer a quick overview of the help available for CppDroid.

Working with the Help documentation
The oddest part about working with CppDroid is that there isn’t an actual Help
file. When you open the ... ➪  Help menu, you see the options shown in Figure 2-11.

The CppDroid blog contains the latest entries by the app author. What the blog
provides is a running commentary of the problems that the developer is seeing
and what is being done to fix them. You also see side posts on topics such as the

FIGURE 2-10:
The list of actions

in CppDroid
is somewhat

limited.

FIGURE 2-11:
A list of Help

sources for
CppDroid.

Co
nfi

gu
ri

ng
 Y

ou
r

M
ob

ile
 S

ys
te

m

CHAPTER 2 Configuring Your Mobile System 41

number of people currently using CppDroid and other projects that the author is
contemplating. Even so, this is where you go when you have a problem with the
product and hope that the developer is addressing it. Figure 2-12 shows an exam-
ple of the sort of blog posts you see.

When you find no apparent help for a particular problem, you choose the Post
Feedback option on the Help menu to send the developer an email. Oddly enough,
you may find that you have a hard time getting through with anything other than
Gmail.

Getting community support
You can find a lot of articles about CppDroid online on various websites. The
articles provide you with insights on how to use CppDroid and often answer ques-
tions that users have about it. In addition, you can find help using CppDroid at
these sites:

»» Reddit: https://www.reddit.com/r/cpp/search?q=cppdroid

»» SourceForge: https://sourceforge.net/ (search for CppDroid)

FIGURE 2-12:
The developer

uses blog posts to
help you find bug

fixes.

https://www.reddit.com/r/cpp/search?q=cppdroid
https://sourceforge.net/

42 BOOK 1 Getting Started with C++

»» StackOverflow: https://stackoverflow.com/search?q=CppDroid

»» AndroidForums: https://androidforums.com/apps/
cppdroid-c-c-ide.5356/

You might find additional locations for CppDroid information online. If you find
one of these places and it seems to have good, consistent information, please let
me know at John@JohnMuellerBooks.com so that I can share the information with
other readers.

Using the free examples
The free examples often provide you with insights into how CppDroid works. For
example, you may wonder how the static analysis feature works. To see a dem-
onstration of static analysis, choose ... ➪  Project ➪  Examples ➪  C++ ➪  For Develop-
ers ➪  Static Analysis. After the file loads, choose ... ➪  Actions ➪  Analyze. Figure 2-13
shows the results.

Notice that the output shows various problems with the code, such as the printf
format string requires 2 parameters, but 3 are given at line 43, column

FIGURE 2-13:
Use an example

to see how the
static analysis

feature works.

https://stackoverflow.com/search?q=CppDroid
https://androidforums.com/apps/cppdroid-c-c-ide.5356/
https://androidforums.com/apps/cppdroid-c-c-ide.5356/
mailto:John@JohnMuellerBooks.com

Co
nfi

gu
ri

ng
 Y

ou
r

M
ob

ile
 S

ys
te

m

CHAPTER 2 Configuring Your Mobile System 43

0 near the bottom of the screen. The output helps you locate problems with your
code and fix them before you compile it.

Accessing the tutorials
The tutorials provide a multistep process for working with C++ within CppDroid.
When you choose ... ➪  Project➪  Tutorials ➪  C++ ➪  For Beginners, you see two tutorial
options:

»» CPlusPlus.com C++ Tutorial

»» LearnCpp.com C++ Tutorial

Both tutorials give you help with getting over the C++ learning curve from within
the CppDroid environment. The IDE changes to show a tutorial outline in the
left pane and the associated text in the right, as shown in Figure 2-14. You work
directly from within the CppDroid environment, which means that you can better
understand how CppDroid works when you finish.

FIGURE 2-14:
The tutorials take
you through basic

processes within
CppDroid.

CHAPTER 3 Creating Your First C++ Application 45

Creating Your First C++
Application

It’s your lucky day. You have decided to learn one of the most popular program-
ming languages on the planet. (C++ is the fourth most popular language accord-
ing to the TIOBE Index at the time of this writing, at https://www.tiobe.com/

tiobe-index/.) From the biggest skyscrapers housing huge Fortune 500 compa-
nies all the way down to the garages with the self-starting kids grinding out the
next generation of software, people are using C++. Yes, there are other languages,
but more programmers use C++ than any other language for desktop application,
game, animation, media access, compiler, and operating system development. In
this chapter, you start right out writing a C++ application.

As mentioned in Chapter 1, this book relies on your use of Code::Blocks as the IDE
and on GCC as the C++ compiler. The procedures are written for the most current
version of Code::Blocks (version 17.12) at the time of writing, so you may need to
make allowances if you use a different Code::Blocks version, and the procedures
won’t work if you use another IDE. In addition, you may need to make minor
changes to the code as the examples become more complex if you want to use
other compilers.

Chapter 3

IN THIS CHAPTER

»» Organizing your applications into
projects

»» Typing code into the code editor

»» Writing an application that writes to
the screen

»» Doing basic math

»» Running your application

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

46 BOOK 1 Getting Started with C++

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookI\Chapter03 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Code::Blocks Creating a Project
Creating a computer application is usually a bigger job than you’d want to organ-
ize in your head. Application code is saved in files much like the documents in a
word processor. But applications often have more than one source-code file. At
big companies in big buildings in big cities, some applications are really big —
hundreds of source-code files for just one application.

Understanding projects
Applications can contain a lot of source code. To keep all that source code together,
programmers use a file that manages it all, called a project. A project has a few key
elements:

»» A set of source-code files

»» (Optional) Resource information such as icons and sound files

»» A description of how to compile (build) the application

»» Integrated Development Environment (IDE) settings that tell how to set up the
editor you use to write the application

»» Some general descriptions of the application being built, such as its name and
the type of application it is

The type of application doesn’t mean “word processor” or “really cool earth-
shattering software,” even if that’s what your application is. This book uses type
to mean your application’s overall relationship with other applications:

»» Does this application run by itself?

»» Does this application add to or extend the functionalities of another applica-
tion (such as Firefox)?

»» Does this application serve as a library (a bunch of code that you make
available to another application)?

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 47

All this information, along with your source-code files, represents a project.

In the Code::Blocks IDE, you create a new project each time you start work on
a new application. You provide a little information about the application you’re
working on, and then you begin writing your code. All the code for your applica-
tion is stored in one place — in the project.

Defining your first project
To create a new project in Code::Blocks, start Code::Blocks and choose
File  ➪  New  ➪  Project, or click Create a New Project on the Start Here page that
appears when you start the application. A dialog box appears, as shown in
Figure 3-1.

You see what appear to be way too many project types, including some that have
nothing to do with C++, such as Fortran Application and Matlab Project. You can
reduce the number of choices by selecting a category in the Category field. The
best option for the projects in this book is Console.

FIGURE 3-1:
The New from

Template dialog
box lets you
select a new
project type.

48 BOOK 1 Getting Started with C++

When you create a C++ project in Code::Blocks, you choose from a list of several
types of applications. They’re shown as icons in the New from Template dialog
box in alphabetical order. The following list shows some application types:

»» GTK+ Project: This is a graphical application that includes, well, a window. You
know the kind: It usually has a menu across the top and something inside it
that you can either click or type into. It relies on the GNU Image Manipulation
Program (GIMP) Toolkit (GTK), which provides an incredibly flexible interface
that runs on a number of platforms including Linux, Mac, and Windows
systems. Read more about GTK in the “What about all of those other proj-
ects?” sidebar.

»» Console Application: This is an application that gets a paltry Console window
instead of a graphical window. Console refers to a window with a command
prompt. (Folks who recall the old days, before Windows, call it a DOS box, and
you may know it as a terminal window when working with operating systems
such as the Mac or Linux.)

»» Static library: A static library is a set of C++ code that you use later in another
project. It’s like making a really great marinade that you won’t use up today.
You’ll use some of it tomorrow and some of it after that.

WHAT ABOUT ALL OF THOSE OTHER
PROJECTS?
Code::Blocks supports a host of other application types. This book doesn’t discuss them,
because they won’t add to your initial understanding of C++ programming. However,
these other projects are valuable in the right environment. For example, the GIMP
Tool-Kit Plus (GTK+) Project relies on a graphical user interface designed for the X
Windowing system (see more at http://www.gtk.org/).

You’ll find that Code::Blocks uses a considerable number of acronyms and abbrevia-
tions for project and resource names without defining any of them. This book defines
all acronyms and abbreviations on first use so that you don’t have to guess what they
mean. However, some of these acronyms and abbreviations go on and on. For exam-
ple, you might wonder about the GIMP part of the GTK+ definition. GIMP stands for
GNU Image Manipulation Program. Of course, now you need to know GNU, which
stands for Gnu’s Not Unix. Okay, now that we’ve exhausted that bit of fun, if you ever
do run across an interesting acronym or abbreviation, you can always get it defined
for you on the Acronym Finder website (http://www.acronymfinder.com/). If
you find one that could be defined further in this book, please let me know at John@
JohnMuellerBooks.com. The bottom line is that you need to research both projects
and resources before you use them.

http://www.gtk.org/
http://www.acronymfinder.com/
mailto:John@JohnMuellerBooks.com
mailto:John@JohnMuellerBooks.com

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 49

»» Dynamic Link Library: A Dynamic Link Library (DLL) is kind of like a static
library except it is separated from the main application and gets its own file
with a .DLL extension.

»» Empty project: This blank project is as clean as a blank sheet of white typing
paper, ready for you to fill ’er up.

Frankly, it’s kind of a pain to use an empty project, because you have to tweak
and set a bunch of things. So we never use this option.

For the samples in this chapter, create a Console Application. Follow these steps:

1.	 In the New from Template dialog box, click the Console Application icon
found on the Projects tab, and then click Go.

The wizard asks which language you want to use.

2.	 Highlight C++ and click Next.

You see a list of project-related questions, as shown in Figure 3-2. These
questions define project basics, such as the project name.

3.	 Type a name for your project in the Project Title field.

The example uses SayHello as the project title. Notice that the wizard
automatically starts creating an entry for you in the Project Filename field.

4.	 Type a location for your project in the Folder to Create Project In field.

The example uses C:\CPP_AIO4\BookI\Chapter03 as the folder name. You
can also click the ellipsis button next to the Folder to Create Project In field to

FIGURE 3-2:
Provide the name

of your project
for Code::Blocks.

50 BOOK 1 Getting Started with C++

use the Browse for Folder dialog box to locate the folder you want to use.
Notice that the wizard completes the entry in the Project Filename field.

5.	 (Optional) Type a project filename in the Project Filename field.

Code::Blocks fills in this field for you automatically based on the Project Title
field entry, and there isn’t a good reason to change it in most cases; however,
in special circumstances, you may choose to do so. For example, if you have a
project with multiple elements, you may want the project file to match the
name of an overall project rather than the name of a particular entity within
the project.

6.	 Click Next.

You see the compiler settings shown in Figure 3-3. Most of the projects in this
book use the default compiler settings, which include the GNU GCC Compiler
shown in the figure. However, if you look at the Compiler drop-down list, you
see that Code::Blocks supports a number of compilers and you can add more
to it. The other settings control the creation and location of a Debug version of
the application (the version you use for finding problems in your code) and a
Release version (the version that you send to a customer).

7.	 (Optional) Change any required compiler settings.

There generally isn’t any good reason to change the compiler settings unless
your project has a specific need, such as placing the output and object files in
the same folder.

FIGURE 3-3:
Tell Code::Blocks

where to place
the Debug

and Release
versions of your

application.

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 51

8.	 Click Finish.

The wizard creates the application for you. It then displays the Code::Blocks IDE
with the project loaded. However, the source code file isn’t loaded yet.

9.	 Drill down into the SayHello workspace entries on the Projects tab of the
Management window and double-click main.cpp.

You see the source code file loaded so that you can edit it, as shown in
Figure 3-4.

The project window is organized side by side:

»» The left side is an Explorer view (called a tree view), which represents your
project. At the top of the tree view is a workspace — the essential unit of a
project. Below the workspace is the name of your project. Underneath that
are the components of your project. In this case, only one component exists
so far: the source-code file whose filename is main.cpp. Remember that, in
order to program in C++, you enter code into a source-code file; this file, called
main.cpp, is such a file for your SayHello project.

»» The right side (which actually takes up about three-quarters of the screen) is
the source-code file itself.

FIGURE 3-4:
Use the

Code::Blocks IDE
to interact with

your project.

52 BOOK 1 Getting Started with C++

This part works much like a word processor or an email editor, and you can
type the code into the window. You notice that you already have some code
there — a sort of starter code that came into being when you chose Console
Application and created the project.

»» At the bottom of the display are a number of status windows. The
Code::Blocks window tells you how the wizard created your application. Don’t
worry about these windows right now. You see them in action as the book
progresses.

Note that Figure 3-4 also shows some additional elements: a menu, several tool-
bars, and a status bar. You can right-click the toolbar area to show or hide toolbars
as needed. Figure 3-4 shows the default toolbars when you first start a project. The
status bar shows the language highlighting in use, some configuration settings,
and your current position within the source file. You can change the highlighting
used in the editor window by choosing a new language option in the drop-down
menu on the left side of the status bar that currently shows C/C++.

Building and executing your first
application
Okay, it’s time to work with your first application. Use the following steps to save
the file, build the application (make it into an executable that your operating sys-
tem can use), and execute the application:

1.	 Save the code file by choosing File  ➪  Save Everything or press Ctrl+Shift+S.

Saving the files ensures that you have a good copy on disk should something
go wrong. For example, you could completely crash the IDE if your application
does the wrong thing.

2.	 Choose Build  ➪  Build or press Ctrl+F9.

This action creates the executable file. Building the code converts words you
understand into code that your operating system understands. Notice that
Code::Blocks automatically selects the Build Log window for you and you
see the steps that Code::Blocks takes to create your application. At the end
of the process, you should see something like 0 errors, 0 warnings
(0 minutes, 1 seconds) as the output (the precise amount of time
may vary, but it should be short).

3.	 Choose Build  ➪  Run or press Ctrl+F10.

An output window like the one shown in Figure 3-5 opens, and you see your
first application execute.

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 53

4.	 Press Enter to stop application execution.

The application window disappears and you see the Code::Blocks IDE again.

Well, that wasn’t interesting, was it? But that’s okay! The application starts out
in a basic situation: You have a console window, and then when the application
is finished doing whatever it must do, it shows the message Press any key to
continue. — and when you do so, the application ends.

Typing the Code
The rightmost 75 percent or so of the Code::Blocks window is the code editor; it’s
where you type and change your code. Of all the tasks we just mentioned in the
first part of this chapter, the nearest equivalent to using the Code::Blocks code
editor is composing an email message.

Word movement and selection actions look a bit strange on the screen. They
ignore certain characters, such as braces — the curly characters { and }.

The code editor works like the editor in an email message. You can

»» Type code.

»» Move the cursor with the arrow keys (up, down, left, right) to the position
where you want to type. The cursor is the little blinking vertical bar that shows
where your text goes when you type. Some folks call it a caret or an insertion
point.

FIGURE 3-5:
Execute your first

application.

54 BOOK 1 Getting Started with C++

»» Click where you want to type. Use the mouse to point where you want to type,
and then click the mouse button. The cursor jumps to the spot where you
click.

»» Select text to delete or change. You can select text in either of two ways:

•	 Point with the mouse at the first or last character you want to select; then
hold down the mouse button while you drag the mouse.

•	 Move the cursor to the first or last character you want to select; then hold
down the Shift key while you press the arrow keys.

»» Scroll the text up and down (vertically) or left and right (horizontally) with the
scroll bars. The scroll bars work only when there is more text than you can see
in the window, just like most other places in the Windows, Linux, and Mac
worlds. You can scroll up and down (if there’s enough text in the editor) by
using Ctrl+↑ and Ctrl+↓ key combinations or the mouse wheel (assuming you
have one).

»» Scrolling changes only what you see. You must use the mouse or the arrow
keys to select what you see.

After you play around a bit with the editor, you can use Table 3-1 to do a few of
your favorite tasks. (Of course, if you’re new to programming, you may not know
yet whether these are your favorites — but they will be soon. Trust me.)

TABLE 3-1	 Navigation and Edit Commands
Command Keystroke or Action

Move the cursor ↑, ↓, ←, or →, Home, End

Move from word to word Ctrl+← or Ctrl+→

Select with the mouse Click the mouse in the text, and while the mouse button is
down, drag the mouse

Select with the cursor Shift+↑, Shift+↓, Shift+←, or Shift+→

Select the next word Shift+Ctrl+→

Select the previous word Shift+Ctrl+←

Select everything Ctrl+A

Go to the top Ctrl+Home

Go to the bottom Ctrl+End

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 55

Starting with Main
When a computer runs code, it does so in a step-by-step, line-by-line manner.
But your code is organized into pieces, and one of these pieces is the main func-
tion, or simply main(), which is the part that runs first. main() tells the computer
which other parts of the application you want to use. main() is the head honcho,
the big boss.

How does the computer know what is main()? You type lines of code between the
brace characters, { and }. Here is the default application that Code::Blocks pro-
duces when you create a Console Application project:

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello world!" << endl;
 return 0;
}

The word main is required, and it tells the computer where main() is. You might
also see main() shown as

int main(int argc, char *argv[])

Don’t worry about the words around main() for now. You discover what these
words mean later in the chapter. For now, all you need to know is that every C++
application has a main() function.

The computer performs the code line by line. If a line is blank, the computer
just goes to the next line. When you write lines of code, you are instructing the
computer to do something (which is why some people refer to lines of code as
instructions).

Showing Information
Ready to type some code and try it out? Go for it! This code will open the famous
console window and write some words to it.

56 BOOK 1 Getting Started with C++

First, make sure that you still have the Code::Blocks IDE open and the SayHello
project open, as in this chapter’s preceding examples. If not, follow these steps:

1.	 Start Code::Blocks if it’s not already running.

You see the Start page for the Code::Blocks IDE.

2.	 Click the SayHello.cbp project found in the Recent Projects list.

Code::Blocks opens the project for you.

If the main.cpp code isn’t showing in the rightmost 75 percent of the window,
double-click main.cpp in the tree view on the left. It immediately opens. (If you
don’t see the tree view, click the little tab at the top that says Projects; it’s next to
a tab that says Symbols.)

Follow these steps carefully. Make sure that you type everything exactly as given
here:

1.	 Position the cursor on the line with the opening brace.

In this case, that’s Line 6. You can see the line number on the left side of the
code editor.

2.	 Press the Enter key.

The cursor should be in the fifth column. If it isn’t — if it stays in the first
column — press the spacebar four times.

3.	 Type the following line of code exactly as it appears here.

Put no spaces between the two less-than (<) symbols. Make sure that you
remember the final semicolon at the end. Here’s the line:

cout << "Hello, I am your computer talking." << endl;

4.	 Delete the line of code that looks like this:

cout << "Hello world!" << endl;

In the end, your code will look like the following example (the new line that you
typed is shown here in bold):

#include <iostream>

using namespace std;

int main()

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 57

{
 cout << "Hello, I am your computer talking." << endl;
 return 0;
}

If you don’t type your code correctly, the computer can tell you. This step compiles
the application: The computer makes sure that what you wrote is okay and then
translates it into a runnable application. (Don’t worry too much about what that
means. For now, just think of it as making sure that your application is okay.)

To find out whether your application is good to go, choose Build  ➪  Build.

If all is well, you see a window in the lower-left of the main Code::Blocks window
with the really happy message, 0 errors, 0 warnings (0 minutes, 1 seconds)
(the precise time you see may vary). A message like Yourock! might be nicer, but
0 errors, 0 warnings (0 minutes, 1 seconds) ain’t all that bad.

If you didn’t type the line correctly, all is not lost, because the computer will tell
you what you did wrong. For example, you might type couts instead of cout. In
this case, you will see something like what is shown in Figure 3-6. A list with
columns appears at the bottom of your screen.

»» The leftmost column shows the name of the file where the error was. In this
case, the error was in main.cpp, the only file you were working on.

»» The middle column shows the line number of the problem (in this case, 7).

»» The rightmost column of the list makes a basic attempt to tell you what you
did wrong, like this:

error: 'couts' was not declared in this scope

When the compiler doesn’t recognize a word, it says that the word is not
declared. In other words, the compiler doesn’t know what couts is. (The
word should be cout.)

FIGURE 3-6:
Code::Blocks

tells you about
errors in your

application.

58 BOOK 1 Getting Started with C++

If you want to see the problem, you can point at the error report line and double-
click. The bad line appears in the code editor, with a little red box next to the
line. The line is also highlighted normally. As soon as you press an arrow key, the
highlight vanishes.

Thus, if you press the → key a few times and get to the word couts and then delete
the letter s, you can try again. If you choose Build  ➪  Build, this time you see the
happy message 0 errors, 0 warnings (0 minutes, 1 seconds). Excellent!

No errors means that the application is good enough to run. So run it!

Choose Build  ➪  Run. A console appears with text that looks like this:

Hello I am your computer talking.

Process returned 0 (0x0) execution time : 0.030 s
Press any key to continue.

See what happened? There is now a message that says, Hello, I am your com-
puter talking. Apparently, the thing you typed caused that message to appear.
(Go ahead and press Enter to close the console.)

And in fact, that’s exactly what happened. That’s how you make a message appear
on the console screen. The steps look like this:

1.	 Type cout.

Although cout looks like it’s pronounced “cowt,” most programmers say
“see-out.” Think of it as shorthand for console output. (But don’t type console
output in its place, because the compiler won’t accept that.)

2.	 After the word cout, type a space and then type two less-than signs
(make sure to leave that single space before them).

These less-than signs just mean that the data that follows will be sent to cout
for display on the console. The data that follows, some text, is in double
quotes. That’s the way the computer knows where it starts and ends. The
words and stuff inside these double quotes is called a string because it’s a
bunch of letters strung together. The computer knows where the string starts
because there’s a double quote, and it knows where the string ends because
there’s a double quote. The computer doesn’t display these two sets of double
quotes when the application runs.

Then some weirdness follows. There’s another set of less-than signs, which
means you want to write more to the console. But what follows? It’s endl.
Notice this is not in quotes. Therefore, you aren’t saying that you want the

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 59

strange barely pronounceable word “endl” to appear on the screen. Instead,
you’re using a special notation that tells the computer that you want to end the
current line and start fresh on the next line. And if you look at the output, you
notice that the words that follow (the message about pressing the any key) are,
indeed, on the next line. Note that endl is pronounced “end-el.”

So that’s not so bad after all. Here’s a recap:

»» The word cout means you want to write to the console.

»» The << symbols together (with no space between them!) mean the thing that
follows is what you want to write.

»» After the << symbol, you tell the computer what you want to write. It can
either be a string of letters, symbols, and other characters (all inside quotes),
or it can be the word endl.

»» You can put multiple items in a row and have them appear on the console
that way, provided you start the line with cout and precede each item with
the << symbols.

Oh, and if you have a sharp eye, you may notice one more thing not mentioned
yet; a semicolon appears at the end of the line. In C++, every line must end with a
semicolon. That’s just the way it’s done.

Statements in C++ end with a semicolon.

Saying that every line must end with a semicolon is not quite accurate. You can
break any line of code into multiple lines. The computer doesn’t mind. You could
just as easily have written your code as the following two lines:

cout << "Hello, I am your computer talking."
<< endl;

This is fine, provided that you don’t split any individual word (such as cout and
endl) or the << symbols or the string. In effect, any place you have a space occur-
ring “naturally” in the code, you can start a new line, if you want.

Strings, the text in this example, must stay together on a single line between
double quotes as shown, unless you break it into two strings, each with its own
set of double quotes like this:

cout << "Hello, I am your" <<
" computer talking."
<< endl;

60 BOOK 1 Getting Started with C++

Notice that you must also add << between each string segment. Then, when the
whole statement is finished, you end with a semicolon. Think of the semicolon as
a signal to the computer that the old statement is finished.

Doing some math
You can get the computer to do some math for you; you can use the same cout
approach described in the preceding section; and you can throw in some numbers
and arithmetic symbols.

Although addition uses the familiar plus sign (+) and subtraction uses the familiar
minus sign (–), multiplication and division use symbols you might not be familiar
with. To multiply, you use the asterisk (*); to divide, you use the forward slash (/).

Table 3-2 shows the four common math symbols.

Yep, it’s now math-with-weird-symbols time. Continue with the source code you
already have. Click somewhere on the line you typed — you know, the one that
looks like this:

cout << "Hello, I am your computer talking." << endl;

Press End so that the cursor moves to the end of the line. Then press Enter so that
you can start a new line between the cout line and the line that starts with the
word return.

Whenever you want to insert a line between two other lines, the easiest way to
get it right is to go to the first of those two lines, press End, and then press Enter.
Doing so inserts a new, blank line in the right place.

After you press Enter, you notice that something happened: The cursor is not at
the start of the newly inserted line; instead, it has four spaces and it’s indented

TABLE 3-2	 Math Symbols
Symbol Function

+ Addition (plus)

– Subtraction (minus)

* Multiplication (times)

/ Division (divided by)

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 61

flush with the other lines. That’s not a mistake. Believe it or not, it’s a seri-
ous lifesaver. Well, okay, maybe not a lifesaver, but it’s almost as good as those
little candies that everybody loves. The reason is that often you indent your code
(this particular code is indented four spaces); if you’re typing lots of code, it’s a
bummer to have to type four spaces (or press the Tab key) every time you start a
new line. So Code::Blocks considerately (and automatically) does the indentation
for you.

If, for some reason, your code didn’t automatically indent and the cursor is loiter-
ing at the beginning of the line, the auto-indent feature is not turned on. It should
be on by default, but if it isn’t, here’s how to turn it on:

1.	 Choose Settings  ➪  Editor.

The Configure Editor dialog box, shown in Figure 3-7, appears. It should
automatically show the General Settings/Editor Settings tab, but you can select
this tab if needed.

FIGURE 3-7:
Configure the
editor to use

automatic
indents.

62 BOOK 1 Getting Started with C++

2.	 Make sure that the Tab Indents check box is selected and then click OK.

3.	 When you’re back in the code, press Backspace to delete your new line
and then try pressing Enter again.

Behold! The code automatically indents.

4.	 After your new, blank line appears and indents itself, type the following:

cout << 5 + 10 << endl;

The beginning and the end of this line are just like those of the line you typed
earlier. The difference is the middle — instead of typing a string, you type a
math problem: 5 plus 10. Note that you put spaces around the 5, around the +,
and around the 10 — but not between the 1 and 0. If you put a space there,
the computer gets confused (it doesn’t know that you meant to write a single
two-digit number). When you’re finished, your code should look like the
following code snippet (here, the new line you typed is shown in bold and the
first cout is broken to fit in the book):

#include <iostream>

using namespace std;

int main()
{
 cout << "Hello, I am your computer talking." <<
 endl;
 cout << 5 + 10 << endl;
 return 0;

}

5.	 Save your work by choosing File  ➪  Save Everything.

Instead of choosing File  ➪  Save Everything, you can recognize that the only thing
that changed is the source-code file you’re currently working on. If you see the
blinking cursor in the code editor, you know that the code editor is active. If not,
click somewhere in your code to activate the editor. When you see the blinking
cursor, press Ctrl+S. This saves your file.

The computer world uses an adage that goes something like this: “Save early, save
often.” Get in the habit of pressing Ctrl+S every so often. You won’t wear out your
hard drive, and the keyboard is pretty durable. Every time you type a few lines of
code, press Ctrl+S. Before you compile, press Ctrl+S. When you feel paranoid that
the last Ctrl+S didn’t stick, you can press Ctrl+S. When you’re stuck at a traffic
light, you press Ctrl+S.

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 63

Now you can tell the computer to compile your code. If you haven’t saved it, do so
now by pressing Ctrl+S. Then choose Build  ➪  Build. If you typed everything cor-
rectly, you should see the magical message 0 errors, 0 warnings (0 minutes,
1 seconds) appear in the Build Log window. But if not, don’t worry; you can
easily fix it. Look at your code and find the difference between the line we wrote
earlier and your code. Here it is again, just for safe measure:

cout << 5 + 10 << endl;

There is a space after cout, a space after <<, a space after 5, a space after +, a space
after 10, and a space after <<. And there is a semicolon at the end. Make sure that
these are all correct.

Then when you successfully compile and see the happy message 0 errors, 0
warnings, you are ready to run your application. Choose Build  ➪  Run.

A console window opens, and you should see the following:

Hello I am your computer talking.
15

Process returned 0 (0x0) execution time : 0.015 s
Press any key to continue.

Notice that the second line is the answer to the math problem 10 + 5. That means
the computer knows how to do math, more or less correctly.

Ordering the operations
If you want, you can play around with some more complicated problems. For
example, you can try something like this:

cout << 5 + 10 / 2 * 3 + 25 << endl;

What do you think the answer will be? The answer depends on computer rules for
the order in which it performs math problems. These are called orders of operation.
Multiplication and division take precedence over addition and subtraction. There-
fore, the computer does all the multiplication and division first from left to right;
then it does the addition and subtraction from left to right. Figure 3-8 shows the
order in which the computer does this particular math problem.

64 BOOK 1 Getting Started with C++

Going overboard
The computer actually has various limits, including when it comes to math. If you
try something like this:

cout << 12345678 * 100 / 2 * 3 * 3 << endl;

a warning message shows up in the error window when you try to compile:

warning: integer overflow in expression [-Woverflow]

This message is bad. It means that you can’t rely on the answer, which is
1,260,587,804 in this case, when it should be 5,555,555,100. You can use a pro-
gramming calculator to see why this problem occurs. When you input 12345678,
the resulting value takes up to bit 23 of the 32-bit integer, as shown in Figure 3-9.

FIGURE 3-8:
The computer

likes to use
orders of

operation.

FIGURE 3-9:
A programmer

calculator comes
in handy when

working with
numbers.

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 65

When you multiply the initial value by 100, the bits now extend up to bit 30 of the
32-bit integer, as shown in Figure 3-10. At this point, the value is in jeopardy of
running out of bits to use. Only the topmost bit is left.

Dividing by 2 buys you some room — the value is back down to bit 29. Multiply-
ing by 3 produces a correct output value of 1,851,851,700. However, multiplying by
3 the second time causes an overflow. The value actually decreases, which is not
what you’d expect from a multiplication. The value from the programmer calcu-
lator matches the value output by the application. In both cases, you see the result
as an overflow of the number of available bits. Using the programmer calculator
helps you see what is happening in a visual way.

The greatest positive number you can use is 2,147,483,647. The greatest negative
number is –2,147,483,647. However, if you’re willing to stick to only positive num-
bers and 0, the computer can make some adjustments inside and handle a higher
positive number. In that case, your numbers can range from 0 to 4,294,967,295.

Pairing the parentheses
If you want to get around the order in which the computer does its math, you can
add parentheses. For example, if you use the following line, the computer does the
final operation (+) before it does the others:

cout << 5 + 10 / 2 * (3 + 25) << endl;

Whereas previously, without the parentheses, this thing came out to be 45, now
it comes out to be 145. First the computer does the 3 + 25 to get 28. Then it begins

FIGURE 3-10:
You can see how

overruns occur by
doing the math.

66 BOOK 1 Getting Started with C++

with the multiplication and division, from left to right. So it takes 10 / 2 to get
5, and then multiplies that by (3 + 25), or 28, to get 140. Then it starts with the
addition and subtraction from left to right. So it adds 5 to this to get the final
number, 145.

Tabbing your output
Just as you can write a string of letters and numbers to the console, you can also
write a tab. For example, change the following line from your application

cout << "Hello, I am your computer talking." << endl;

to:

cout << "Hello\tI am your computer talking." << endl;

In the preceding code, you replaced the comma and space with a backslash and
then a lowercase t. But when you compile and run this application (remember to
compile it first!), it won’t print exactly what’s in the double quotes. Here’s what
you see:

Hello I am your computer talking.

The extra space in the displayed line is a tab space, just as if you had pressed the
Tab key while typing this. (Is that slick, or what?)

There’s a complication to using the backslash: You can’t just type a backslash (or
a double quote, for that matter) and expect to see it on the screen. A couple of
workarounds will show the actual characters:

»» Really want to display a backslash, not a special character? Use a backslash
followed by another backslash. (Yes, it’s bizarre.) The compiler treats only the
first backslash as special. When a string has two backslashes in a row, the
compiler treats the second backslash as, well, a backslash.

For example, the following line of code has two backslashes:

 cout << "\\tabc" << endl;

The following text shows up at the console:

\tabc

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C+
+

A
pp

lic
at

io
n

CHAPTER 3 Creating Your First C++ Application 67

»» If a string starts with a double quote and ends with a double quote, how in the
world would you actually print a double quote? Type a backslash and then a
double quote, as in the following code:

cout << "Backslash and double quote are \"." << endl;

When that code runs in an application, you see this on the screen:

Backslash and double quote are ".

C++ programmers use the term escape-sequence to refer to any special character
in a string that starts with a backslash. This is an outdated bit of vocabulary —
maybe not as old as “methinks,” but it does date back to the original C language
of the 1970s. Back then, you made special characters appear on console screens by
first pressing the Esc key.

Let Your Application Run Away
The word execute refers to running your application, but you need to compile (or
build, using the Code::Blocks terminology) the application before you run it. The
compilation process transforms your application into an executable file. An exe-
cutable file is a special type of file that contains an application you can run on your
computer. When you run your word processor application, you run an executable
file containing the word processor application.

After the computer compiles (builds) your application, it performs a step called
linking. People often refer to these two steps together as simply compiling. Indeed,
this book often uses the term to mean both steps together. If you’re curious about
what goes on here, take a look at Appendix A. It has a section devoted to the com-
piling and linking processes.

Whenever you want to run your application, you first compile it and then run it.
If you make more changes to your application, you must compile it again before
running it. Otherwise, the executable file won’t have your changes.

68 BOOK 1 Getting Started with C++

Because you almost always use Build and Run in sequence, the kind people who
built Code::Blocks included a special menu item called Build and Run on the Build
menu. The computer first compiles your code, and then it immediately runs the
application if there are no errors. If there are errors, the compiler doesn’t run the
application, and the errors are reported as usual. (You can also perform a build
and run by pressing F9.)

Table 3-3 lists keyboard shortcuts for compiling.

TABLE 3-3	 Keyboard Shortcuts for Compiling and Running
Action Keyboard Shortcut

Build Ctrl+F9

Run Ctrl+F10

Build and run F9

CHAPTER 4 Storing Data in C++ 69

Storing Data in C++

Everyone loves to store things away. The closet is a perfect example of a place
to store things. You may have boxes in your closets that you haven’t opened
in years. Perhaps you inadvertently created a time capsule. Or just a fire

hazard. When you program a computer, you can also store things away. Most
people know that a computer has two kinds of memory: memory inside a chip and
memory on a hard drive. But most people use the term memory in reference to chip
memory; the other is referred to as simply the hard drive. When you type a busi-
ness letter in a word processor, the letter is stored in memory. After you choose
File  ➪  Save, the letter gets stored on the hard drive, but as long as you still have the
letter open in the word processor, it’s generally still in memory.

The best way to think of memory is as a set of storage bins, much like the ones
in the closets that you’re afraid of. When you write a computer application, you
reserve some storage bins, and you give each storage bin a name. You also say
what type of thing can be stored in the storage bin. The technical term for such a
storage bin is a variable.

In this chapter, you discover how you can use these storage bins in your
applications.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookI\Chapter04 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Chapter 4

IN THIS CHAPTER

»» Using storage bins called variables

»» Working with integer and character
variables

»» Manipulating strings

»» Using Boolean variables and
conditional operators

»» Reading from the console

70 BOOK 1 Getting Started with C++

Putting Your Data Places: Variables
When you write an application, you specify that you want to make use of one or
more storage bins called variables. You can put different kinds of things in these
storage bins. The difference between these computer storage bins and those in
your closet, however, is that each computer storage bin can hold only one thing at
a time.

You can put many different types of things into your variables, too. For exam-
ple, you can put numbers in a storage bin, or you can put a string in a storage
bin. (However, each storage bin contains a unique kind of data — you can’t put a
number into a storage bin designed for a string.) Book 1, Chapter 3 advises that a
string is simply a bunch of letters, digits, punctuation marks, or other characters
all strung together. As for numbers, they can be either integers (which are posi-
tive whole numbers, negative whole numbers, and 0) or numbers with a decimal
point, such as 3.11 or 10.0, which (for various reasons) are called floating-point
numbers.

The term floating-point number refers to a number that has a decimal point and
something to the right of the decimal point (even if it’s just a 0). When you see the
term floating point, you can remember what it means by focusing on the word point
in its name. Think of decimal point.

If you are already familiar with the term variable from other fields (such as
astronomy, in which variable refers to a kind of star), be careful not to apply their
definitions here. Even if they’re from fields similar to computer science, such as
data science or math, some significant differences are involved. For example, in
algebra, a variable represents an unknown quantity, and you can solve for a vari-
able. But in C/C++ programming, it’s simpler than that: A variable is simply a stor-
age bin with an associated name.

Creating an integer variable
In your C++ application, you can easily write a line of code that creates a vari-
able. Although what you’re doing at that point is simply writing code (and the
variable doesn’t actually get created until you run the application), people often
refer to this process as creating a variable. A variable has three aspects, as shown
in Table 4-1.

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 71

The following list describes the items in Table 4-1 in more detail.

»» Name: Every variable must have a name. In your application, you refer to the
variable by this name. For example, you may have a variable called count, and
you may have a variable called LastName. Or you could have a variable called
MisterGates.

»» Type: When you create a variable, you must specify the type of information
the variable can hold. For example, one variable may hold an integer, and
another variable may hold a single character. After you pick a type for the
variable in your application, you can put only things of that type into the
variable.

»» Value: At any given moment, a variable holds a single value. For example, an
integer variable might hold the number 10, and a character variable might
hold the character a. In your application, you can store something in a
variable, and later you can store something else in the variable. When you
store something else, the variable forgets what was previously inside it. So, in
this sense, you can think of a computer as having a one-track mind.

The code for the SimpleVariable example, shown in Listing 4-1, demonstrates
how to create a variable. This is a full application that you can run.

LISTING 4-1:	 Creating a Variable

#include <iostream>

using namespace std;

int main()
{
 int mynumber;
 mynumber = 10;
 cout << mynumber << endl;
 return 0;
}

TABLE 4-1	 A Variable Has Three Aspects
Aspect What It Means

Name The name you use in your application to refer to the variable

Type The type of information that the variable can hold

Value The actual thing that the storage bin holds

72 BOOK 1 Getting Started with C++

Take a careful look at Listing 4-1. Remember that the computer starts with the
code inside the braces that follow the word main, and it performs the code line
by line.

The first line inside main looks like this:

int mynumber;

When you declare a variable, the first thing you specify is the type of thing the
variable can hold. Here, you use the word int. This word is the C++ word for inte-
ger. Thus, the variable that you’re declaring can hold an integer. Next is the name
of the variable. This variable is named mynumber. Then a semicolon ends the vari-
able declaration.

Notice that, in this line, you’ve covered two of the three aspects of variables: You
have given the variable a name, and you have told the computer what type of thing
you want the variable to hold. The order seems a little odd — in C++, you first say
the type and then the name. That’s just the way it’s done in C++, and a good reason
stands behind it, which you can read about in “Declaring multiple variables,” later
in this chapter.

The next line looks like this:

mynumber = 10;

This line puts something in the variable. It puts the number 10 in it. Because you
already know that the variable can hold an integer, you’re allowed to put in a 10
because it is an integer. If you had tried to put something other than an integer
in the variable, the compiler would have given you an error. The compiler makes
sure that you put into a variable only the type of thing that you said you would.
The compiler is good at keeping you in line. And of course you noticed that the
statement ends with a semicolon. In C++, every statement ends with a semicolon.

To put something in a variable, you type the variable’s name, an equals sign (sur-
rounded by optional spaces), and the value. You then end the line with a semi-
colon. This line of code is an assignment. Or you can say that you are setting the
variable to the value. The next line is this:

cout << mynumber << endl;

Book 1, Chapter 3 describes what this line does. It’s a cout statement, which
means that it writes something on the console. As you can probably guess, this
code tells the computer to write the value of mynumber on the console. It does not
write the string mynumber. Rather, it writes whatever happens to be stored in the

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 73

storage bin. The previous line of code puts a 10 in the storage bin, and so this line
prints a 10 on the console. When you run the application, you see this:

10

Think of it like this: When you type the variable’s name, you are accessing the
variable. The exception to this is when the variable’s name appears to the left of
an equals sign. In that case, you are setting the variable. You can do two things
with a variable:

»» Set the variable: You can set a variable, which means that you can put
something inside the storage bin.

»» Retrieve the value: You can get back the value that is inside the variable.
When you do so, the value stays inside it; you are not, so to speak, taking it out.

When you retrieve the value that is in a variable, you are not removing it from the
variable. The value is still inside the variable.

Declaring multiple variables
Many years ago, when the original C programming language first appeared (which
was the language that served as the predecessor to C++), many developers thought
it odd that they had to first say the type of the variable and then the name. But
this actually works out well because it makes declaring multiple variables of the
same type easy. If you want to declare three integer variables in a row, you can do
it all in one shot, like this:

int tom, dick, harry;

This statement declares three separate variables. The first is called tom; the sec-
ond is called dick; and the third is called harry. Each of these three variables
holds an integer. You have not put anything in any of them, so you may follow that
with some code to stuff each of them full with a number. For example, this code
puts the number 10 in tom, the number 20 in dick, and the number 3254 in harry.

tom = 10;
dick = 20;
harry = 3254;

When you run your applications, the computer executes the statements in the
order that they appear in your code. Therefore, in the preceding code, the com-
puter first creates the three storage bins. Then it puts a 10 inside tom. (Now does-
n’t that sound yummy?) Next, dick gets a 20. And finally, harry consumes a 3254.

74 BOOK 1 Getting Started with C++

Changing values
Although a variable can hold only one thing at a time, you can still change what
the variable holds. After you put something else in a variable, it forgets what it
originally had. So when people accuse you of being forgetful, you can just say,
“Yes, but you should see that computer I work with all day long!”

You put something new in the variable in the same way you originally put some-
thing in it. Look closely at the code for the ChangeVariable example in Listing 4-2.
Notice that the first part of the application is just like Listing 4-1. But then you
add two more lines (shown in bold) that look pretty much like the previous two:
The first one sticks 20 in the same variable as before, and the next one writes this
new value out to the console.

LISTING 4-2:	 Changing a Variable

#include <iostream>

using namespace std;

int main()
{
 int mynumber;
 mynumber = 10;
 cout << mynumber << endl;

 mynumber = 20;
 cout << mynumber << endl;
 return 0;
}

As before, the line where you put something new in the variable follows the same
format: There’s an equals sign, with the variable on the left and the new value
on the right. As described earlier in this chapter, this statement is an assignment
statement.

When you see a single equals sign by itself, the item on the left side is the variable
or item that receives the information that is on the right side.

Setting one variable equal to another
Because you can do only two direct things with variables — put something in and
retrieve the value — setting one variable equal to another is a simple process of

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 75

retrieving the value of one variable and putting it in the other. This process is
often referred to as copying the variable from one to another. For example, if you
have two integer variables — say, start and finish — and you want to copy the
value of start into finish, you would use a line of code like the following:

finish = start;

Don’t let the language confuse you. Although you want to copy the value of start
into finish, notice that the first thing you type is finish, and then the equals
sign, and then start. The left side of the equals sign is what receives the value; it
is an assignment statement.

When you copy the value of one variable to another, the two variables must be the
same type. You cannot, for instance, copy the value from a string variable into an
integer variable. If you try, the compiler issues an error message and stops.

After the computer runs this copy statement, the two variables hold the same
thing. The code for CopyVariable, shown in Listing 4-3, is an example of copying
one variable to another.

LISTING 4-3:	 Copying a Value from One Variable to Another

#include <iostream>

using namespace std;

int main()
{
 int start = 50;
 int finish;
 finish = start;
 cout << finish << endl;
 return 0;
}

Initializing a variable
When you create a variable, it starts as an empty storage bin. Before it can be of
much use, you need to put something in it.

76 BOOK 1 Getting Started with C++

If you try to retrieve the contents of a variable before you actually put anything
in it, you end up with what computer people fondly call “unpredictable results.”
What they really mean to say is, “Don’t do this because who knows what’s in it.”
It’s kind of like if you go in the attic and you discover that the former owners left
behind a big, ominous box. Do you really want to look inside it? With variables, the
problem you run into is that the computer memory has something stored in that
particular place where the variable now sits, and that stored item is probably just
some number left over from something else. But you can’t know in advance what
it is. So always make sure that you place a value inside a variable before you try to
retrieve its contents, a process called initializing the variable.

You can initialize a variable in two ways. The first way is by declaring the variable
and then assigning something into it, which takes two lines of code:

int mynumber;
mynumber = 153;

But the other way is a bit quicker. It looks like this:

int mynumber = 153;

This method combines both strategies into one neat little package that is available
for you to use whenever you want. You see variables initialized both ways in this
book, depending what is clearer or more convenient at the time.

Creating a great name for yourself
Every variable needs to have a name. But what names can you use? Although you
are free to use names such as Fred, Zanzibar, or Supercount1000M, there are
limits to what C++ will allow you to use.

MYTHIS AND MYTHAT
As you progress through your computer programming life (in addition to your antici-
pated life as a millionaire), you’re likely to notice that, for some reason, some computer
programmers seem to favor variable names that start with the word My. Other com-
puter programmers despise this practice and completely distance themselves from
it. You may have seen such computer identifiers as MyClass, MyNumber, MyHeight,
MyName, MyCar, MyWhatASurprise, MyLar, MyStro, and MyOpic. There really isn’t any
problem using names that start with My, especially in training exercises.

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 77

Although most C++ code is in lowercase, you are free to use uppercase letters in
your variable names. However, C++ distinguishes between the two. Therefore, if
you have a variable called count, you cannot access it later in your application by
calling it Count with a capital C. The compiler treats the two names as two dif-
ferent variables, which makes C++ case sensitive. But on the other hand, please
don’t use two separate variables in the same application — one called count and
one called Count. Although the compiler doesn’t mind, the mere humans that may
have to read your code or work on it later might get confused.

Here are the rules you need to follow when creating a variable name:

»» Characters: You can use any uppercase letter, lowercase letter, number, or
underscore in your variable names. Other symbols (such as spaces or the
ones above the number keys on your keyboard) are not allowed in variable
names. The only catches are that

•	 The first character cannot be a number.

•	 The variable name cannot consist of only numbers.

»» Length: Most compilers these days allow you to have as many characters in
the variable name as you want. Just to be sure, and to prove I’m easily
amused, I successfully created a variable in Code::Blocks with a name that’s
more than 1,000 characters in length. However, I wouldn’t want to have to
type that name over and over. Instead, I recommend keeping variable names
long enough to make sense but short enough that you can type them easily.
Most people prefer anywhere from five to ten characters or so.

Examples of acceptable variable names are Count, current_name, address_1000,
and LookupAmount. Some variable names are legal, but not easily understood, such
as _, __, and _12 — none of which tell you what the variable contains. Table 4-2
lists some variable names that are not allowed.

TABLE 4-2	 Examples of Bad Variable Names
Bad
Variable Name

Why It’s Not Allowed

12345 It has only numbers (and it starts with a number, which is
wrong as well).

A&B The only special character allowed is the underscore, _. The
ampersand (&) is not allowed.

1abc A variable name cannot start with a number.

78 BOOK 1 Getting Started with C++

Manipulating Integer Variables
A potter who is creating an elegant vase is said to manipulate the clay. Like-
wise, you can manipulate variables to create a thing of abstract beauty. But in this
case, manipulation means simply that you can do arithmetic. You can easily do
the usual addition, subtraction, multiplication, and division. Book 1, Chapter 3,
introduces the characters that you use for the arithmetic operations. They are:

»» + for addition

»» – for subtraction

»» * for multiplication

»» / for division

You can, however, perform another operation with integers, and it has to do with
remainders and division. The idea is that if you divide, for example, 16 by 3, the
answer in whole numbers is 5 remainder 1. Another way of saying this is that 16
doesn’t divide by 3 evenly, but 3 “goes into” 16 five times, leaving a remainder of 1.
This remainder is sometimes called a modulus. Computer people actually have an
important reason for calling it modulus rather than remainder, and that’s because
people in the computer field like to use confusing terms.

When working with integer variables, remember the two basic things you can do
with variables: You can put something in a variable, and you can retrieve it from
a variable. Therefore, when working with an integer variable, the idea is that you
can retrieve the contents, do some arithmetic on it, and then print the answer or
store it back into the same variable or another variable.

Adding integer variables
If you want to add two integer variables, use the + symbol. You can either print the
result or put it back into a variable.

The AddInteger example adds two variables (start and time) and then prints the
answer to the console. The addition operation is shown in bold.

#include <iostream>

using namespace std;

int main()
{

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 79

 int start;
 int time;

 start = 37;
 time = 22;

 cout << start + time << endl;
 return 0;
}

This code starts with two integer variables called start and time. It then sets
start to 37 and sets time to 22. Finally, it adds the two variables (to get 59) and
prints the results. When you see start + time, + is the operator that tells what
action to perform, and start and time are the operands upon which the operator
acts.

In this example, however, the computer doesn’t actually do anything with the
final sum, 59, except print it. If you want to use this value later, you can save it in
its own variable. The AddInteger2 example demonstrates how to save the result
in a variable; the storage operation is shown in bold:

#include <iostream>

using namespace std;

int main()
{
 int start;
 int time;
 int total;
 start = 37;
 time = 22;
 total = start + time;
 cout << total << endl;
 return 0;
}

In this code, you declare the integer variable total along with the others. Then
after you store 37 in start and 22 in time, you add the two and save the total in
the variable called total. Then you finally print the value stored in total.

You can also add numbers themselves to variables. The following line adds 5 to
start and prints the result:

cout << start + 5 << endl;

80 BOOK 1 Getting Started with C++

Or you can save the value back in another variable, as in the following fragment:

total = start + 5;
cout << total << endl;

This example adds 5 to start and saves the new value in total.

When you use code such as total = start + 5;, although you are adding 5 to
start, you are not actually changing the value stored in start. The start variable
itself remains the same as it was before this statement runs. Rather, the computer
figures out the result of start + 5 and saves that value inside total. Thus, total
is the only variable that changes here.

Here’s where things get a little tricky in the logical arena. This might seem strange
at first, but you can actually do something like this:

total = total + 5;

If you have taken some math courses, you might find this statement a little bizarre,
just like the math courses themselves. But remember that total is a variable in
computer programming, and that definition is a bit different from the math world.

This statement really just means you’re going to add 5 to the value stored in
total, and you’ll take the value you get back and store it back in total. In other
words, total will now be 5 greater than it was to begin with. The AddInteger3
example shows this technique in action:

#include <iostream>

using namespace std;

int main()
{
 int total;
 total = 12;
 cout << total << endl;

 total = total + 5;
 cout << total << endl;

 return 0;
}

When you run this application, you see the following output on the console:

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 81

12
17

Notice what took place. First, you put the value 12 inside total and print the value
to the console. Then you add 5 to total, store the result back in total, and print
the new value of total to the console.

Now, it’s no big secret that we computer people are lazy. After all, why would we
own computers if we weren’t? And so the great makers of the C++ language gave
us a bit of a shortcut for adding a value to a variable and storing it back in the
variable. The line

total = total + 5;

is the same as

total += 5;

We computer folks also have a special way of pronouncing +=. We say “plus equal.”
So for this line, we would say, “Total plus equal five.”

Think of the total += 5 notation as simply a shortcut for total = total + 5;.

You can also use the += notation with other variables. For example, if you want
to add the value in time to the value in total and store the result back in total,
you can do this

total = total + time;

or you can use this shortcut:

total += time;

If you are adding just 1 to a variable, which is called incrementing the variable, you
can use an even shorter shortcut. It looks like this:

total++;

This is the same as total = total + 1; or total += 1;.

Table 4-3 summarizes the different things you can do that involve the addition
of variables. Note that when you see ++, which is the increment operator, it’s pro-
nounced plus plus, not double plus.

82 BOOK 1 Getting Started with C++

Subtracting integer variables
Everything you can do involving the addition of integer variables you can also do
with subtraction. For example, you can subtract two variables, as shown in the
SubtractVariable example in Listing 4-4.

TABLE 4-3	 Doing Things with Addition
What You Can Do Sample Statement

Add two variables cout << start + time << endl;

Add a variable and a number cout << start + 5 << endl;

Add two variables and save the result in a variable total = start + time;

Add a variable and a number and save the result in a variable total = start + 5;

Add a number to what’s already in a variable total = total + 5;

Add a number to what’s already in a variable by using a shortcut total += 5;

Add a variable to what’s already in a variable total = total + time;

Add a variable to what’s already in a variable by using a shortcut total += time;

Add 1 to a variable total++;

AND NOW THE ANSWER TO THE GREAT
QUESTION
In C++, as well as in the original C language (upon which C++ is based), the ++ opera-
tor adds 1 to a variable, which finally allows an answer to The Great Question: Where
did the name C++ come from? When the guy who originally designed C++, Bjarne
Stroustrup, needed a name for his language, he decided to look into its roots for the
answer. He had based the language on C; and in C, to add 1 to something, you use the
++ operator. And because he felt that he added only 1 thing to the language, he decided
to call the new language C++.

Okay, that’s not quite true; Bjarne actually added a great deal to the language. But that
entire great deal can be thought of as just one thing made of lots of smaller things.
What did he add? The main thing of those smaller things is the capability to do object-
oriented programming. Object-orientation is something you find in the next chapter.
And by the way, the originator of C++, Mr. Stroustrup, is still alive and still doing work for
the language at AT&T. You can see his web page at http://www.stroustrup.com/.

http://www.stroustrup.com/

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 83

LISTING 4-4:	 Subtracting Two Variables

#include <iostream>

using namespace std;

int main()
{
 int final;
 int time;

 final = 28;
 time = 18;

 cout << final - time << endl;
 return 0;
}

When this application runs, the console shows the number 10, which is 28 – 18.
Remember that, as with addition, the value of neither final nor time actually
change. The computer just figures out the difference and prints the answer on the
console without modifying either variable.

You can also subtract a number from a variable, and (as before) you still aren’t
changing the value of the variable, as in the following example:

cout << final - 5 << endl;

You can subtract one variable from another and save the result in a third variable:

start = final - time;

And you can change the value in a variable by using subtraction, as in the follow-
ing four sample lines of code. This first subtracts time from final and saves the
result back in final:

final = final - time;

Or you can do the same thing by using the shortcut notation:

final -= time;

84 BOOK 1 Getting Started with C++

Or you can do the same thing with a number:

final = final - 12;

And (as before) you can alternatively do the same thing with a shortcut:

final -= 12;

Finally, as with addition, you have a shortcut to a shortcut. If you want only to
subtract 1, you can simply use two minus signs, as in

Final—  —;

This line is pronounced minus minus. The -- is the decrement operator and when
applied to a variable is called decrementing the variable.

Multiplying integer variables
To do multiplication in C++, you use the asterisk (*) symbol. As with addition and
subtraction, you can multiply two variables, or you can multiply a variable by a
number. You can either print the result or save it in a variable. For example, you
can multiply two variables and print the results to the console with the following
line:

cout << length * width << endl;

Or you can multiply a variable by a number, as in this line:

cout << length * 5 << endl;

And as with addition and subtraction, you can multiply two variables and save the
result in a third variable:

area = length * width;

Also, you can use multiplication to modify a variable’s value, as in

total = total * multiplier;

Or, to use the shortcut:

total *= multiplier;

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 85

PREFIX VERSUS POSTFIX
The ++ and -- operators can appear as a prefix (before the variable name) or a post-
fix (after the variable name) operator. However, they behave differently depending on
where they appear. A prefix operator is applied before anything else happens, while a
postfix operator is applied afterward. Consider this code:

int final = 10;
cout << final++ << endl;
cout << final << endl;

The output from this code is

10
11

because the postfix ++ operator is added after the cout. However, with this code:

int final = 10;
cout << ++final << endl;
cout << final << endl;

the output in this case is

11
11

because the prefix ++ operator is added before the cout. The same holds true for the
-- operator. Code with a prefix operator like this:

int final = 10;
cout << --final << endl;
cout << final << endl;

produces an output of

9
9

because the operator is applied before the cout. Using prefix or postfix operators,
when applied correctly, can reduce the amount of code you write and possibly make
your code easier to read.

86 BOOK 1 Getting Started with C++

And (as before) you can do the same with just a number:

total = total * 25;

or this:

total *= 25;

Note that there is no ** operator used to multiply a value by 1 or by itself. Conse-
quently, the compiler will raise an error if you type total**;.

Dividing integer variables
Although addition, subtraction, and multiplication are straightforward with
integer variables, division is a bit trickier. The chief reason is that, with whole
numbers, sometimes you just can’t divide evenly. It’s like trying to divide 21
tortilla chips evenly among five people. You just can’t do it. Either somebody will
feel cheated, or everyone will get four chips, and one will be left over for everyone
to fight over. Of course, you could break every chip into five pieces, and then
each person gets 1⁄5 of each chip, but then you’re no longer working with whole
numbers — just a bunch of crumbs.

If you use a calculator and type 21 divided by 5, you get 4.2, which is not a whole
number. If you want to stick to whole numbers, you have to use the notion of a
remainder. In the case of 21 divided by 5, the remainder is 1, as you figured out
with the tortilla chips. The reason is that the highest multiple of 5 in 21 is 20
(because 5 times 4 is 20), and 1 is left over. That lonely 1 is the remainder.

So in terms of strictly whole numbers, the answer to 21 divided by 5 is 4 remainder
1. And that’s how the computer does arithmetic with integers: It gets two different
answers: The quotient and the remainder. In math terms, the main answer (in the
example, 4) is the quotient. What’s left over is the remainder.

Because two different answers to a division problem may occur, C++ uses two dif-
ferent operators for figuring these two different answers.

To find the quotient, use the slash (/). Think of this character as the usual division
operator, because when you deal with numbers that divide evenly, this operator
gives you the correct answer. Thus, 10 / 2 gives you 5, as you would expect. Fur-
ther, most people just call this the division operator, anyway.

To find the remainder, use the percent sign (%). This is often called the modulus
operator.

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 87

The DivideInteger example, shown in Listing 4-5, takes two numbers and prints
their quotient and remainder. Then it does it again for another pair of numbers.
The first pair has no remainder, but the second pair does.

LISTING 4-5:	 Finding Quotients and Remainders

#include <iostream>

using namespace std;

int main()
{
 int first, second;
 cout << "Dividing 28 by 14." << endl;
 first = 28;
 second = 14;
 cout << "Quotient " << first / second << endl;
 cout << "Remainder " << first % second << endl;

 cout << "Dividing 32 by 6." << endl;
 first = 32;
 second = 6;
 cout << "Quotient " << first / second << endl;
 cout << "Remainder " << first % second << endl;
 return 0;
}

When you run this application, you see the following output:

Dividing 28 by 14.
2
0
Dividing 32 by 6.
5
2

The code in Listing 4-5 uses a couple new tricks in addition to (or divided by?) the
division tricks. For one, it combines the variable declarations of first and sec-
ond variables into one statement. A comma separates the variable names and the
type (int) only once. Next, you combine the output of strings and numbers into a
single cout statement. You did this for four of the cout statements. That’s accept-
able, as long as you string them together with the << signs between each of them.

88 BOOK 1 Getting Started with C++

You have access to all the usual goodies with both the division (/) and modulus
(%) operators. For example, you can store the quotient in another variable, as you
can with the remainder:

myQuotient = first / second;
myRemainder = first % second;

And you have shortcuts available:

int first = 30;
first /= 5;
cout << first << endl;

In this case, the value of first becomes 6 because 30 / 5 is 6. And in the follow-
ing case, the value of first becomes 3 because the remainder of 33 divided by 6
is 3:

int first = 33;
first %= 5;
cout << first << endl;

Characters
Another type of variable you can have is a character variable. A character vari-
able can hold a single — just one — character that C++ stores as a number. It
holds a value between –127 and 128 (char or signed char) or between 0 and 255
(unsigned char). Normally, a character is anything that can be typed, such as a
letter of the alphabet, a digit, or another symbol you see on the computer key-
board, but a character can also hold nonprintable values found in an ASCII table
(see https://en.cppreference.com/w/cpp/language/ascii). Some of these
unprintable characters are control characters (so called because they control the
appearance of text on the screen), such as the tab, carriage return, and newline
character.

To use a character variable, you use the type name char. To initialize a character
variable, you put the character inside single quotes. (If you use double quotes, the
compiler issues an error message because double quotes create a string, which
can contain multiple characters rather than a single character.) The following is
an example of a character:

char ch;
ch = 'a';

https://en.cppreference.com/w/cpp/language/ascii

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 89

cout << ch << endl;

The character variable here is called ch, which is initialized to the character a. It’s
surrounded by single quotes. The code then prints it by using cout.

Null character
One important character in the programming world is the null character. Deep
down inside the computer’s memory, the computer stores each character by using
a number, and the null character’s number is 0. There’s nothing to actually see
with the null character; this book can’t contain a picture of it for you to hang on
your wall. (Bummer.) The book can only describe it. Yes, every once in a while,
computer people have to become philosophers. But the null character is important
because it is often used to signify the end of something — not the end of the world
or anything big like that, but the end of some data.

To notate the null character in C++, use \0, as in

char mychar = '\0';

Nonprintable and other cool characters
In addition to the null character, several other cool characters are available —
some that have a look to them and can be printed and some that do not and can-
not. The null character is an example of a nonprintable character. You can try to
print one, but you get either a blank space or nothing at all, depending on the
compiler.

But some characters are special in that they do something when you print, though
you can’t type them directly. One example is the newline character. The newline
character (\n) symbolizes the start of a new line of text. In all cases, the computer
places the insertion point, the place where it adds new characters, on the next line.
If you are printing some text to the console and then you print a newline charac-
ter, any text that follows will be on the next line. Most compilers these days start
the text at the far left end of the next line (Column 1), but some compilers start the
text in the next column on the next line, as in the following output. In this case,
the text appears on the next line, but it starts at Column 4 rather than at the far
left end (Column 1):

abc
 def

90 BOOK 1 Getting Started with C++

Here, you print abc, and then a newline, and then def. Notice that the def con-
tinues in the same position it would have been had it been on the first line. For
the compilers used in this book, however, printing abc, and then a newline, and
finally def results in this output:

abc
def

But to accommodate the fact that some other compilers sometimes treat a new-
line as just that (start a new line but don’t go anywhere else), the creators of the
computers gave you another special character: the carriage return. (Can you hear
the crowd say, “Ooooh!”?)

The carriage return character (\r) places the insertion point at the start of the
line, but not on a new line (which means that if you use just a carriage return on
a computer expecting both a carriage return and a newline, you overwrite what’s
already on the line). That’s true with pretty much every C++ compiler.

The “Tabbing your output” section of Book 1, Chapter 3, describes the tab char-
acter (\t) and other characters that start with a backslash. These are individual
characters, and you can have them inside a character variable, as in the following
example, which prints the letter a, and then a tab, and then the letter b. Notice
that, to get the tab character to go into the character variable, you have to use the
\ and then a t:

char ch = '\t';
cout << "a" << ch << "b" << endl;

Book 1, Chapter 3 mentions that to put a double quote inside a string, you need to
precede the double quote with a backslash so that the computer won’t think that
the double quote is the end of the string. But because a character is surrounded
by single quotes, you don’t need to do this. You can just put a double quote inside
the character, as in

char ch = '"';

Of course, that raises an important question now: What about single quotes? This
time, you do have to use the backslash:

char ch = '\'';

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 91

And finally, to put a backslash inside a character, you use two backslashes:

char ch = '\\';

When the compiler sees a backslash inside a string or a character, it treats the
backslash as special and looks at whatever follows it. If you have something like
'\' with no other character inside the single quotes following it, the compiler
thinks the final quote is to be combined with the backslash. And then it moves
forward, expecting a single quote to follow, representing the end. Because a single
quote doesn’t appear, the compiler gets confused and issues an error. Compilers
are easily confused — kind of gives you more respect for the human brain.

CARRIAGE RETURN, NEWLINE, OR BOTH?
Depending on what platform you use (such as Windows, Linux, or Mac) and on which
applications you use, the effect of the carriage return, newline, or a combination of both
varies. In some cases, it’s really enough to drive you quite nuts. The form that seems to
work best in all situations is the combination of the carriage return and linefeed (\r\n).
Sometimes, you can also use the linefeed and carriage return combination (\n\r), but
oddly enough, it doesn’t always produce the same result as \r\n. Here is a quick sam-
pling based on platform:

•	Windows: \r\n

•	 Linux: \n

•	Older Mac: \r

•	Acorn BBC and RISC: \n\r

This list doesn’t even get into the domain of mainframes and other computers, which
can use very odd combinations like \025. Sometimes a single character doesn’t produce
any result at all. For example, when working with Windows Notepad, you must pro-
vide the \r\n combination because using \n alone won’t do anything. However, when
importing a file using some C++ libraries, all you want is the \n because the library will
see the \r as a second line. This is the reason that many developers use just \n, which,
as previously mentioned, doesn’t show up in some editors.

So, there isn’t a pat answer to the question of which character to use, and you need to
experiment to ensure that using \r, \n, \r\n, or \n\r will actually work the way you
want it to in the situation you’re dealing with. When in doubt, rely on \r\n until you
know that the combination won’t work.

92 BOOK 1 Getting Started with C++

WHAT IS THAT SYMBOL?
Never known to turn down the chance to invent a new word, computer people have
come up with names for characters that may not always match the names you know.
You’ve already heard the use of the word dot  for a period when surfing the Internet.
And for some characters that already have multiple names, computer folks may use
one name and not the other. And sometimes, just to throw you off, they use the usual
name for something. The following are some of the names of symbols that computer
people like to use:

. Dot (but not period or decimal point)

@ At

& Ampersand (but not and)

Pound (but not number sign)

! Bang (though most people still say exclamation point)

~ Tilde

% Percent

* Star (not asterisk)

(Left paren or left parenthesis

) Right paren or right parenthesis

[Left square bracket or left bracket

] Right square bracket or right bracket

== Equal-equal (not double equal)

++ Plus-plus (not double plus)

– – Minus-minus (not double minus)

/ Forward slash

\ Backslash

{ Left brace or left curly brace or open brace

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 93

Strings
If any single computer word has become so common in programming that most
computer people forget that it’s a computer word, it’s string. Book 1, Chapter 3
introduces strings and describes what they are, and it gives examples of them. In
short, a string is simply a set of characters strung together. The compiler knows
the start and end of a string in your code based on the location of the double
quotes.

You can create a variable that can hold a string. The type you use is string. The
CreateString example, shown in Listing 4-6, demonstrates how to use a string
variable.

LISTING 4-6:	 Using Brackets to Access Individual Characters in a String

#include <iostream>

using namespace std;

int main()
{
 string mystring;
 mystring = "Hello there";
 cout << mystring << endl;
 return 0;
}

When you run this application, the string Hello there appears on the console.
The first line inside main() creates a string variable called mystring. The second
line initializes it to "Hello there". The third line prints the string to the console.

} Right brace or right curly brace or close brace

^ Caret (though a few people say hat, for real — no joke here!)

" Double quote

If you’d like to have some fun with these symbols, check out the poem at https://
spot.colorado.edu/~sniderc/poetry/wakawaka.html. It’s especially helpful
on those days when you’re bored to tears and really need some comedy relief.

https://spot.colorado.edu/~sniderc/poetry/wakawaka.html
https://spot.colorado.edu/~sniderc/poetry/wakawaka.html

94 BOOK 1 Getting Started with C++

Getting a part of a string
Accessing the individual characters within a string is easy. Take a look at the
IndividualCharacter example shown in Listing 4-7.

LISTING 4-7:	 Using the string Type to Create a String Variable

#include <iostream>

using namespace std;

int main()
{
 string mystring;
 mystring = "abcdef";
 cout << mystring[2] << endl;
 return 0;
}

Notice that the ninth line, the cout line, has the word mystring followed by a 2
inside brackets ([]). When you run this application, here’s what you see:

c

That’s it, just a letter c, hanging out all by itself. The 2 inside brackets means that
you want to take the second character of the string and only that character. But
wait! Is c the second character? Your eyes may deceive you, but it looks like that’s
the third character. What gives?

DELIMITERS LIMIT DE TOKENS
When you read an English sentence, you can tell where one word starts and one word
ends by looking at the spaces and the punctuation. The same is true in a computer
application. Words are normally separated by spaces, but other characters also denote
the beginning and end of a word. In a string, this character is the double quote, ("). Such
word dividers are called delimiters (pronounced “dee-LIM-it-ers”). And just to make sure
that you stay confused, computer people use the word token to mean the individual
words in an application that are set apart by delimiters. However, you won’t hear about
tokens again in this book, because using the term word is less confusing.

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 95

Turns out that C++ starts numbering the positions inside the string at 0. So for
this string, mystring[0] is the first character, which happens to be a. And so,
really, mystring[2] gets the third character. Yes, life gets confusing when you try
to hold conversations with programmers, because sometimes they use the phrase
the third character to mean the third position; but sometimes they use it to mean
what’s really the fourth position. But to those people, the fourth position is actu-
ally the fifth position, which is actually the sixth position. Life among computer
programmers can be confusing. In general, this book uses fourth position to mean
the fourth position, which you access through mystring[3]. (The number inside
brackets is called an index.)

A string is made of characters. Thus, a single character within a string has the
type char. This means that you can do something like this (as shown in the Indi-
vidualCharacter2 example):

#include <iostream>

using namespace std;

int main()
{
 string mystring;
 mystring = "abcdef";
 char mychar = mystring[2];
 cout << mychar << endl;
}

In this example, mychar is a variable of type char. The mystring[2] expression
returns an item of type char. Thus, the assignment is valid. When you run this, you
once again see the single character in the third position:

c

Changing part of a string
Using the bracket notation, you can also change a character inside a string. The
following code, for example, changes the second character in the string (that is,
the one with index 1) from a b to a q:

string x = "abcdef";
x[1] = 'q';
cout << x << endl;

This code writes the string aqcdef to the console.

96 BOOK 1 Getting Started with C++

Adding onto a string
Any good writer can keep adding more and more letters to a page. And the same
is true with the string type: You can easily add to it. The following lines of code
use the += operator, which was also used in adding numbers. What do you think
this code will do?

string mystring;
mystring = "Hi ";
mystring += "there";
cout << mystring << endl;

The first line declares the string mystring. The second line initializes it to
"Hi ". But what does the third line do? The third line uses the += operator, which
appends something to the string — in this case, "there". Thus, after this line
runs, the string called mystring contains the string "Hi there", and that’s what
appears on the console when the cout line runs. The fancy programmer term for
adding something to a string is concatenation.

THOSE STRANGE # LINES
Now for those strange-looking lines that start with the # symbol. In Book 1, Chapter 7,
you discover how to divide your code into multiple pieces, each in its own source file.
That is a powerful way to create large software applications, because different people
can work on the different parts at the same time. But to do so, somehow each file must
know what the other files can do. And the way you tell the files about the other files is
by putting a line toward the top of your file that looks like this:

#include <string>

This line means that your application is making use of another file somewhere, and
that file has a filename of string. Inside that other file is a bunch of C++ code that
essentially gives your application the ability to understand strings. To see this file in
Code::Blocks, right-click the filename and choose Open #include File: <filename> from
the context menu. The line

#include <iostream>

gives your application the ability to write to the console, among other things.

As you progress through C++, you discover more lines that you can include at the top
of your application, each starting with #include and each giving your application more
features and capabilities. You see many #include files used throughout this book.
(Now, how is that for a teaser?)

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 97

You can also do something similar with characters. The following code snippet
adds a single character to a string:

string mystring;
mystring = "abcdef";
mystring += 'g';
cout << mystring << endl;

This code creates a string with "abcdef" and then adds a 'g' character to the end
to get "abcdefg". Then it writes the full "abcdefg" to the console.

Adding two strings
You can take two strings and add them together by using a + sign, just as you can
do with integers. The final result is a string that is simply the two strings pushed
together, side by side. For example, the following code adds first to second to
get a string called third:

string first = "hello ";
string second = "there";
string third = first + second;
cout << third << endl;

This code prints the value of third, which is simply the two strings pushed
together — in other words, "hello there". (Notice that the string called first
has a space at its end, which is inside quotes and, therefore, part of the string.)
You can also add a string constant (that is, an actual string in your application sur-
rounded by quotes) to an existing string variable, as shown here:

string first = "hello ";
string third = first + "there";
cout << third << endl;

You may be tempted to try to add two string constants together, like so:

string bigstring = "hello " + "there";
cout << bigstring << endl;

Unfortunately, this won’t work. The reason is that (deep down inside its heart) the
compiler just wants to believe that a string constant and a string are fundamentally

98 BOOK 1 Getting Started with C++

different. But really, you don’t have a good reason to do this, because you can
accomplish the same thing with this code:

string bigstring = "hello there";
cout << bigstring << endl;

You can do a lot more with strings. But first, you need to understand something
called a function. If you’re curious about functions, read Book 1, Chapter 6, which
covers all the nitty-gritty details.

Making Decisions Using Conditional
Operators

One of the most important features of computers, besides allowing you to surf the
web and allowing telemarketers to dial your telephone automatically while you’re
eating, is the capability to make comparisons. Although this topic may not seem
like a big deal, computer technology did not start to take off until the engineers
realized that computers could become much more powerful if they could test a
situation and do one task or another task, depending on the situation.

You can use many ways to write a C++ application that can make decisions; see
Book 1, Chapter 5, for a discussion about this topic. But one way that is quite handy
is the use of the conditional operator.

Think about this process: If two integer variables are equal, set a string variable
to the string "equal". Otherwise, set it to the string "not equal". In other words,
suppose that you have two integer variables, called first and second. first has
the value 10 in it, and second has the value 20 in it. You also have a string vari-
able called result. Now, to follow the little process just described: Are the two
variables equal? No, they are not, so you set result to the string "not equal".

Now do this in C++. Look carefully at the following code. First, you declare the
variables first, second, and result:

int first = 10;
int second = 20;
string result;

So far, so good. Notice that you didn’t yet initialize the string variable result.
But now you’re going to write a single line of code that performs the process just
described. First, look over the following example, and see whether you can figure

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 99

out what it’s doing. Look carefully at the variables and what they may do, based on
the process described earlier. Then the text explains what the code does.

result = (first == second) ? "equal" : "not equal";

The preceding line is probably one of the more bizarre-looking lines of C++ code
that you’ll see in this book. First, you discover what it means. Then you break it
into parts to understand why it means what it does.

In English, this means result gets "equal" if first is equal to second; other-
wise, it gets "not equal".

Now break it into two parts. A single equals sign indicates that the left side,
result, receives what is on the right side. So you need to figure out that crazy
business on the right side:

(first == second) ? "equal" : "not equal"

When you see this strange setup, consider the question mark to be the divider.
The stuff on the left of the question mark is usually put in parentheses, as shown
in the following:

(first == second)

This line actually compares first to second and determines whether they are
equal. Yes, the code shows two equals signs. In C++, that’s how you test whether
two things are equal. Now move to the part on the right of the question mark:

"equal" : "not equal"

This is, itself, two pieces divided by a colon, so if first is indeed equal to second,
result gets the string "equal". Otherwise, it gets the string "not equal". Take a
look at the whole thing one more time:

result = (first == second) ? "equal" : "not equal";

Once again, consider what it means: If first is equal to second, result gets
"equal"; otherwise, it gets "not equal".

Remember that the storage bin on the left side of the single equals sign receives
what is on the right side. The right side is an expression, which comes out to be a
string of either "equal" or "not equal". The whole EqualityCheck example is
shown in Listing 4-8.

100 BOOK 1 Getting Started with C++

LISTING 4-8:	 Using the Conditional Operator to Do Comparisons

#include <iostream>

using namespace std;

int main()
{
 int first = 10;
 int second = 20;
 string result;

 result = first == second ? "equal" : "not equal";

 cout << result << endl;
 return 0;
}

Telling the Truth with Boolean Variables
In addition to integers and strings, another type in C++ can be pretty useful. This
type is called a Boolean variable. Whereas an integer variable is a storage bin that
can hold any integer value, a Boolean variable can hold only one of two different
values: a true or a false. Boolean values take their name from George Boole, the
father of Boolean logic. You can read about him at: http://mathshistory.st-
andrews.ac.uk/Biographies/Boole.html.

The type name for a Boolean variable is bool. Therefore, to declare a Boolean vari-
able, you use a statement like this:

bool finished;

This line declares a Boolean variable called finished. Then you can put either a
true or a false in this variable, as in the following:

finished = true;

or

finished = false;

http://mathshistory.st-andrews.ac.uk/Biographies/Boole.html
http://mathshistory.st-andrews.ac.uk/Biographies/Boole.html

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 101

When you print the value of a Boolean variable by using code like this:

cout << finished << endl;

you see either a 1 for true or a 0 for false. The reason is that, deep down inside,
the computer stores a 1 to represent true and a 0 to represent false.

BOOLEAN VARIABLES AND CONDITIONAL
OPERATORS
You can use Boolean variables with conditional operators. In a conditional operator
such as

result = (first == second) ? "equal" : "not equal";

the item (first == second) actually works out to be a Boolean value — either true
or false. Therefore, you can break up this code into several lines. Even though break-
ing something into several lines seems a little backward, developers do it all the time.
The reason for breaking code into lines is that sometimes, when you are programming,
you may have an expression that is extremely complex — much more complex than
first == second. As you grow in your C++ programming ability, you start to build
more complex expressions and then start to realize just how complex they can become.
Often, breaking expressions into multiple smaller pieces is more manageable. To break
this example into multiple lines, you can do this (as shown in the EqualityCheck2
example):

string result;
bool isequal;
isequal = (first == second);
result = isequal ? "equal" : "not equal";

The second line declares a Boolean variable called isequal. The third line sets it to the
value first == second. In other words, if first is equal to second, then isequal
gets the value true. Otherwise, isequal gets the value false. In the fourth line,
result gets the value "equal" if isequal is true; or result gets the value "not
equal" if isequal is false.

The reason that this code works is that the item on the left side of the question mark
is a Boolean expression, which is just a fancy way of saying that the code requires a
Boolean value. Therefore, you can throw in a Boolean variable if you prefer, because a
Boolean variable holds a Boolean value.

102 BOOK 1 Getting Started with C++

Reading from the Console
Throughout this chapter and the preceding chapter, you see many examples of
how to write information to the console. But just writing information is sort of
like holding a conversation where one person does all the talking and no listening.
Getting some feedback from the users of your applications would be nice. Fortu-
nately, getting feedback is easy in C++.Writing to the console involves the use of
cout in a form like this:

cout << "hi there" << endl;

Reading from the console (that is, getting a response from the user of your appli-
cation) uses the cin object. (It’s pronounced “see-in”.) Next, instead of using the
goofy-looking << operator, you use the equally but backwardly goofy >> operator.

The << operator is often called an insertion operator because you are writing to (or
inserting into) a stream. A stream is nothing more than a bunch of characters going
out somewhere. In the case of cout, those characters are going out to the con-
sole. The >> operator, on the other hand, is often called the extraction operator. The
idea here is that you are extracting stuff from the stream. In the case of cin, you
are pulling letters from the stream that the user is, in a sense, sending into your
application through the console.

The ReadString example, shown in Listing 4-9, demonstrates how you can read
a string from the console.

LISTING 4-9:	 Using the Conditional Operator to Make Comparisons

#include <iostream>

using namespace std;

int main()
{
 string name;
 cout << "Type your name: ";
 cin >> name;
 cout << "Your name is " << name << endl;
 return 0;
}

St
or

in
g

D
at

a
in

 C
++

CHAPTER 4 Storing Data in C++ 103

When you run this code, you see the console ask you to type your name, and then
it stops. That’s because it’s waiting for your input. Notice that the insertion point
appears immediately after the text "Type your name:". That’s because the first
cout statement lacks the usual endl. It’s normal to leave the insertion point, or
cursor, on the same line as the question to avoid confusing the user. Type a name,
such as Fred, without spaces and press Enter. The console then looks like this:

Type your name: Fred
Your name is Fred

The first line includes the name you typed, and the second line is whatever appears
after you press Enter. Notice what happens: When you type a word and press
Enter, the computer places that word in the name variable, which is a string. Then
you can print name to the console by using cout.

You can also read integers, as in the following code (in the ReadInt example):

#include <iostream>

using namespace std;

int main()
{
 int x;
 cout << "Type your favorite number: ";
 cin >> x;
 cout << "Your favorite number is " << x << endl;
 return 0;
}

This sample code reads a single integer into the variable x and then prints it to
the console.

By default, cin reads in characters from the console based on spaces. If you put
spaces in your entry, only the first word gets read. cin reads the second word the
next time the application encounters a cin >>.

CHAPTER 5 Directing the Application Flow 105

Directing the
Application Flow

As you program in C++, many times you need to present the computer with
a choice, allowing it to do one thing in one situation and something else in
another situation. For example, you may have an application that asks for

a user’s password. If the password is correct, the application continues; but if the
password is incorrect, the application asks the user to reenter the password. After
some number of times — usually three — the application performs yet another
task when the user enters the incorrect password. Such situations are called condi-
tions. In the case of the password, the condition is whether the password is correct.

You may also encounter situations in which you want several lines of code to run
over and over. These are loops, and you can specify conditions under which the
loop runs. For example, you may want to check the password only three times;
and if the user fails to enter it correctly the third time, you may bar access to the
system. This is a loop, and the loop runs under the condition that a counter has
not exceeded the value of 3.

In this chapter, you consider different ways to evaluate conditions within your
applications and cause different sections of code to run based on those conditions.
The chapter helps you understand how you can use C++ commands called if state-
ments, which are similar to what-if situations in real life. You also see how to use

Chapter 5

IN THIS CHAPTER

»» Comparing numbers and evaluating
other conditions

»» Doing things based on a comparison

»» Repeating code in specific ways

»» Creating nested loops (loops within
loops)

106 BOOK 1 Getting Started with C++

other C++ statements (such as do-while) to perform loops (repeating the same
application sections a number of times).

To make the explanations clear, this chapter gives you real-world examples that
you can feel free to incorporate into your life. The examples usually refer to groups
of friends and how you can get money from them. So, you see, the benefits of this
chapter are twofold: You find out how to program by using conditions and loops,
and you find out how to make money off your unsuspecting friends.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookI\Chapter05 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Doing This or Doing That
As you go through life, you’re always faced with decisions. For example, when
you bought this book, you faced the following decision: Should I buy this great
For Dummies book that’s sure to tell me just what I need to know, or should I buy
some other book?

When you’re faced with a decision, you usually have options that offer different
results — say, Plan A and Plan B. Making a decision requires making a choice that
results in the execution of either Plan A or Plan B. For example, if you approach a
stoplight that has just turned yellow, you must either slam on the brakes or floor
the accelerator. If you slam on the brakes, the car will stop just in time (you hope).
If you floor the accelerator, the car will speed up and you’ll go sailing through the
intersection just before the stoplight turns red. The choice is this: Press the brake,
or press the accelerator. The plan looks like this:

If I press the brake, I will stop just in time.

If I press the accelerator, I will speed through the intersection.

Computers are faced with making decisions too, although their decisions are usu-
ally a little less exciting and don’t usually yield the possibility of police interac-
tion. Computer decisions are also usually simpler in nature. That is, a computer’s
decisions mostly focus around such issues as comparing numbers and strings of
characters. For example, you may be writing a computer application for a bank.
The user of your application (that is, the bank customer) has a choice of Plan A,
Make a Deposit, or Plan B, Receive a Cash Withdrawal when interacting with an
account. If the user chooses to make a deposit, your application adds to the account

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 107

balance the amount of the deposit. If the user chooses to make a withdrawal, your
application instead subtracts the withdrawal amount from the account balance.

In C++, decisions usually take the form of an if statement, which is code that
starts with the if keyword followed by a condition, which is often a numerical
condition wherein two numbers are compared and then two blocks of code appear:
one that runs if the condition is satisfied and one that runs if it is not.

Evaluating Conditions in C++
Most decisions that the computer makes are based on conditions evaluated by
comparing either two numbers or two characters. For numerical comparisons, you
may compare a variable to a number, as in the following statement:

x > 10

This comparison evaluates whether the variable x holds a value greater than the
number 10. If x is indeed greater than 10, the computer sees this condition as
true. If x is not greater than 10, the computer sees the condition as not true
(false).

Developers often use the word satisfied with conditions. For the condition x > 10,
if x is greater than 10, developers say the condition is satisfied. It’s kind of like,
“We’re satisfied if our IRS tax refund is five figures.” For this, if the condition is
x > 9999, and you receive a $10,000 refund, the condition is satisfied.

For character comparisons, you may compare whether two characters are equal,
as in the following statement:

mychar == 'A'

This comparison evaluates whether mychar contains the letter A. Notice that you
use two equals signs, not just one. Using a single equals sign would assign the
value A to mychar.

To test whether the character is not equal to something, you use the somewhat
cryptic-looking != operator. Think of the ! as meaning not, as in

mychar != 'X'

108 BOOK 1 Getting Started with C++

Finding the right C++ operators
Each statement in the previous section uses an operator to specify the comparison
to make between the numbers or the strings. Table 5-1 shows you the types of
operators available in C++ and the comparisons that they help you make in your
applications.

Some operators in this table — and how you use them — can be a bit annoying or
downright frightening. The following list gives examples:

»» The operator that tests for equality is two equals signs. It looks like this:

x == 10

When the computer finds this statement, it checks to see whether x equals 10.

If you put just one equals sign in your statements, most C++ compilers will not
give you an error — though a statement like x = 10 is not really a condition!
Instead, x = 10 is an assignment, setting the variable x to 10. When code
contains such a statement, the result of the evaluation is always the same,
regardless of the value that x has.

»» The operator that tests for inequality is an exclamation mark followed by an
equals sign. For the condition x != 10, the condition evaluates as true only if
x is not equal to 10 (x is equal to something other than 10).

»» When you’re testing for greater-than or less-than conditions, the condition
x > 10 is not true if the value of x is equal to 10. The condition x > 10 is true
only if x is actually greater than, but not equal to, 10. To also test for x being
equal to 10, you have two choices:

TABLE 5-1	 Evaluating Numerical Conditions
Operator What It Means

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

!= Not equal to

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 109

•	 If you’re working with integers, you can test whether x > 9. In that case,
the condition is true if x equals 10, or 11, or 12, and so on.

•	 You can use the greater-than-or-equal-to operator to determine equality
x >= 10. This condition also is true if x equals 10, 11, and so on.

To test for all whole numbers greater than or equal to 10, the condition x > 9
works only if you’re working with integers. If you’re working with floating-point
numbers (refer to Book 1, Chapter 4, for information on the types of numbers
you can work with in C++), the statement x > 9 won’t work the way you want.
The number 9.1 is greater than 9, and it’s not greater than or equal to 10. So
if you want greater than or equal to and you’re not working with integers, use
the >= operator.

CONSIDERING THE NEW SPACESHIP
OPERATOR
C++ 20 comes with a new operator that will eventually make your life easier. It’s called
the spaceship operator and looks like this: <=>. The spaceship operator performs a
three-way comparison, which means that it can tell you whether a < b, a == b, or a
> b, all in one operation. This is one of those cases when you might want to skip this
sidebar and come back to it after you’ve read through later in the book (such as Book 5,
Chapter 2), but this chapter is the most appropriate place to include information about
the spaceship operator.

The spaceship operator appears as part of the std::strong_ordering class, so that’s
how you see it referred to in many cases. Instead of an output of true or false, this
operator outputs -1 (std::strong_ordering::less) when a < b, 0 (std::strong_
ordering::equal) when a == b, and 1 (std::strong_ordering::greater) when a
> b. Using this different form of output means that you need to write your conditional
statements differently than normal.

If you try to use the spaceship operator in a copy of C++ that doesn’t support it, you
receive an error message because the compiler won’t be able to understand what <=>
means. As of this writing, Code::Blocks doesn’t implement the spaceship operator,
so you need to test the spaceship operator somewhere else. One of the few online

(continued)

110 BOOK 1 Getting Started with C++

Combining multiple evaluations
When you make evaluations for application decisions, you may have more than
one condition to evaluate. For example, you might say, “If I get a million dollars,
or if I decide to go into debt up to my eyeballs, I will buy that Lamborghini.” In
this case, you would buy the car under two conditions, and either can be true.
Combining conditions like this is called an or situation: If this is true or if that is
true, something happens.

To evaluate two conditions together in C++, you write them in the same state-
ment and separate them with the or symbol (||), which looks like two vertical
bars. Other programming languages get to use the actual word or, but C++ uses
the strange, unpronounceable symbol that you might call The Operator Previously
Known As Or. The following statement shows it performing live:

compilers that fully implements this operator is Wandbox (https://wandbox.org/).
You can see how this operator works using this code:

#include <iostream>
#include <cstdlib>

int main()
{
 std::strong_ordering result = 1 <=> 1;
 bool out1 = result < 0;
 bool out2 = result == 0;
 bool out3 = result > 0;

 std::cout << out1 << std::endl;
 std::cout << out2 << std::endl;
 std::cout << out3 << std::endl;
}

In this case, the outputs are 0 (which is false), 1 (which is true), and 0 because 1 really
does equal 1. The std::strong_ordering type doesn’t provide cout functional-
ity, so you have to create a bool comparison for it. Instead of comparing the value of
result to 0, you can also use std::strong_ordering constants like this: result ==
std::strong_ordering::equal. Obviously, this is an extremely simple example and
you normally use the spaceship operator to perform complex comparisons. In Book 5,
Chapter 2, you begin to see how it’s possible to reduce the amount of code needed for
comparing two structures using the spaceship operator. For now, just know that the
operator exists and it can perform complex comparisons.

(continued)

https://wandbox.org/

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 111

(i < 10 || i > 100)

This condition is useful for some kinds of range checking for which you want to
exclude the middle of a range and check only for the extremes. In this case, an
i value of 50 (the middle of the range) would evaluate to false. If you use the or
operator (||), accidentally ending up with a condition that is always true is easy.
For example, the condition (x < 100 || x > 0) is always going to be true. When
x is -50, it’s less than 100, so the condition is true. When x is 500, it’s greater than
0, so it’s true.

In addition to an or condition, you can have something like this: “If I get a million
dollars and I feel really bold, I will buy a Lamborghini.” Notice that this uses the
word and. In this case, you do it only if both situations are true. (Remember that
with or, you do it if either situation is true.) In C++, the and operator is two amper-
sands: &&. This makes more sense than the or operator because the & symbol is
often associated with the word and. The and comparison in C++ looks like this:

(i > 10 && i < 100)

This example checks to see whether a number is more than 10 and less than 100.
That would mean the number is in the range 11 through 99.

Combining conditions by using the && and || operators is a use of logical operators.

To determine whether a number is within a certain range, you can use the and
operator (&&), as you see earlier in this chapter.

With the and operator, accidentally creating a condition that is never true is easy.
For example, the condition (x < 10 && x > 100) will never be true. No single
number can be both less than 10 and simultaneously greater than 100.

Including Evaluations in C++ Conditional
Statements

Computers, like humans, evaluate conditions and use the results of the evalua-
tions as input for making a decision. For humans, the decision usually involves
alternative plans of action, and the same is true for computers. The computer
needs to know what to do if a condition is true and what to do if a condition is
not true. To decide on a plan of action based on a condition that your application
evaluates, you use an if statement, which looks like this:

112 BOOK 1 Getting Started with C++

if (x > 10)
{
 cout << "Yuppers, it's greater than 10!" << endl;
}

This example translates into English as: If x is greater than 10, write the message

"Yuppers, it's greater than 10!"

In an if statement, the part inside the parentheses is called either the test or the
condition. You usually apply condition to this part of the if statement and use the
word test as a verb, as in “I will test whether x is greater than 10.”

In C++, the condition for an if statement always goes inside parentheses. If you
forget the parentheses, you get a compile error.

You can also have multiple plans of action. The idea is simply that if a condition
is true, you will do Plan A. Otherwise, you will do Plan B. This is an if-else block,
which appears in the next section.

Deciding what if and also what else
When you write code for a comparison, usually you want to tell the computer to do
something if the condition is true and to do something else if the condition is not
true. For example, you may say, “If I’m really hungry, I will buy the Biggiesuper-
sizemondohungryperson french fries with my meal for an extra nickel; otherwise,
I’ll go with the small.” In the English language, you often see this kind of logic
with the word otherwise: If such-and-such is true, I will do this; otherwise, I will
do that.

In C++, you use the else keyword for the otherwise situation. The IfElse example
demonstrates how to use the else keyword, as shown in the following code:

#include <iostream>

using namespace std;

int main()
{
 int i;
 cout << "Type any number: ";
 cin >> i;

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 113

 if (i > 10)
 {
 cout << "It's greater than 10." << endl;
 }
 else
 {
 cout << "It's not greater than 10." << endl;
 }

 return 0;
}

In this code, you test whether a number is greater than 10. If it is, you print one
message. If it is not, you print a different message. Notice how the two blocks of
code are distinct. The first block immediately follows the if statement; it’s the
code that runs if the condition is true. The next block is preceded by the else
keyword, and this block runs if the condition is false.

Think carefully about your else code block when dealing with numbers. If you are
testing whether a number is greater than 10, for instance, and it turns out that
the number is not greater than 10, the tendency of most people is to assume that
it must, therefore, be less than 10. But that’s not true. The number 10 itself is not
greater than 10, but it’s not less than 10, either. So the opposite of greater than 10
is simply not greater than 10. If you need to test the full range of numbers using
a simple if statement, create an if statement that uses either >= or <= (refer to
Table 5-1 for a listing of operators).

Going further with the else and if
When you are working with comparisons, you often have multiple comparisons
going on. For example, you may say, “If I go to Mars, I will look for a cool red rock;
otherwise, if I go to the moon, I will jump up really high; otherwise, I will just look
around wherever I end up, but I hope there will be air.”

The IfElse2 example, shown in the following code, demonstrates how to com-
bine the if and else keywords to check for multiple alternatives:

#include <iostream>

using namespace std;

int main()
{

114 BOOK 1 Getting Started with C++

 int i;
 cout << "Type any number: ";
 cin >> i;

 if (i > 10)
 {
 cout << "It's greater than 10." << endl;
 }
 else if (i == 10)
 {
 cout << "It's equal to 10" << endl;
 }
 else
 {
 cout << "It's less than 10." << endl;
 }

 return 0;
}

Here you can see having several different conditions, and only one can be true.
The computer first checks to see whether i is greater than 10. If i is greater, the
computer prints a message saying that i is greater than 10; but if it isn’t greater,
the computer checks to see whether i equals 10. If so, the computer prints a mes-
sage saying that i is equal to 10. Finally, the computer assumes that i must be
less than 10, and it prints a message accordingly. Notice there is no condition for
the final else statement (you can’t have a condition with else statements). But
because the other conditions failed, you know, by your careful logic, that i must
be less than 10.

Be careful when you are thinking through such if statements. You could have a
situation where more than one condition can occur. For example, you may have
something like the example shown in IfElse3:

#include <iostream>

using namespace std;

int main()
{
 int i;
 cout << "Type any number: ";
 cin >> i;

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 115

 if (i > 100)
 {
 cout << "It's greater than 100." << endl;
 }
 else if (i > 10)
 {
 cout << "It's greater than 10" << endl;
 }
 else
 {
 cout <<
 "It's neither greater than 100 nor greater than 10."
 << endl;
 }

 return 0;
}

Think about what would happen if i is the number 150. The first condition,
i > 100, is true. But so is the second condition, i > 10. The number 150 is greater
than 100, and 150 is also greater than 10. So which block will the computer exe-
cute? Or will it execute both blocks?

The computer executes only the first condition that is satisfied. Thus, when i is
150, the computer prints the message "It's greater than 100." It doesn’t print
the other messages. In fact, the computer doesn’t even bother checking the other
conditions at that point. It just continues with the application.

Repeating Actions with Statements
That Loop

You see loops all the time. A child runs around in circles until getting quite dizzy
and falling over (laughing, in all likelihood). While driving, you see a roundabout
and navigate it successfully or go around for another try. During exercise, you
perform a given number of repetitions to obtain a desired fitness result. All these
examples reflect real-life loops. Computers also deal with loops, as defined in the
following sections.

116 BOOK 1 Getting Started with C++

Understanding how computers use loops
Suppose that you’re writing an application to add all the numbers from 1 to 100.
For example, you may want to know how much money you will get if you tell 100
people, “Give me one dollar more than the person to your left.” With a mastery
of copy-and-paste, you could do something like this (with the first person giving
you a dollar, the second giving you two dollars, the third giving you three dollars,
and so on):

int x = 1; // First person.
x = x + 2; // Person two gives you 2, for a total of 3
x = x + 3; // Person three gives you 3, for a total of 6
x = x + 4; // Person four gives you 4, for a total of 10

and so on until you get to x = x + 100. As you can see, this code could take a long
time to type, and you would probably find it a tad frustrating, too, no matter how
quickly you can choose the Edit  ➪  Paste command (or press Ctrl+V). Fortunately,
the great founders of the computer world recognized that not every programmer
is a virtuoso at the piano with flying fingers and that applications often need to
do the same thing over and over. Thus, they created a helpful tool: the for loop.
A for loop executes the same piece of code repeatedly a certain number of times.
And that’s just what you want to do in this example.

Looping situations
Several types of loops are available, and in this section you see how they work.
Which type of loop you use depends on the situation. The preceding section meth-
ods one loop type: the for loop. The idea behind a for loop is to have a coun-
ter variable that either increases or decreases, and the loop runs as long as the
counter variable satisfies a particular condition. For example, the counter variable
might start at 0, and the loop runs as long as the counter is less than 10. The
counter variable increments (has one added to it) each time the loop runs, and after
the counter variable is not less than 10, the loop stops.

Another way to loop is to simplify the logic a bit and say, “I want this loop to run
as long as a certain condition is true.” This is a while loop, and you simply specify
a condition under which the loop continues to run. When the condition is true, the
loop keeps running. After the condition is no longer true, the loop stops.

Finally, there’s a slight modification to the while loop: the do-while loop. The
do-while loop is used to handle one particular situation that can arise. When you
have a while loop, if the condition is not true when everything starts, the com-
puter skips over the code in the while loop and does not even bother executing

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 117

it. But sometimes you may have a situation in which you would want the code to
always execute at least once. In that case, you can use a do-while loop.

Table 5-2 shows the types of loops. As the chapter progresses, you see examples
of using all three loop types.

You may want to use these loops in these situations:

»» for loop: Use a for loop when you have a counter variable and you want it to
loop while the counter variable increases or decreases over a range. It’s a
good choice if you know how many times you want the loop to execute.

»» while loop: Use the while loop when you have a condition under which you
want your code to run. It’s a good choice when you want to perform the test
at the beginning of the loop. The test may fail immediately, so the loop may
not execute even once.

»» do-while loop: Use the do-while loop when you have a condition under
which you want your code to run and you want to ensure that the loop always
runs at least once, even if the condition is not satisfied. It’s a good choice
when the code inside the loop prepares the variables that the test uses, so the
loop must execute at least once.

Looping for
Using the for loop provides precise control over how many times the code per-
forms a task. In addition, it’s extremely flexible because you also have control
over how the counter variable updates. While you can use a for loop for situa-
tions when you don’t know how many times you need to perform a task, such as
streaming content from the Internet, it still provides the basis for code that is less
susceptible to errors because you always know precisely how long the loop will
continue. With this in mind, the following sections tell you more about the for
loop.

TABLE 5-2	 Choosing Your Loops
Type of Loop Appearance

for for (x=0; x<10; x++) { }

while while (x < 10) { }

do-while do { } while (x < 10)

118 BOOK 1 Getting Started with C++

Performing a simple for loop
To use a for loop, you use the for keyword and follow it with a set of parentheses
that contains information regarding the number of times the for loop executes.

For example, when adding the numbers from 1 to 100, you want a variable that
starts with the number 1; then you add 1 to x, increase the variable to 2, and add
the next number to x again over and over. The common action here that doesn’t
change each time is the “add it to x” part, and the part that changes is the vari-
able, called a counter variable.

The counter variable, therefore, starts at 1 and goes through 100. Does it include
100? Yes. And with each iteration, you add 1 to the counter variable. The for state-
ment looks like this:

for (i = 1; i <= 100; i++)

This statement means that the counter variable, i, starts at 1, and the loop runs
over and over while i is less than or equal to 100. After each iteration, the counter
variable increments by 1 because of the i++ statement.

The following list describes the three portions inside the parentheses of the for
loop:

»» Initializer: You use this first portion to set up the counter variable.

»» Condition: It’s the condition under which the loop continues to run.

»» Finalizer: In this third portion, you specify what happens after each cycle of
the loop.

Three items are inside the for loop, and you separate them with semicolons. If
you try to use commas, your code will not compile.

Now the line of code from a few paragraphs back doesn’t do anything for each
iteration other than add 1 to i. To tell the computer the work to do with each iter-
ation, follow the for statement with a set of braces containing the statements you
want to execute with each iteration. Thus, to add the counter variable to x, you
would do this:

for (i = 1; i <=100; i++)
{
 x += i;
}

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 119

Note that if the for loop only executes one statement, you don’t have to include the
braces. This example would add i to x with each loop. Of course, you must create
x and assign an initial value to it to make the loop work. The ForLoop example
demonstrates the for loop in its final form, complete with the way to write the
final value of x to the console after the loop is finished:

#include <iostream>

using namespace std;

int main()
{
 int x = 0;
 int i;

 for (i = 1; i <= 100; i++)
 {
 x += i;
 }

 cout << x << endl;
 return 0;
}

When you run this example, you see an output of 5050. Notice a few things about
this block of code.

1.	 You declare both variables that you’re working with: x and i.

2.	 The for statement initializes the counter variable, specifies the condition
under which it continues running, and tells what to do after each iteration.
In this example, the for loop starts with i = 1, and it runs as long as i is less
than or equal to 100. For each iteration, the computer adds the value of i to x;
the process that adds the value to x is the code inside the braces.

3.	 The computer adds 1 to i, which you specify as the third item inside the
parentheses. The computer does this part, adding 1 to i, only after it finishes
executing the stuff inside the braces.

Meddling with the middle condition
The middle portion of the for statement specifies a condition under which to con-
tinue doing the stuff inside the for loop. It must eventually evaluate to false or
the loop will continue forever. In the case of the preceding example, the condition
is i <= 100, which means that the stuff inside the braces continues to run as long
as i is less than or equal to 100.

120 BOOK 1 Getting Started with C++

In this example, you want the loop to iterate for the special case in which i is
100, which still satisfies the condition i <= 100. If you instead say i < 100, the
loop won’t execute for the case in which i equals 100. The loop will stop short of
the final iteration. In other words, the computer would add only the numbers 1
through 99. And if your friends are gathering money for you, you’d be cheated out
of that final $100. And, by golly, that could make the difference as to whether you
pay rent this month.

The question of when the loop stops can get kind of confusing. If you go crazy and
tell the compiler that you want to add the numbers 1 up to but not including 100,
you need a condition such as i < 100. If you say up to 100, it’s not clear exactly
which you want to do — include the 100 or not. If that’s the case and you’re
writing the application for someone else, you would want to ask for clarification.
(Unless you’re the 100th friend, in which case you may get out of paying your
dues.)

GETTING A SMALL PERFORMANCE BOOST
It’s possible to get a small, but sometimes noticeable, performance boost by declaring
your counter variable within the for statement. The following code runs precisely the
same as the code used in the “Performing a simple for loop” section, but it uses one less
line of code by initializing i within the for statement using int i = 1;. The trade-off
is that it may be less clear in some situations where the function you write is longer and
i becomes inaccessible when the for loop terminates.

#include <iostream>

using namespace std;

int main()
{
 int x = 0;

 for (int i = 1; i <= 100; i++)
 {
 x += i;
 }

 cout << x << endl;
 return 0;
}

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 121

In the example you’ve been using, the condition i <= 100 and the condition
i < 101 have essentially the same meaning. If the condition is i < 101, the appli-
cation operates the same. But that’s true only because the example uses integers
to count up to and including 100. If you instead add floating-point numbers, and
increment the counter by 0.1 after each iteration, these two conditions (i <= 100
and i < 101) aren’t the same. With i <=100, i gets up to 99.5, 99.6, 99.7, 99.8,
99.9, and finally 100, after which the loop stops. But i < 101 would also include
100.1, 100.2, up to and including 100.9.

You can see that the two conditions are not the same by playing with the ForLoop2
example. When you run this example with a condition of i <= 100, the output is
50050. However, when you run this example with a condition of i < 101, the out-
put is 51055.5. (Remember to rebuild the application after you make any changes
to it.)

#include <iostream>

using namespace std;

int main()
{
 double x = 0.0;

 for (double i = 0.1; i <= 100; i += 0.1)
 {
 x += i;
 }

 cout << x << endl;
 return 0;
}

Now notice the third item in the for statement: i+=0.1. Remember that this item
is the same as i = i + 0.1. Therefore, this third item is a complete statement.
A common mistake is to instead include just a partial statement, as in i + 0.1.
Unfortunately, some compilers allow a partial statement to get through with only
a warning. C++ is notorious for letting you do things that don’t make a whole lot
of sense, though newer compilers tend to fix these errors.

Yes, it’s true: The entire statement i = i + 1 is considered to have a side effect.
In medicine, a side effect is an extra little goodie you get when you take a pill that
the doctor prescribes. For example, to cure your headache with medicine, one side
effect may be that you experience severe abdominal pains — not something you
want. But in computers, a side effect can be something that you may want. In

122 BOOK 1 Getting Started with C++

this case, you want the counter to be incremented. The partial statement i + 0.1
returns only a value and doesn’t put it anywhere; that is, the partial statement
doesn’t change the value of i — it has no side effects.

If you try this at home by replacing one of the for loops in the earlier examples
with just i + 0.1, your loop runs forever until you manually stop the applica-
tion. The reason for this action is that the counter always stays put, right where it
started, and it never increments. Thus, the condition i <= 100 is always satisfied.

The final portion of the for statement must be a complete statement in itself. If
the statement simply evaluates to something, it will not be used in your for loop.
In that case, your for loop can run forever unless you stop it.

Going backward
If you need to count backward, you can do that with a for loop as well. For exam-
ple, you may be counting down the number of days remaining before you get to
quit your job because you learned C++ programming and you are moving on to an
awesome new job. Or you may be writing an application that can manipulate that
cool countdown timer that they show when the space shuttle launches. Counting
up just isn’t always the right action. It would be a bummer if every day were one
day more before you get to quit your job and move to an island. Sometimes, count-
ing backward is best.

To count backward, you set up the three portions of the for loop. The first is the
initial setup, the second is the condition under which it continues to run, and the
third is the action after each iteration. For the first portion, you set the counter
to the starting value, the top number. For the condition, you check whether the
number continues to be greater than or equal to the final number. And for the
third portion, you decrement the counter (reduce its value by 1) rather than incre-
ment it. Thus, you would have this:

for (i=10; i>=5; i--)

This line starts the counter variable i at 10. (Note the lack of spaces between i, =,
and 10—the compiler doesn’t care whether you use spaces or not, the spaces are
there, or not, for you.) The for loop decrements i by 1 after each iteration, and
thus i moves to 9, then 8, then 7, and so on. This process continues as long as i
is at least 5. Thus, i counts 10, 9, 8, 7, 6, 5. The whole application might look like
the ForCountdown example, shown here:

#include <iostream>

using namespace std;

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 123

int main()
{
 for (int i=10; i>=5; i--)
 {
 cout << i << endl;
 }

 return 0;
}

When you run this code, you see the following output:

10
9
8
7
6
5

Using multiple initialization variables
If you need multiple counter variables, the for loop can handle it. Each portion
of the for statement can have multiple items in it, separated by commas. For
example, the following code uses two counter variables, as demonstrated in the
ForLoopMultiVariable example:

#include <iostream>

using namespace std;

int main()
{
 string A = "Hello";
 string B = "1122334455";

 for (int i = 0, j = 0; i < 5; i++, j += 2)
 {
 cout << A[i] << B[j] << endl;
 }

 return 0;
}

124 BOOK 1 Getting Started with C++

In this case, you work with two strings: A and B. String B is twice as long as string
A, but you want to combine the two. So, you need to access the string index of B
using j by incrementing it twice the amount of i. This type of processing can hap-
pen in C++, so it’s good to keep in mind the fact that using multiple variables in
a for loop isn’t always bad. The output you see from this example looks like this:

H1
e2
l3
l4
o5

The problem with using multiple variables comes when you start to create really
complex and convoluted code. Here is an example of when what is happening with
the for loop becomes harder to understand:

for (int i = 0, j=10; i <= 5, j <=20; i++, j+=2)
{
 cout << i << " " << j << endl;
 x += i + j;
}

Look carefully at it because it’s a bit confusing (in fact, you learn a little some-
thing about the complexity shortly). To understand this example, look at each
portion separately. The first portion starts the loop. Here, the code creates two
counters — i and j; i starts at 0, and j starts at 10.

So far, easy enough. The second portion says that the loop will run as long as the
following two conditions are true: i must be less than or equal to 5, and j must be
less than or equal to 20.

Again, not too bad. The final portion says what must happen at the end of each
iteration: i is incremented by 1, and j is incremented by 2.

Thus, you have two counter variables. And it’s not too bad, except that you might
imagine doing something like this instead:

for (int i = 0, j=20; i <= 5, j >= 10 ; i++, j-=2)
{
 cout << i << " " << j << endl;
 x += i + j;
}

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 125

If you look carefully, you’ll notice that aside from i, j starts out at 20 and the loop
runs as long as j is at least 10, and that with each iteration, 2 is subtracted from
j. In other words, j is counting down by 2 from 20 to 10.

But i is counting up from 0 to 5. Thus, you have two loops: one counting up and
one counting down.

Code can become extremely confusing—look at the following gem from the For-
LoopComplex example:

#include <iostream>

using namespace std;

int main()
{
 int x = 0;
 for (int i=0, j=10; i<=5, j<=20;
 i++, j+=2, cout << i+j << endl, x+=i+j)
 {
 }

 return 0;
}

It’s hard to tell what it does just by looking at it. Running the code will give you
an output of

13
16
19
22
25
28

The truth is, this kind of code is just too complicated — best to stick with simpler
code. Although you may know what this code means, your coworkers will only
get frustrated trying to decode it. And if you write code just for fun at home, six
months from now — when you go back and look at this code — you might have
trouble figuring it out yourself!

126 BOOK 1 Getting Started with C++

One thing to notice about this particular example is that the for conditions reside
on two lines. At least the line isn’t so long that you need to scroll it within the edi-
tor. Using shorter code lines is usually helpful.

Putting too much inside the for statement itself is easy to do. In fact, if you’re
really clever, you can put almost everything inside the for loop and leave nothing
but an empty pair of braces, as shown in the preceding example. But remember,
just because your code is clever doesn’t mean that what you did was the best way
to do it. Instead, sticking to the common practice of using only one variable in
the for statement is a good idea (as is not using multiple statements within each
portion).

Keeping your applications clear so that other people can figure out what you were
trying to do when you wrote the code is always a good idea. Some people seem to
think that if they keep their applications complicated, they’re guaranteeing them-
selves job security. Oddly, all the people I know like that tend to leave their jobs
and have trouble getting good references. (Imagine that!)

You may recall that with the ++, you can have both i++ and ++i. The first is a post-
increment, and the second is a pre-increment. You may be tempted to try something
like this: for (int i = 0; i <= 5; ++i). Although it looks cool and some people
prefer it, the truth is that it doesn’t change anything. The ++i still takes place at
the end of the loop, not at the beginning, as you might hope. Using pre-increment
just makes code confusing; use i++ in your for loops and avoid ++i.

Working with ranges
A range is a series of values that go from one value to another value and include
the values in between. For example, the range a through d is a, b, c, and d. An inte-
ger range of 1 through 5 is 1, 2, 3, 4, and 5. You see ranges in action multiple times
in this book, but the main discussion appears in Book 5, Chapter 6. For now, this
chapter works with an incredibly simple range.

To make this example work, you must configure GCC to use a minimum of C++
17. Choose Settings  ➪  Compiler to display the Compiler Settings dialog box shown
in Figure 5-1. Select the Have G++ Follow the Coming C++ 1z (aka C++ 17) setting
option; then click OK. If you don’t select this option, the example will fail to build
properly. Remember that if you build a project using the wrong options, you must
rebuild it by choosing Build  ➪  Rebuild after setting the correct options.

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 127

Now that the compiler is configured, you can use the code that follows, which also
appears in the ForLoopRange example, to test a for loop using a range. In this
case, the range is from 1 through 5:

#include <iostream>

using namespace std;

int main()
{
 int range[] = {1, 2, 3, 4, 5};

 for (int i : range)
 {
 cout << i << endl;
 }

 return 0;
}

Don’t worry too much about what may appear to be confusing code; it all makes
sense as you progress. The int range[] = {1, 2, 3, 4, 5}; line of code creates
an array — a series of values within a single variable. Think of it as a box with

FIGURE 5-1:
Configure GCC to

use the C++ 17
standard.

128 BOOK 1 Getting Started with C++

partitions in which you can place a single value in each partition. Book 5, Chapter 1
tells you more about working with arrays.

The for loop condition looks really strange. The condition looks like this: int i :
range. The code creates an int value i that receives one value from the range
for each iteration of the loop. The range (:) operator appears between the range
declaration (i) and the range expression (range). This is a somewhat new feature
of C++, and you’ll find it extremely useful for processing storage containers like
arrays.

After i receives a value, the code outputs it to the screen using cout. What you see
as output is the values 1 through 5 — each on a separate line. Of course, you might
think this is all smoke and mirrors. So, try changing one of the values in the array
and you see that the output changes to match the array content.

Placing a condition within the declaration
Sometimes you need to perform data manipulation within a for loop in a way
that’s more convenient than trying to manipulate it in a code block. You can actu-
ally create a special kind of condition within a for loop declaration in which the
condition does something like access a part of a string or array. The ForLoopCon-
dition example demonstrates how to perform this task, as shown here:

#include <iostream>

using namespace std;

int main()
{
 string hello = "Hello";
 for (int i = 0; char c = hello[i]; i++)
 {
 cout << c << endl;
 }
 return 0;
}

Notice that the middle condition, which normally checks for a particular value or
performs some other logical function, actually creates a new char variable, c, and
places a letter from the hello string into it based on the value of i. After scratch-
ing your head for a while looking for the means of ending the loop, you determine
that when the loop gets to the end of the string, it automatically ends.

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 129

This is a handy way of working with all sorts of data when you don’t know how
large the data is at the outset. The for loop continues processing the string until
it runs out of letters, so you don’t have to worry about the string size.

Letting C++ determine the type
The previous section tells you about placing a condition within a for loop to
manipulate data of uncertain size. The example assumes that the data is of a spe-
cific type, but you may not know the type. Starting with C++ 11 (which means
that you must configure GCC with the Have G++ Follow the Combine C++ 1z (aka
C++ 17) setting, as described in the “Working with ranges” section, earlier in this
chapter), you can tell C++ to determine what type to use automatically. You do this
using the auto keyword, as shown in the ForLoopCondition2 code here:

#include <iostream>

using namespace std;

int main()
{
 string hello = "Hello";
 int values[] = {1, 2, 3, 4, 5, 0};

 for (int i = 0; auto c = hello[i]; i++)
 {
 cout << c << endl;
 }

 return 0;
}

As shown, the for loop will process the values in hello just as it did for the exam-
ple in the previous section. However, this time you don’t specify that c is a char;
you use auto instead. Now, try replacing hello with values in the for loop so that
it looks like this:

for (int i = 0; auto c = values[i]; i++)
{
 cout << c << endl;
}

Instead of outputting Hello one letter at a time, you now see the numbers 1
through 5, one on each line. So, the same for loop now works for data of two

130 BOOK 1 Getting Started with C++

different types: string and int. Using this approach gives you additional flex-
ibility at the cost of a little code readability.

Notice that the for loop doesn’t output the 0 in the values array; rather, it uses
the 0 to determine the ending point of the array. If you didn’t include this 0, the
for loop would continue until it found a 0, which means you could see quite a bit
of garbage onscreen.

Looping while
Often, you find that for loops work only so well. Sometimes, you don’t want a
counter variable; you just want to run a loop over and over as long as a certain
situation is true. Then, after that situation is no longer the case, you want to stop
the loop.

For example, instead of saying that you’ll have 100 people line up and each one
will give you one more dollar than the previous person, you may say that you will
continue accepting money like this as long as people are willing to give it.

In this case, you can see that the condition under which the giving continues to
operate is the statement “as long as they’re willing to give it.”

To do this in C++, you use a while statement. The while keyword is followed
by a set of parentheses containing the condition under which the application is
to continue running the loop. Whereas the general for statement’s parentheses
include three portions that show how to change the counter variable, the while
statement’s parentheses contain only a condition. The WhileLoop example dem-
onstrates a simple while loop, as shown here:

#include <iostream>

using namespace std;

int main()
{
 int i = 0;
 while (i <= 5)
 {
 cout << i << endl;
 i++;
 }

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 131

 cout << "All Finished!" << endl;
 return 0;
}

This code runs while i is less than or equal to 5. Thus, the output of this appli-
cation is

0
1
2
3
4
5
All Finished!

Notice that you must declare i outside the while loop using int i = 0;. If you
were to try to declare the while loop using while (int i <= 5), the compiler
would complain.

The while loop is handy if you don’t have a particular number of times you need
the loop to run. For example, consider a situation in which your application is
reading data from the Internet. Unless you control the Internet data source, you
don’t know how much data it can provide. (Many other situations can arise in
which you don’t know how much data to read, but Internet applications com-
monly experience this problem.) Using a while loop, the code can continue read-
ing data until your application has read it all. The Internet data source can simply
stream the data to your application until the data transfer is complete.

Often, for this kind of situation, you create a Boolean variable called done and start
it out as false. The while statement is simply

while (!done)

This line translates easily to English as “while not done, do the following.” Then,
inside the while loop, when the situation happens that you know the loop must
finish (such as the Internet data source has no more data to read), you set

done = true;

132 BOOK 1 Getting Started with C++

The WhileLoop2 example demonstrates how to do this sort of process, as shown
here:

#include <iostream>

using namespace std;

int main()
{
 int i = 0;
 bool done = false;
 while (!done)
 {
 cout << i << endl;
 i++;
 if (i > 5)
 done = true;
 }
 cout << "All Finished!" << endl;
 return 0;
}

In the case of the Internet data example, after you encounter no more data, you
would set done to true. The variable used to control the loop condition must
change or the loop will continue to run forever. In the case of your friends giving
you money, after one of them refuses, you would set done to true.

Doing while
The while statement has a cousin in the family: the do-while statement. A loop
of this form is similar to the while loop, but with an interesting little catch: The
while statement goes at the end, which means the loop always executes at least
one time. The DoWhileLoop example demonstrates how to use this kind of loop,
as shown here:

#include <iostream>

using namespace std;

int main()
{
 int i = 15;

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 133

 do
 {
 cout << i << endl;
 i++;
 }
 while (i <= 5);
 cout << "All Finished!" << endl;
 return 0;
}

Notice here that the loop starts with the do keyword, and then the material for the
loop follows inside braces, and finally the while statement appears at the end. The
idea is that you’re telling the computer “Do this while such-and-such is true,”
where this is the stuff inside braces and the such-and-such is the condition inside
parentheses. Because the condition is evaluated at the end, after everything else is
done, the output from this example is a little different from the other while loop
examples:

15
All Finished!

If you had used a while loop here, the loop wouldn’t have executed at all because
i is set to 15. However, because this is a do-while loop, you see the output of 15.
Having the loop run at least once can be a problem sometimes, and if you don’t
want that behavior, consider using a while loop instead of a do-while loop.

Breaking and continuing
Sometimes, you may write an application that includes a loop that does more than
simply add numbers. You may find that you want the loop to end under a condi-
tion that’s separate from the condition in the loop declaration. Or you may want
the loop to suddenly skip out of the current loop and continue with the next item
in the loop when the item being processed is incorrect in some way. When you
stop a loop and continue with the code after the loop, you use a break statement.
When you quit the current cycle of the loop and continue with the next cycle, you
use a continue statement. The next two sections show you how to do this.

Even though the examples in the following sections rely on a for loop, the break
and continue statements also work for while and do-while loops.

134 BOOK 1 Getting Started with C++

Breaking
Suppose that you are writing an application that reads data over the Internet,
and the loop runs for the amount of data that’s supposed to come. But midway
through the process, you may encounter some data that has an error in it, and you
may want to get out of the for loop immediately.

C++ includes a handy little statement that can rescue you in such a situation. The
statement is called break. Now, nothing actually breaks, and it seems a bit fright-
ening to write an application that instructs the computer to break. But this use of
the term break is more like in “break out of prison” than “break the computer.”
But instead of breaking out of prison, it breaks you out of the loop.

The ForLoop3 example that follows demonstrates this technique. This sample
checks for the special case of i equaling 5. You could accomplish the same result
by changing the end condition of the for loop, but at least it shows you how the
break statement works.

#include <iostream>

using namespace std;

int main()
{
 for (int i=0; i<10; i++)
 {
 cout << i << " ";
 if (i == 5)
 {
 break;
 }
 cout << i * 2 << endl;
 }
 cout << "All Finished!" << endl;
 return 0;
}

In the preceding code, the first line inside the for loop, cout << i << " ";, runs
when i is 5. But the final line in the for loop, cout << i * 2 << endl;, does not
run when i is 5 because you tell it to break out of the loop between the two cout
statements.

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 135

Also notice that when you break out of the loop, the application does not quit. It
continues with the statements that follow the loop. In this case, it still prints the
message "All Finished!"

You can leave empty the second portion of the for statement (the condition) by
simply putting a blank between the spaces. Then, to get out of the loop, you can
use a break statement. However, doing this makes for messy code. You should
treat messy code like you treat a messy house: Although sometimes not everyone
minds it, the truth is that most people don’t care to see a messy house. And you
really don’t want other people to see your messy house — or your messy code.
Yes, as a programmer, being a little self-conscious is sometimes a good thing.

Continuing
In addition to the times when you may need to break out of a loop for a special
situation, you can also cause the loop to end its current iteration; but instead of
breaking out of it, the loop resumes with the next iteration.

For example, you may be, again, reading data from over the Internet, and doing
this by looping a specified number of times. In the middle of the loop, you may
encounter some bad data. But rather than quit out of the loop, you may want to
simply ignore the current piece of bad data and then continue reading more data.

To do this trick, you use a C++ statement called continue. The continue state-
ment says, “End the current iteration, but continue running the loop with the next
iteration.”

The ForLoop4 example that follows shows a slightly modified version of the pre-
vious example, in the “Breaking” section. When the loop gets to 5, it doesn’t exe-
cute the second cout line. But rather than break out of the loop, it continues with
6, and then 7, and so on until the loop finishes on its own:

#include <iostream>

using namespace std;

int main()
{
 int i;
 for (i=0; i<10; i++)
 {
 cout << i << " ";
 if (i == 5)

136 BOOK 1 Getting Started with C++

 {
 cout << endl;
 continue;
 }
 cout << i * 2 << endl;
 }
 cout << "All Finished!" << endl;
 return 0;
}

Nesting loops
Many times, you need to work with more than one loop. For example, you may
have several groups of friends, and you want to bilk the individual friends of each
group for all you can get. You may host a party for the first group of friends and
make them each give you as much money as they have. Then, the next week, you
may hold another party with a different group of friends. You would do this for
each group of friends. You can draw out the logic like this:

For each group of friends,
 for each person in that group
 bilk the friend for all he or she is worth

This is a nested loop. But if you do this, don’t be surprised if this is the last time
your friends visit your nest.

A nested loop is simply a loop inside a loop. Suppose that you want to multiply each
of the numbers 1 through 10 by 1 and print the answer for each multiplication, and
then you want to multiply each of the numbers 1 through 10 by 2 and print the
answer for each multiplication, and so on, up to a multiplier of 10. Your C++ code
would look like the ForLoop5 example:

#include <iostream>

using namespace std;

int main()
{
 for (int x = 1; x <= 10; x++)
 {
 cout << "Products of " << x <<endl;
 for (int y = 1; y <= 10; y++)

D
ir

ec
ti

ng
 t

he

A
pp

lic
at

io
n

Fl
ow

CHAPTER 5 Directing the Application Flow 137

 {
 cout << x * y << endl;
 }
 cout << endl;
 }
 return 0;
}

In this example, you have a loop inside a loop. The inner loop can make use of x
from the outer loop. Beyond that, nothing is magical or bizarre about this code.
It’s just a loop inside a loop. And yes, you can have a loop inside a loop inside a
loop inside a loop. You can also place any loop inside any other loop, like a while
loop inside a for loop.

Notice you have a cout call before and after the inner loop. You can do this; your
inner loop need not be the only thing inside the outer loop.

Although you can certainly have a loop inside a loop inside a loop inside a loop, the
deeper you get, the more potentially confusing your code can become. It’s like the
dozens of big cities in America that are promising to build an outer loop (a road
that surrounds the outside of the city to help move traffic faster). Eventually, that
outer loop won’t be big enough, so the cities have to build another and another.
That’s kind of a frightening prospect, so try not to get carried away with nesting.

If you put a break statement or a continue statement inside a nested loop, the
statement applies to the innermost loop it sits in. For example, the ForLoop6
example that follows contains three loops: an outer loop, a middle loop, and an
inner loop. The break statement applies to the middle loop, as shown here:

#include <iostream>

using namespace std;

int main()
{
 for (int x = 1; x <= 3; x++)
 {
 for (int y = 1; y < 3; y++)
 {
 if (y == 2)
 break;
 for (int z = 1; z < 3; z++)
 {
 cout << x << " " << y;

138 BOOK 1 Getting Started with C++

 cout << " " << z << endl;
 }
 }
 }
 return 0;
}

You can see that when y is 2, the for loop with the y in it breaks. But the outer loop
continues to run with the next iteration.

CHAPTER 6 Dividing Your Work with Functions 139

Dividing Your Work
with Functions

People generally agree that most projects throughout life are easier when
you divide them into smaller, more manageable tasks. That’s also the case
with computer programming — if you break your code into smaller pieces,

it becomes more manageable.

C++ provides many ways to divide code into smaller portions. One way is through
the use of what are called functions. A function is a set of lines of code that per-
forms a particular job. In this chapter, you discover what functions are and how
you can use them to make your programming job easier.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookI\Chapter06 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Dividing Your Work
If you have a big job to do that doesn’t involve a computer, you can divide your work
in many ways. Over the years of studying process management, people have pretty
much narrowed the division of a job to two ways: using nouns and using verbs.

Chapter 6

IN THIS CHAPTER

»» Working with functions

»» Writing your own great functions

»» Fun with strings

»» Manipulating main()

140 BOOK 1 Getting Started with C++

Yes, that’s right. Back to good old English class, where everyone learned about
nouns and verbs. The idea is this: Suppose that you’re going to go out back
and build a flying saucer. You can approach the designing of the flying saucer in
two ways.

First, you could just draw up a plan of attack, listing all the steps to build the
flying saucer from start to finish. That would, of course, be a lot of steps. But
to simplify it, you could instead list all the major tasks without getting into the
details. It might go something like this:

1.	 Build the outer shell.

2.	 Build and attach the engine.

That’s it. Only two steps. But when you hire a couple dozen people to do the grunt
work for you while you focus on your day trading, would that be enough for them
to go on? No, probably not. Instead, you could divide these two tasks into smaller
tasks. For example, Step 2 might look like this:

2a.	Build the antigravity lifter.

2b.	Build the thruster.

2c.	Connect the lifter to the thruster to form the final engine.

2d.	Attach the engine to the outer shell.

That’s a little better; it has more detail. But it still needs more. How do you do the
“Build the antigravity lifter” part? That’s easy, but it requires more detail, as in
the following steps:

2aa.	Unearth the antigravity particles from the ground.

2ab.	Compress them tightly into a superatomizing conductor.

2ac.	Surround with coils.

2ad.	Connect a 9-volt battery clip to the coils.

And, of course, each of these instructions requires even more detail. Eventually,
after you have planned the whole thing, you will have many, many steps, but they
will be organized into a hierarchy of sorts, as shown in Figure 6-1. In this draw-
ing, the three dots represent places where other steps go — they were left off so
that the diagram could fit on the page.

This type of design is a top-down design. The idea is that you start at the upper-
most step of your design (in this case, “Build flying saucer”) and continue to
break the steps into more and more detailed steps until you have something man-
ageable. For many years, this was how computer programming was taught.

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 141

Although this process works, people have found a slightly better way. First, before
breaking the steps (which are the verbs), you divide the thing you’re building into
parts (the nouns). In this case, you kind of do that already, in the first two steps.
But instead of calling them steps, you can call them objects. One object is the outer
shell, and one object is the engine. This way, two different factories can work on
these in sort of a division of labor. Of course, the factories would have to coordi-
nate their activities; otherwise, the two parts may not fit together when they’re
ready to go. And before you figure out exactly how to build each of these objects, it
would be a good idea to describe each object: what it does, its features, its dimen-
sions, and so on. Then, when you finally have all that done, you can list the exact
features and their details. And finally, you can divide the work with each person
designing or building a different part.

As you can see, this second approach makes more sense. And that’s the way pro-
grammers divide their computer applications. But at the bottom of each method
is something in common: The methods are made of several little processes. These
processes are called functions. When you write a computer application, after you
divide your job into smaller pieces called objects, you eventually start giving these
objects behaviors. And to code these behaviors, you do just as you did in the first
approach: You break them into manageable parts, again, called functions. In com-
puter programming terms, a function is simply a small set of code that performs
a specific task. But it’s more than that: Think of a function as a machine. You can
put one or more things into the machine; it processes them, and then it spits out a
single answer, if anything at all. One of the most valuable diagrams you can have
draws a function in this manner, like a machine, as shown in Figure 6-2.

FIGURE 6-1:
Dividing a

process into a
hierarchy.

142 BOOK 1 Getting Started with C++

This machine (or function) has three main parts:

»» Inputs: The function can receive data through its inputs. These data elements
can be numbers, strings, or any other type. When you create such a machine,
you can have as many inputs as you want (or even zero, if necessary).

»» Processor: The processor is the function itself. In terms of C++, this is actually
a set of code lines.

»» Output: A function can return something when it has finished doing its thing.
In C++, this output is in the form of numbers, strings, or any other type.

To make all this clear, try out the FirstFunction code in Listing 6-1. (Don’t for-
get the second line, #include<math.h>, which gives you some math capabilities.)

LISTING 6-1:	 Seeing a Function in Action

#include <iostream>
#include <math.h>

using namespace std;

int main()
{
 cout << fabs(-10.5) << endl;
 cout << fabs(10.5) << endl;
 return 0;
}

FIGURE 6-2:
You can think of

a function as a
machine.

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 143

When you run this application, you see the following output:

10.5
10.5

In this code, you use a function or machine called fabs() (usually pronounced
“ef-abs,” for floating-point absolute). This function takes a number as input and
returns as output the absolute value of the number.

The absolute value of a number is simply the positive version of the number. The
absolute value, for example, of –5 is simply 5. The absolute value of 12 is still 12.
An absolute value is almost always positive because the absolute value of 0 is 0,
but 0 is the origin, which is neither positive nor negative (see http://www.math.
com/school/subject1/lessons/S1U1L10DP.html for details). The reason for the
f before the name abs is that it uses floating-point numbers, which are simply
numbers with decimal points.

So the first line inside main() calls fabs() for the value –10.5. The cout then
takes the output of this function (that is, the result) and prints it to the console.

Then the second line does the same thing again, except that it takes the absolute
value of the number 10.5.

And where is the processor for this function? It’s not in your code; it’s in another
file, and the following line ensures that your application can use this function:

#include <math.h>

You have seen functions in many places. If you use a calculator and enter a num-
ber and press the square root button, the calculator runs a function that calculates
the square root.

But functions can be more sophisticated than just working with numbers. Con-
sider this statement carefully: When you are using a word processor and you high-
light a word and check the spelling of the word, the application calls a function
that handles the spelling check. This function does something like the following:

This is a function to check the spelling of a single word.
Inputs: A single word.
Look up the word
If the word is not found
 Find some suggestions.
 Open a dialog box through which you (the user)
 can change the word by either typing a new word

http://www.math.com/school/subject1/lessons/S1U1L10DP.html
http://www.math.com/school/subject1/lessons/S1U1L10DP.html

144 BOOK 1 Getting Started with C++

 or picking one of the selections, or just leaving
 it the same.
 If you made a change,
 Return the new spelling.
 Otherwise
 Return nothing.
Otherwise
 Return nothing

Notice how the if statements are grouped with indentations. The final otherwise
goes with the first if statement because its indentation matches that of the if
statement.

So that’s a function that performs a spelling check. But consider this: When you
do not highlight a word but run the spelling checker, the spelling checker runs for
the whole document. That’s another function. Here it is.

This function checks the spelling of the entire document
For each word in the document
 Check the spelling of the single word

How does the computer do the step inside the for loop, “Check the spelling of the
single word?” It calls the function described earlier. This process is called code
reuse. You have no reason to rewrite the entire function again if you already have
it somewhere else. And that’s the beauty of functions.

Calling a Function
When you run the code in a function, computer people say that you are calling the
function. And just like every good person, a good function has a name. When you
call a function, you do so by name.

Often, when writing an application and developing code to call a function, devel-
opers say that they are calling a function. This is partly computerspeak and partly
a strange disorder in which developers start to relate just a little too much to the
computer.

To call a function, you type its name and then a set of parentheses. Inside the
parentheses, you list the items you want to send to the inputs of the function. The
term used here is pass, as in “You pass the values to the function.”

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 145

For example, if you want to call the fabs() function, you type the name, fabs, an
open parenthesis, the number you want to pass to it, and then a closed parenthe-
sis, as in the following example:

fabs(-10.5)

But by itself, this line does not do anything with regard to the application as a
whole. The fabs() function returns a value — the absolute value of –10.5, which
comes out to be 10.5 — and you probably want to do something with that value.
You could, for example, print it to the console:

cout << fabs(-10.5) << endl;

Or you could store it away in another variable. But there’s a catch. Before you can
do that, you need to know the type that the function returns. Just as with a vari-
able, a function return value has a type. In this case, the type is a special type
called double (which stands for double precision floating point). The double type
is a floating-point type that can hold many digits in a single number. To save the
result of fabs(), you need to have a variable of type double. The Fabs2 example,
shown in Listing 6-2, does this.

LISTING 6-2:	 Seeing Another Way to Use fabs()

#include <iostream>
#include <math.h>

using namespace std;

int main()
{
 double mynumber = fabs(-23.87);
 cout << mynumber << endl;
 return 0;
}

This code declares a double variable called mynumber. Then it calls fabs(), pass-
ing it –23.87 and returning the value into mynumber. Next, it prints the value in
mynumber to the console.

When you run this application, you see the following, which is the absolute value
of –23.87:

23.87

146 BOOK 1 Getting Started with C++

Passing a variable
You can also pass the value of a variable into a function. The Fabs3 example in
Listing 6-3 creates two variables: One is passed into the function, and the other
receives the result of the function.

LISTING 6-3:	 Seeing Yet Another Way to Use fabs()

#include <iostream>
#include <math.h>

using namespace std;

int main()

USING AUTO FOR FUNCTIONS
In general, specifically defining the type of the variable you use to receive output from
a function makes your code more readable. However, there are situations for which
you may not know the precise output type or different versions of the function out-
put different types (which is very confusing). In this case, you begin by setting GCC to
use C++ 17, as described in the “Working with ranges” section of Book 1, Chapter 5.
Then, you can write the Fabs2 example shown in Listing 6-2, as shown in the following
UsingAuto example:

#include <iostream>
#include <math.h>

using namespace std;

int main()
{
 auto mynumber = fabs(-23.87);
 cout << mynumber << endl;
 return 0;
}

The result is the same as the Fabs2 example. The difference is that mynumber is now of
type auto, where C++ automatically detects the data type for you, instead of double,
where you explicitly define the data type.

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 147

{
 double start = -253.895;
 double finish = fabs(start);
 cout << finish << endl;
 return 0;
}

This code creates two variables; the first is called start, and the second is
called finish. It initializes start with a value of -253.895. Next, it calls fabs(),
passing it the value of start. It saves the return value in finish, and prints the
value in finish. When Fabs3 runs, you see the following appear on the console:

253.895

Saving a function result to a variable is useful if you need to use the result several
times over. For example, if you need the absolute value of –253.895 for whatever
reason and then a few lines later you need it again, you have a choice: You can
either call fabs(-253.895) each time or call it once, save the result in a variable,
and then use the variable each time you need it. The advantage to saving it in a
variable is that you might later say, for example, “Oh, wait! I didn’t just want
the absolute value! I wanted the negative of the absolute value!” Then you only
have to change one line of code — the line where it calls fabs(). If, instead, you
had called fabs() several times, you would have had to change it every time you
called it. And by the way, in case you’re curious about how to take the negative of
the absolute value and store it in a variable, you just throw a minus sign in front
of it, like so:

finish = -fabs(start);

Passing multiple variables
Some functions like to have all sorts of goodies thrown their way, such as multiple
parameters. As with functions that take a single value, you put the values inside
a single set of parentheses. Because you have multiple values, you separate them
with commas. The Pow1 example, shown in Listing 6-4, uses a function called
pow() to calculate the third power of 10. (That is, it calculates 10 times 10 times 10.
Yes, POW!). Make sure that you include the math.h line in the include section so
that you can use the pow() function.

148 BOOK 1 Getting Started with C++

LISTING 6-4:	 Seeing Yet One More Function in Action

#include <iostream>
#include <math.h>

using namespace std;

int main()
{
 double number = 10.0;
 double exponent = 3.0;
 cout << pow(number, exponent) << endl;
 return 0;
}

When you run the application, you see 10 to the third power, which is 1,000:

1000

You can also pass a mixture of variables and numbers, or just numbers. The fol-
lowing code snippet also calculates the third power of 10 but passes an actual
number, 3.0, for the power:

double number = 10.0;
cout << pow(number, 3.0) << endl;

Or you can pass only numbers:

cout << pow(10.0, 3.0) << endl;

Writing Your Own Functions
And now the fun begins! Calling functions is great, but you get real power (ooh!)
when you write your own, specialized functions. Before writing a function,
remember the parts: the inputs, the main code or processor, and the single output
(or no output). The inputs, however, are called parameters, and the output is called
a return value. The following sections fill you in on the details.

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 149

Defining the AddOne() function
The AddOne example, shown in Listing 6-5, provides both a custom function and
code in main() that calls the custom function. (The function is placed outside
main() — before it, in fact.)

LISTING 6-5:	 Writing Your Very Own Function

#include <iostream>

using namespace std;

int AddOne(int start)
{
 int newnumber = start + 1;
 return newnumber;
}

int main()
{
 int testnumber = 20;
 int result = AddOne(testnumber);
 cout << result << endl;
 return 0;
}

Notice that this example lacks the #include <math.h> entry found in earlier
examples. You need to add an entry to the include section of your code only when
you use a feature of that include file. In this case, the example relies on standard
math features that are part of the basic C++ language, so you don’t need any addi-
tional code.

Using the downloadable source will save you time and ensure that the example
runs the first time you try it. However, you might choose to type it manually.
Because there’s a good bit of code, you may get some compiler errors at first; look
carefully at the lines with the errors and find the difference between your code and
what’s here in the book. After you run the example, you see:

21

150 BOOK 1 Getting Started with C++

Seeing how AddOne() is called
You can start reviewing this code by seeing how to call AddOne(). Look at these
lines of main():

int testnumber = 20;
int result = AddOne(testnumber);
cout << result << endl;

You can probably put together some facts and determine what the function does.
First, the example is called AddOne(), which is a good indication in itself. Second,
when you run the application, the number 21 appears on the console, which is
one more than the value in testnumber; it adds one. And that, in fact, is what the
function does. It’s amazing what computers can do these days.

When you write your own functions, try to choose a name that makes sense and
describes what the function does. Writing a function and calling it something like
process() or TheFunction() is easy, but those names don’t accurately describe
the function.

Taking the AddOne() Function apart
Now, look at the AddOne function. Here are a few high-level observations about it:

»» Position: The function appears before main(). Because of the way the
compiler works, it must know about a function before you call it. And thus, you
put it before main(). (You can do this in another way that is discussed in the
“Forward references and function prototypes” section, later in this chapter.)

»» Format: The function starts with a line that seems to describe the function
(explained later in this section), and then it has an open brace and, later, a
closing brace.

»» Code: The function has code in it that is just like the type of code you could
put inside a main(). The code consists of these elements:

•	 Performing a task: The code begins by performing a task, like this:

int newnumber = start + 1;

•	 The code declares an integer variable called newnumber. Then it initializes it
to start plus 1. But what is start? That’s one of the inputs.

•	 Returning a result: This line appears at the end of the function:

return newnumber;

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 151

•	 This is the output of the function, or the return value. When you want to
return something from a function, you just type the word return and then
indicate what you want to return. From the first line in the AddOne()
function, you can see that newnumber is one more than the number
passed into the function. So this line returns the newnumber.

Considering the AddOne() parameter
AddOne() takes just one parameter called start, which comes from the first line
of the function:

int AddOne(int start)

The entry in parentheses is the parameter. Notice it looks like a variable declara-
tion; it’s the word int (the type, or integer) followed by a variable name, start.
That’s the parameter — the input — to the function, and you can access this
parameter throughout the function using a variable called start. You can use the
input to the function as a variable.

If you had written result = AddOne(25); in main(), then, throughout the func-
tion, the value of start would be 25. Likewise, if you had written

result = AddOne(152);

then, throughout the function, the value of start would be 152.

But here’s the outstanding thing about functions (or, at least, one of the loads of
outstanding things about functions): You can call the function several times over.
In the same main(), you can have the following lines

cout << AddOne(100) << endl;
cout << AddOne(200) << endl;
cout << AddOne(300) << endl;

which would result in this output:

101
201
301

In the first call to AddOne, the value of start would be 100. During the second call,
the value would be 200, and during the third call, it would be 300.

152 BOOK 1 Getting Started with C++

Understanding the AddOne() name
and type
Look at the AddOne() header again:

int AddOne(int start)

The word AddOne is the name of the function, as you’ve probably figured out
already. And that leaves the thing at the beginning — the int. That’s the type of
the return value. The final line in the function before the closing brace is

return newnumber;

The variable newnumber inside the function is an integer. And the return type is
int. That’s no accident: As programmers have all heard before, friends don’t let
friends return something other than the type specified in the function header. The
two must match in type. And further, examine this line from inside main():

int result = AddOne(testnumber);

The type of result is also an integer. All three match. Again, no accident. You can
copy one thing to another (in this case, the function’s return value to the vari-
able called result) only if they match in type. And here, they do — they’re both
integers.

ARGUING OVER PARAMETERS
Technically, the term parameter refers strictly to the inputs to the function, from the
function’s perspective. When you call the function, the things you place in parentheses
in the call line are not parameters; rather, they are described as arguments. Thus, in the
following function header:

string ConnectNames(string first, string last)

the variables first and last are parameters. But in the following call to a function
(found in Listing 6-7)

ConnectNames("Bill", "Murray")

the strings "Bill" and "Murray" are arguments of the call.

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 153

Notice one more thing about the function header: It has no semicolon after it.
This is one of the places you do not put a semicolon. If you do, the compiler gets
horribly confused. The Code::Blocks compiler shows an error that says, "error:
expected unqualified-id before '{' token."

Finally, ponder this line of code for a moment:

testnumber = AddOne(testnumber);

This line takes the value stored inside testnumber, passes it into AddOne(), and
gets back a new number. It then takes that new number and stores it back into
testnumber. Thus, testnumber’s value changes based on the results of the func-
tion AddOne().

Improving On the Basic Function
Not all functions work precisely the same way. You can create functions that have
multiple parameters or no parameters. There is no law that says that a function
must absolutely provide a return value. The following sections discuss variations
on the basic function theme discussed in the previous section.

Using multiple parameters
or no parameters
You don’t need to write your functions with only one parameter each. You can
have several parameters, or you can have none. It may seem a little strange that
you would want a function — a machine — that accepts no inputs. But you may
run into lots of cases where this may be a good idea. Here are some ideas for
functions:

»» Day: Determines the day and returns it as a string, as in "Monday" or
"Tuesday"

»» Number-of-users: Figures out the current number of users logged in to a
web-server computer

»» Current font: In a text editor application (such as Notepad), returns a string
containing the current font name, such as "Arial"

154 BOOK 1 Getting Started with C++

»» Editing time: Returns the amount of time you have been using the word
processor application

»» Username: If you are logged on to a computer, gives back your username as
a string, such as "Elisha"

All functions in this list have something in common: They look up information.
Because no parameters are in the code, for the functions to process some infor-
mation, they have to go out and get it themselves. It’s like sending people out into
the woods to find food but not giving them any tools: It’s totally up to them to
perform the required tasks, and all you can do is sit back and watch and wait for
your yummy surprise.

If a function takes no parameters, you write the function header as you would for
one that takes parameters, and you include the parentheses; you just don’t put
anything in the parentheses, as the UserName example in Listing 6-6 shows. So if
nothing good is going in, there really can be something good coming back out, at
least in the case of a function with no parameters.

LISTING 6-6:	 Taking No Parameters

#include <iostream>

using namespace std;

string Username()
{
 return "Elisha";
}

int main()
{
 cout << Username() << endl;
 return 0;
}

When you run Listing 6-6, you see the following output:

Elisha

Your function can also take multiple parameters. The ConnectNames example,
shown in Listing 6-7, demonstrates the use of multiple parameters. Notice that
the function, ConnectNames(), takes the two strings as parameters and combines
them, along with a space in the middle. Notice also that the function uses the two
strings as variables.

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 155

LISTING 6-7:	 Taking Multiple Parameters

#include <iostream>

using namespace std;

string ConnectNames(string first, string last)
{
 return first + " " + last;
}

int main()
{
 cout << ConnectNames("Richard", "Nixon") << endl;
 return 0;
}

In the function header in Listing 6-7, you see the type name string for each
parameter. Each parameter requires its own type entry or the compiler displays an
error. Here are some points about this code:

»» You didn’t create variables for the two names in main(). Instead, you just
typed them as string constants (that is, as actual strings surrounded
by quotes).

»» You can do calculations and figuring right inside the return statement.
That saves the extra work of creating a variable. In the function, you could
create a return variable of type string, set it to first + " " + last, and
then return that variable, as in the following code:

string result = first + " " + last;
return result;

But instead, the example shows how to do it all on one line, as in this line:

return first + " " + last;

Although you can save yourself the work of creating an extra variable and just put
the whole expression in the return statement, sometimes that’s a bad thing. If
the expression is really long, like the following:

return (mynumber * 100 + somethingelse / 200) *
 (yetanother + 400 / mynumber) / (mynumber + evenmore);

156 BOOK 1 Getting Started with C++

it can get just a tad complicated. Breaking it into variables, such as in this exam-
ple, is best:

double a = mynumber * 100 + somethingelse / 200;
double b = yetanother + 400 / mynumber;
double c = mynumber + evenmore;
return a * b / c;

Returning nothing
In the earlier section “Using multiple parameters or no parameters,” you see a list
of functions that take no parameters; these functions go and bring back some-
thing, whether it’s a number, a string, or some other type of food.

One such example gets the username of the computer you’re logged in to. But
what if you are the great computer guru, and you are writing the application that
actually logs somebody in? In that case, your application doesn’t ask the computer
what the username is — your application tells the computer what the username
is, by golly!

In that case, your application would call a function, like SetUsername(), and pass
the new username. The resulting function could do any of the following for a
return value:

»» It could return the name

»» It could return a message saying that the username is not valid or something
like that

»» It may not return anything at all

Look at the case in which a function doesn’t return anything. In C++, the way
you state that the function doesn’t return anything is by using the keyword void
as the return type in the function header. The SetUserName example, shown in
Listing 6-8, demonstrates this approach.

LISTING 6-8:	 Returning Nothing at All

#include <iostream>

using namespace std;

void SetUsername(string newname)
{

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 157

 cout << "New user is " << newname << endl;
}

int main()
{
 SetUsername("Harold");
 return 0;
}

When you run the application, you see

New user is Harold

Notice the SetUsername() function header: It starts with the word void, which
means that it returns nothing at all. It’s like outer space: There’s just a big void
with nothing there, and nothing is returned, except for static from the alien air-
waves, but we won’t go there. Also notice that, because this function does not
return anything, there is no return statement.

Now, of course, this function really doesn’t do a whole lot other than print the
new username to the console, but that’s okay; it shows you how you can write a
function that does not return anything.

A function of return type void returns nothing at all.

Do not try to return something in a function that has a return type of void. Void
means that the function returns nothing at all. If you try to put a return state-
ment in your function, you get a compile error.

Keeping your variables local
Everybody likes to have their own stuff, and functions are no exception. When you
create a variable inside the code for a function, that variable will be known only to
that particular function. When you create such variables, they are called local vari-
ables, and people say that they are local to that particular function. (Well, computer
people say that, anyway.)

To see a local variable at work, consider the code in the PrintName example:

#include <iostream>

using namespace std;

158 BOOK 1 Getting Started with C++

void PrintName(string first, string last)
{
 string fullname = first + " " + last;
 cout << fullname << endl;
}

int main()
{
 PrintName("Thomas", "Jefferson");
 return 0;
}

Notice in the PrintName() function that you declare a variable called fullname.
You then use that variable in the second line in that function, the one starting with
cout. But you cannot use the variable inside main(). If you try to, as in the follow-
ing code, you get a compile error:

int main()
{
 PrintName("Thomas", "Jefferson");
 cout << fullname << endl;
 return 0;
}

However, you can declare a variable called fullname inside main(), as in the
PrintName2 example. But, if you do that, this fullname is local only to main(),
whereas the other variable, also called fullname, is local only to the PrintName()
function. In other words, each function has its own variable; they just happen to
share the same name. But they are two separate variables:

#include <iostream>

using namespace std;

void PrintName(string first, string last)
{
 string fullname = first + " " + last;
 cout << fullname << endl;
}

int main()
{
 string fullname = "Abraham Lincoln";
 PrintName("Thomas", "Jefferson");

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 159

 cout << fullname << endl;
 return 0;
}

When two functions declare variables by the same name, they are two separate
variables. If you store a value inside one of them, the other function does not
know about it. The other function only knows about its own variable by that name.
Think of it this way: Two people could each have a storage bin labeled Tools in
their closet. If Sally puts a hammer in her bin labeled Tools at her house and Hal
opens another bin also labeled Tools at his house, he won’t see Sally’s hammer. As
a result, the output from this example is:

Thomas Jefferson
Abraham Lincoln

If you use the same variable name in two different functions, forgetting that you
are working with two different variables is very easy. Do this only if you are sure
that no confusion can occur.

If you use the same variable name in two different functions (such as a counter
variable called index, which you use in a for loop), matching the case is usually
a good idea. Don’t use count in one function and use Count in another. Although
you can certainly do that, you may find yourself typing the name wrong when you
need it. But that won’t cause you to access the other one. (You can’t, because it is
in a different function.) Instead, you get a compile error, and you have to go back
and fix it. Being consistent is a time-saver.

Forward references and function
prototypes
All examples in this chapter place the function code above the code for main().
The reason is that the compiler scans the code from start to finish. If it has not yet
encountered a function but sees a call to it, it doesn’t know what it’s seeing, and
it issues a good old compile error.

Such an error can be especially frustrating and can cause you to spend hours yell-
ing at your computer. Nothing is more frustrating than looking at your applica-
tion and being told by the compiler that it’s wrong, yet knowing that it’s correct
because you know that you wrote the function.

You can, however, place your functions after main(); or you can even use func-
tion prototypes to put your functions in other source code files (a topic you find
in Book 1, Chapter 7).

160 BOOK 1 Getting Started with C++

What you can do is include a function prototype. A function prototype is nothing
more than a copy of the function header. But rather than follow it with an open
brace and then the code for the function, you follow the function header with a
semicolon and you are finished. A function prototype, for example, looks like this:

void PrintName(string first, string last);

Then you actually write the full function (header, code, and all) later. The full func-
tion can even be later than main() or later than any place that makes calls to it.

Notice that this example looks just like the first line of a function. In fact, it’s pos-
sible to cheat! To write it, you simply copy the first line of the original function
you write and add a semicolon. The PrintName3 example, shown in Listing 6-9,
shows how to use this technique.

LISTING 6-9:	 Using a Function Prototype

#include <iostream>

using namespace std;

void PrintName(string first, string last);

int main()
{
 PrintName("Thomas", "Jefferson");
 return 0;
}

void PrintName(string first, string last)
{
 string fullname = first + " " + last;
 cout << fullname << endl;
}

Notice that the function header appears above main() and ends with a semicolon.
Next comes main(). Finally, you see the PrintName() function itself (again, with
the header but no semicolon this time). Thus, the function comes after main().

“Whoop-de-do,” you say. “The function comes after.” But why bother when now
you have to type the function header twice?

This step truly is useful. If you have a source code file with, say, 20 functions,
and these functions all make various calls to each other, it could be difficult to

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 161

carefully order them so that each function calls only functions that are above it in
the source code file. Instead, most programmers put the functions in some logical
order (or maybe not), and they don’t worry much about the calling order. Then
they have all the function prototypes toward the top of the source code file, as
shown previously in Listing 6-9.

When you type a function prototype, many people say that you are specifying a
forward reference. This phrase simply means that you are providing a reference to
something that happens later. It’s not a big deal, and it mainly comes from some
of the older programming languages.

Writing two versions of the same function
Sometimes you may want to write two versions of the same function, with the only
difference being that they take different parameter types. For example, you may
want a function called Combine(). One version takes two strings and puts the two
strings together, but with a space in the middle. It then prints the resulting string
to the console. Another version adds two numbers and writes all three numbers —
the first two and the sum — to the console. The first version would look like this:

void Combine(string first, string second)
{
 cout << first << " " << second << endl;
}

There’s nothing magical or particularly special about this function. It’s called
Combine(); it takes two strings as parameters; it doesn’t return anything. The
code for the function prints the two strings with a space between them. Now the
second version looks like this:

void Combine(int first, int second)
{
 int sum = first + second;
 cout << first << " " << second << " " << sum << endl;
}

Again, nothing spectacular here. The function name is Combine(), and it doesn’t
return anything. But this version takes two integers, not two strings, as param-
eters. The code is also different from the previous code in that it first computes
the sum of the inputs and then prints the different numbers.

Overloading, or using one name for multiple functions, is somewhat common in
C++. The Combine example, shown in Listing 6-10, contains the entire code. Both
functions are present in the listing.

162 BOOK 1 Getting Started with C++

LISTING 6-10:	 Writing Two Versions of a Function

#include <iostream>

using namespace std;

void Combine(string first, string second)
{
 cout << first << " " << second << endl;
}

void Combine(int first, int second)
{
 int sum = first + second;
 cout << first << " " << second << " " << sum << endl;
}

int main()
{
 Combine("David","Letterman");
 Combine(15,20);
 return 0;
}

You see each function called in main(). The compiler chooses which function to
call based on the arguments you provide. For example, when viewing this call:

Combine("David","Letterman");

you see two strings. So, the compiler knows to use the first version, which takes
two strings. Now look at the second function call:

Combine(15,20);

This call takes two integers, so the compiler knows to use the second version of
the function.

When you overload a function, the parameters must differ (or must appear in a
different order). For example, the functions can take the same type of informa-
tion but use a different number of parameters. Of course, the previous exam-
ple shows that the parameters can also vary by type. You can also have different
return types, though they must differ by more than just the return type, and vary-
ing the parameter names doesn’t count. The compiler will see Combine(string A,
string B) and Combine(string First, string Second) as the same function.

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 163

Calling All String Functions
To get the most out of strings, you need to make use of some special functions
that cater to the strings. However, using these functions is a little different from
the other functions used so far in this chapter. Rather than just call the function,
you first type the variable name that holds the string, and then a period (or dot),
and then the function name along with any arguments.

The reason you code string functions differently is because you’re making use
of some object-oriented programming features. Book 2, Chapter 1 describes in
detail how these types of functions (called methods) work. The following sections
describe some common functions and tell you how to use them.

Inserting a string into a string
One function that you can use is insert(). You can use this function if you want
to insert more characters into another string. For example, if you have the string
"Something interesting and bizarre" and you insert the string "seriously "
(with a space at the end) into the middle of it starting at index 10, you get the
string "Something seriously interesting and bizarre".

When you work with strings, the first character is the 0th index, and the second
character is the 1st index, and so on. The following lines of code perform an insert
by using the insert() function at index 10, even though you perform the inser-
tion at letter 11:

string words = "Something interesting and bizarre";
words.insert(10, "seriously ");

The first of these lines simply creates a string called words and stuffs it full with
the phrase "Something interesting and bizarre". The second line does the
insert. Notice the strange way of calling the function: You first specify the vari-
able name, words, and then a dot, and then the function name, insert. Next, you
follow it with the parameters in parentheses, as usual. For this function, the first
parameter is the index where you want to insert the string. The second parameter
is the actual string you are going to insert. After these two lines run, the string
variable called words contains the string "Something seriously interesting
and bizarre".

164 BOOK 1 Getting Started with C++

Removing parts of a string
You can also erase parts of a string by using a similar function called erase().
The following line of code erases 16 characters from the words string starting at
index 19:

words.erase(19,16);

Consequently, if the variable called words contains the string "Something
seriously interesting and bizarre", after this line runs, it will contain
"Something seriously bizarre".

Replacing parts of a string
Another useful function is replace(). This function replaces a certain part of the
string with another string. To use replace, you specify where in the string you
want to start the replacement and how many characters you want to replace. Then
you specify the string with which you want to replace the old, worn-out parts.

For example, if your string is "Something seriously bizarre" and you want to
replace the word "thing" with the string "body", you tell replace() to start at
index 4 and replace 5 characters with the word "body". To do this, you enter:

words.replace(4, 5, "body");

Notice that the number of characters you replace does not have to be the same as
the length of the new string. If the string starts out with "Something seriously
bizarre", after this replace() call the string contains "Somebody seriously
bizarre".

Using the string functions together
The OperatingOnStrings example, shown in Listing 6-11, demonstrates all these
functions working together.

LISTING 6-11:	 Operating on Strings

#include <iostream>

using namespace std;

int main()
{

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 165

 string words = "Something interesting and bizarre";
 cout << words << endl;
 words.insert(10, "seriously ");
 cout << words << endl;
 words.erase(19,16);
 cout << words << endl;
 words.replace(4, 5, "body");
 cout << words << endl;
 return 0;
}

When you run this application, you see the following output:

Something interesting and bizarre
Something seriously interesting and bizarre
Something seriously bizarre
Somebody seriously bizarre

The first line is the original string. The second line is the result of the insert()
function. The third line is the result of the erase() function. And the final line is
the result of the replace() function.

Understanding main()
All applications so far in this chapter have had a main(), which is a function.
Notice its header, which is followed by code inside braces:

int main()

You can see that this is definitely a function header: It starts out with a return
type and then the function name, main(). This is just one form of the main()
function — the form that Code::Blocks uses by default. However, you may decide
that you want to give users the ability to provide input when they type the name
of your application at the console. In this case, you use this alternative form of the
main() function that includes two parameters:

int main(int argc, char *argv[])

166 BOOK 1 Getting Started with C++

Notice that the second form of main() has two parameters:

»» int argc: Tells you how many arguments appear on the command line.

»» char *argv[]: Provides a list of the command-line arguments in an array.

A command-line argument is something you type in the Windows Command Prompt
or at the Linux Terminal window after the name of the application (the command
you want to execute). When you run an application, especially from the command
prompt, you type the name of the application and press Enter. But before pressing
Enter, you can follow the application name with other words that are generally
separated by spaces.

Many of the commands you use in Terminal window and the Command Prompt
have an application name and then various arguments. The command usually tells
you about these arguments when you enter a special argument such as /? or --h.
An argument preceded by a slash (/) or two dashes (--) is a switch because it affects
how the command works. Figure 6-3 shows an example of the dir (directory)
command using the /? switch to tell you about the other arguments (including
other switches) available with dir.

WHO, WHAT, WHERE, AND WHY RETURN?
The main() function header starts with the type int. This means that the function
main() returns something to the caller. The result of main() is sometimes used by the
computer to return error messages if the application, for some reason, didn’t work or
didn’t do what it was supposed to do. But here’s the inside scoop: Outputting a return
value doesn’t work in the graphical environment that most people use.

For Windows computers, the return value isn’t normally used when you run the
application outside Code::Blocks. The return type is specifically designed to work
with batch files (files with a BAT extension that originally appeared as part of DOS,
or Disk Operating System). You also see them used in scripts and as part of PowerShell.
Consequently, unless you plan to work with command line utilities (and many people
still do), just return 0. (The other time you want to return a non-zero value is when
working in Code::Blocks. A non-zero return value appears highlighted in red in the
Build Log, alerting you to the error condition.)

Some Unix and Linux systems also use the return value of main() for the same reason
that Windows does — to indicate success or failure and to provide an error code when
there is a failure. These computers may run hundreds of command-line applications.
If one of these applications returns something other than 0, another application detects
the error and notifies somebody.

D
iv

id
in

g
Yo

ur
 W

or
k

w
it

h
Fu

nc
ti

on
s

CHAPTER 6 Dividing Your Work with Functions 167

To make these switches and their associated arguments work, the main()
function must process the input. You determine how many command-line
arguments the user supplied using argc, and then access them using argv.
Book 2, Chapter 2 deals with the topic arrays. An array is a sequence of vari-
ables stored under one name. The argv variable is one such animal. To access
the individual variables stored under the single umbrella known as argv, you do
something like this:

cout << argv[0] << endl;

In this example, you use brackets as you did when accessing the individ-
ual characters in a string. When working with the /? switch, you see /? as
the output. You can access the command-line parameters using a for loop. The
CommandLineParameters example, shown in Listing 6-12, demonstrates this
technique.

LISTING 6-12:	 Accessing the Command-Line Parameters

#include <iostream>
#include <stdlib.h>

using namespace std;

int main(int argc, char *argv[])
{
 for (int index=1; index < argc; index++)
 {
 cout << argv[index] << endl;
 }

 return 0;
}

FIGURE 6-3:
Command-line

apps often have
switches and

arguments.

168 BOOK 1 Getting Started with C++

Notice that the for loop begins at index = 1 rather than index = 0. The first item
in the argv list is always the execution path and the name of the application. This
information can come in handy at times, but normally you want the remaining
arguments to change the way your application works.

SETTING THE COMMAND-LINE
PARAMETERS IN CODE::BLOCKS
If you attempt to run the example in Code::Blocks by choosing Build ➪ Run with the
default settings, the example doesn’t output anything. To add command-line arguments,
choose Project ➪ Set Program’s Arguments. You see the Select Target dialog box, where
you can type the command-line arguments in the Program Arguments field. Type Hello
World I Love You! in this field, one argument to a line, as shown in the figure, and click
OK. You’re ready to run the example, which outputs:

Hello
World
I
Love
You!

CHAPTER 7 Splitting Up Source Code Files 169

Splitting Up Source
Code Files

Just as you can divide your work into functions, so you can divide your work
into multiple source code files. The main reason to do so is to help keep your
project manageable. Also, with multiple source code files, you can have several

people working on a single project, each working on a different source code file
at the same time.

The key to multiple source files is knowing where to break the source code into
pieces. As with anything else, if you break the source code in the wrong place, it
will, well, break.

In this chapter, you discover how to divide your source code into multiple files
(and in all the right places). The examples use Code::Blocks, but most modern
IDEs work in about the same manner. You create multiple files and import them
into a project (a description of what you want to do), which then manages the files
for you and ensures that the right files are compiled at the right time.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookI\Chapter07 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Chapter 7

IN THIS CHAPTER

»» Creating multiple source code files

»» Creating header files

»» Sharing variables among source files

»» Making use of the mysterious header
wrappers

170 BOOK 1 Getting Started with C++

Creating Multiple Source Files
In the sections that follow, you see how to create multiple source code files using
one of two techniques: You can rely on the IDE to perform all the required setups
for you, or you can manually add the file and perform the required setups by
editing a build file.

When you create a second source code file, this code becomes part of your project.
And when you compile, the compiler compiles all the source code files in your
project, assuming that you have changed them since the last time you compiled.
You can put your functions in separate source code files, and they can call each
other. In this way, they all work together in the single application. The section
“Sharing with Header Files,” later in this chapter shows how you can have a
function call another function in a different source file.

You can’t break up a single function and put it into two source files. The compiler
requires that your functions stay in one piece in a single source file.

Adding a new source code file
If you’re using Code::Blocks, cutting your application into multiple source code
files is as easy as cutting a cake. The AddFiles example assumes that you have
started with an existing project using the process found in Book 1, Chapter 2.
The following steps show how to add another file to this existing project.

1.	 Choose File ➪ New ➪ File.

You see the New from Template dialog box, shown in Figure 7-1. Notice that
you can choose from a header, a source code, or an empty file (among other
non-C++ possibilities). Normally, you choose either the C/C++ Header or C/C++
Source option. The Empty File option is for non-source files, such as a text file
used as a ReadMe.

2.	 Highlight the template you want to use and click Go.

You see a wizard associated with the particular file you’ve chosen. The example
uses a new C++ Header File named my_stuff.h.

3.	 Click Next to get past the initial Welcome page.

If you chose the Empty File template, skip to Step 7. When using the C/C++
Header or C/C++ Source templates, you see a language selection page.

Sp
lit

ti
ng

 U
p

So
ur

ce

Co
de

 F
ile

s

CHAPTER 7 Splitting Up Source Code Files 171

4.	 Highlight the language you want to use — either C or C++ — and
click Next.

The wizard asks what you want to call the file, where you want to store it, and
which builds should use the file, as shown in Figure 7-2. (More on these choices
in Steps 5–8.)

FIGURE 7-1:
The New from

Template dialog
box lets you
select a new

file type.

FIGURE 7-2:
Provide the file

information
required by the

wizard.

172 BOOK 1 Getting Started with C++

5.	 Type a path and filename for the file in the Filename with Full Path field.

You must provide the full path, even if you want the file in the current folder.
Click the ellipsis to display the Select Filename dialog box, where you can
choose the location of the file. The default path shown in the Select Filename
dialog box is the current folder.

6.	 (Optional) Provide a header guard word when creating a header file.

You don’t need to worry about how to use headers now, but you use them to
perform tasks such as making declarations like #include statements. Adding a
header more than once into an application can cause all sorts of problems,
and the application might not compile, even though it would normally do so
without the multiple header copies. The header guard word keeps the number
of copies of the header in your application to one.

7.	 Check the individual builds that should use the file.

As an alternative, you can click All to add the file to all builds.

A debug version of your application will contain special information that you
can use to find program errors. A release version of your application is smaller
and executes faster. Each version has a purpose, so developers usually need to
create both at some point.

8.	 Click Finish.

The wizard adds the new file to your project. Code::Blocks automatically opens
the file so that you can begin editing it. You also see the file you added in the
Management window, as shown in Figure 7-3. In this case, you see both the
source files and a header file. Notice that the source files appear in dark
type and the header file appears in gray type. This shows that the source files
are compiled to create the project and the header file isn’t. The “Sharing with
Header Files” section, later in this chapter, discusses in more detail how the
compiler works with header files.

If Code::Blocks doesn’t automatically open the file you added, you can open it by
double-clicking its name in the Management Window tree (see Figure 7-3). When
you do, an additional tab appears at the top of your source code files. These tabs
represent the different files that are open. You can click a tab to have that file’s
code appear in the source code window. When you click another tab, the window
shows the source for that file instead. And, thankfully, Code::Blocks remembers
any changes you make if you switch to another tab. So you can bounce all around
the screen and switch all you want, and the computer shouldn’t get confused.

Sp
lit

ti
ng

 U
p

So
ur

ce

Co
de

 F
ile

s

CHAPTER 7 Splitting Up Source Code Files 173

After you have multiple files in your project, you can put some of your source in
one file and some in another. But before you do, you may want to read some of the
other sections in this chapter because they explain how to properly divide your
source code without having it end up like cake that got smooshed while you were
trying to cut it.

Removing an existing source code file
If you add a file to Code::Blocks that you really don’t need, right-click the file in
the Management window and choose Remove File from Project from the context
menu. The file will disappear from the project but still appear in the directory in
which you created it.

If you later decide that you really do want that file, right-click the project entry
in the Management window, choose Add Files from the context menu, and select
the file you want to add back into the project using the options in the Add Files to
Project dialog box.

Creating a project with multiple
existing files
Sometimes you have a number of existing files, but no project to hold them. For
example, you might be moving from another IDE to Code::Blocks. That would
mean that you’d have the source files from the other IDE, but no project file
that Code::Blocks would recognize. Don’t worry: You can put existing files into
a Code::Blocks project. The following steps tell you how to perform this process
(you can see the result by opening the CopiedFiles project):

1.	 Choose Create a New Project on the Code::Blocks Start page.

You see the New from Template dialog box used to create all the examples so
far in this book.

FIGURE 7-3:
The Management

window displays
the files used

to compile the
project.

174 BOOK 1 Getting Started with C++

2.	 Choose the Empty Project template and click Go.

You see an Empty Project welcome dialog. You can skip this dialog box the next
time by selecting Skip this Page Next Time. The Empty Project template lets you
create a project shell without any files in it.

3.	 Click Next.

You see the Empty Project configuration dialog box, shown in Figure 7-4. This is
where you supply the name of the project, not the files used in the project.

4.	 Type a name for the project in the Project Title field.

The example uses CopiedFiles. Notice that the wizard automatically fills in
the Project Filename field for you.

5.	 Click Next.

The wizard asks you to supply the usual information for the compiler, debug
configuration, and release configuration. The default settings will work fine in
most cases.

6.	 Click Finish.

Code::Blocks creates an empty project for you where you can add files as
needed.

7.	 Right-click the CopiedFiles project entry in the Management window and
choose Add Files from the context menu.

FIGURE 7-4:
Supply a project

name for your
new application.

Sp
lit

ti
ng

 U
p

So
ur

ce

Co
de

 F
ile

s

CHAPTER 7 Splitting Up Source Code Files 175

You see the Add Files to Project window, shown in Figure 7-5. Only the project
(.cbp) file appears because this is an empty project.

Of course, you need to add files to your project to make it useful. For the
purposes of this example, you can use the files found in the AddFiles example
created in the previous section of the chapter. For real-world use, you need to
know the locations of the files you want to use to create your new project.

8.	Navigate to the AddFiles folder, shown in Figure 7-5.

Notice that you see a main.cpp and my_stuff.h file in the folder. (You may
also see other files that you can safely ignore for now.)

9.	Locate and highlight the files you want to copy to the new project, which
are main.cpp and my_stuff.h in this case.

Use the Ctrl+click method to select multiple files from the list. Code::Blocks
makes it easy to select multiple files in a single pass so that you don’t have to
open the Add Files to Project dialog box multiple times.

10.	Click Open.

Code::Blocks displays a dialog box asking which builds to add the files to, as
shown in Figure 7-6. The exact appearance of the dialog box will vary by the
number of files you select.

FIGURE 7-5:
The current

directory doesn’t
contain any

code files.

176 BOOK 1 Getting Started with C++

11.	Select the builds you want to use and click OK.

Code::Blocks adds the required file references to the project, as shown in
Figure 7-7.

Notice that the references in Figure 7-7 still show the original location of the files.
In this case, these files come from the AddFiles project. If you change the file in
the original project, it also changes in the new project.

You also notice that the File ➪ Save command is disabled. That’s because you can’t
save changes to file references in the project that references them; you must make
changes in the original project. However, now that you have a reference to the file,
you can make changes to it, and then use the File ➪ Save As command to create
local copies of the files with your changes in them. Don’t use the File ➪ Save com-
mand; create a local copy using File ➪ Save As instead.

Unfortunately, just creating the local copies doesn’t change your project. To
remove the references from the original project, right-click the project entry in the
Management window (which is CopiedFiles for the example) and choose Remove
Files from the context menu. You see the Multiple Selection dialog box, shown in
Figure 7-8, where you can choose which references to remove and which to keep.

FIGURE 7-6:
Select the builds

where the files
are used.

FIGURE 7-7:
The new project

now contains
references to the

selected files.

Sp
lit

ti
ng

 U
p

So
ur

ce

Co
de

 F
ile

s

CHAPTER 7 Splitting Up Source Code Files 177

After you remove the references you no longer need, you can use Steps 7 through
11 in the preceding list to add the local copies of the files to the current project.
The Management window will change to show that you’re using local copies of the
files, rather than copies found in another project.

Getting multiple files to interact
Before two source files can work together, they must somehow find out about each
other. Just because they’re both sitting on the computer doesn’t mean that they
know about each other. Computers are kind of goofy about that sort of thing. To
get two source files to finally open up and get to know each other, you need to tell
each of them about what’s in the other file.

When you write a function, normally the function must appear before any calls
to it appear within the same source file. That’s because of the way the compiler
parses the code: If the compiler encounters a call to a function but has not yet
heard of that function, it issues an error. But the way around this is to use a
function prototype. A function prototype is simply the header line from a function,
ending with a semicolon, as in the following:

void BigDog(int KibblesCount);

Later in the source file is the actual function, with this header line duplicated. But
instead of a semicolon, the function would have an open brace, the function code,
and a closing brace, as in the following:

void BigDog(int KibblesCount)
{
 cout << "I'm a lucky dog" << endl;
 cout << "I have " << KibblesCount << " pieces of food"
 << endl;
}

FIGURE 7-8:
Remove the

references you
no longer need.

178 BOOK 1 Getting Started with C++

So, after the function prototype, you can call the function whether the function
code itself is before or after the call.

For the compiler to understand a function call, all it needs at the point that the code
makes the call is a function prototype. It’s up to the linker (the special application
that takes the object file created by the compiler and creates an executable from it
by linking everything together) to determine whether that function really exists.

Because the function call needs only a function prototype, you can put the func-
tion itself in another source code file. You could, therefore, have two separate
source code files, as in the MultipleSourceFiles example, shown in Listings 7-1
and 7-2. (The first source code file — main.cpp — is shown in Listing 7-1, and the
second source code file — mystuff.cpp — is shown in Listing 7-2.)

LISTING 7-1:	 Calling a Function with Only a Prototype

void BigDog(int KibblesCount);

int main() {
 BigDog(3);
 return 0;
}

LISTING 7-2:	 Using a Function from a Separate File

#include <iostream>

using namespace std;

void BigDog(int KibblesCount) {
 cout << "I'm a lucky dog" << endl;
 cout << "I have " << KibblesCount << " pieces of food"
 << endl;
}

Listings 7-1 and 7-2 break the function away from the prototype. When you
compile these two files together as a single application (either by pressing F9 in
Code::Blocks or by choosing Build ➪ Build and Run), they all fit together nicely.
You can then run the application, and you see this somewhat interesting output:

I'm a lucky dog
I have 3 pieces of food

Sp
lit

ti
ng

 U
p

So
ur

ce

Co
de

 F
ile

s

CHAPTER 7 Splitting Up Source Code Files 179

Notice that main.cpp doesn’t contain either #include <iostream> or using
namespace std; because it doesn’t have any calls to cout, just the call to
BigDog(). You do have to put the #include <iostream> and using namespace
std; lines at the start of the mystuff.cpp file because mystuff.cpp does
use cout.

Sharing with Header Files
Breaking apart source code into multiple files is easy, but soon you may run into
a problem. If you have a function — say, SafeCracker() — and this function is
extremely useful and is likely to be called many times from within several other
source code files, you would need a prototype for SafeCracker() in every file that
calls it. The prototype may look like this:

string SafeCracker(int SafeID);

But there is an easier way of adding the prototype instead of adding it to every
file that uses the function. Simply put this line inside its own file, called a header
file, and give the filename an .h or .hpp extension. (It’s your choice which exten-
sion you use, because it really doesn’t matter; most developers use .h.) For this
example, you place the line string SafeCracker (int SafeID); in a file called
safestuff.h.

Then, instead of typing the header line at the start of each file that needs the
function, you type

#include "safestuff.h"

A QUICK OVERVIEW OF NAMESPACES
The using namespace std; line in Listing 7-2 tells the compiler to use a specific
namespace, std. A namespace is a grouping of classes and functions. The std, or
standard, namespace contains a host of useful classes and functions, such as string.
If you don’t include this declaration, you need to preface every use of the classes
or functions found in std by typing std::<class or function>. For example, to use
a string, you need to type std::string. Because this is a painful way to write code,
you add the using namespace std; line.

180 BOOK 1 Getting Started with C++

You would then have the three source code files used for the MultipleSource
Files2 example, shown in Listings 7-3, 7-4, and 7-5:

»» main.cpp: Calls the function

»» safestuff.h: Contains the function prototype

»» safestuff.cpp: Contains the actual code for the function whose prototype
appears in the header file

Lots of files, but now the code is broken into manageable pieces. Also, make sure
that you save all three of these files in the same directory.

LISTING 7-3:	 Including the Header File in the main File

#include <iostream>
#include "safestuff.h"

using namespace std;

int main()
{
 cout << "Surprise, surprise!" << endl;
 cout << "The combination for Safe 12 is: " << endl;
 cout << SafeCracker(12) << endl;
 cout << "Let's check on Safe 11 too: " << endl;
 cout << SafeCracker(11) << endl;
 return 0;
}

LISTING 7-4:	 Containing the Function Prototype in the Header File

#ifndef SAFESTUFF_H_INCLUDED
#define SAFESTUFF_H_INCLUDED

using namespace std;

string SafeCracker(int SafeID);

#endif // SAFESTUFF_H_INCLUDED

Sp
lit

ti
ng

 U
p

So
ur

ce

Co
de

 F
ile

s

CHAPTER 7 Splitting Up Source Code Files 181

LISTING 7-5:	 Containing the Actual Function Code

#include <iostream>
using namespace std;

string SafeCracker(int SafeID)
{
 if (SafeID == 12)
 return "13-26-16";
 else
 return "Safe Combination Unknown";
}

Before you compile this application, you need to know a few things about how the
compilation process works:

»» When you compile a .cpp file, the compiler outputs a .o (for object) file that is
then linked by the linker with all the other .o files to create an .exe (execut-
able) file. In addition to the .o files from your project, the linker also links in
any library files or external code that your application accesses.

»» The compiler doesn’t compile the header file into a separate .o file. With the
application in Listings 7-3 through 7-5, the compiler creates only two output
files: main.o and safestuff.o (you can see them in the CPP_AIO4\BookI\
Chapter07\MultipleSourceFiles2\obj\Debug folder).

»» When the compiler reads the main.cpp file and reaches the #include
"safestuff.h" line for the header file, it verifies that it hasn’t read the
safestuff.h file before and included it within the .o file.

»» If the safestuff.h file hasn’t been read before, the compiler temporarily
switches over and reads the header file, pretending that it’s still reading the
same main.cpp file. As it continues, it compiles everything as if it’s all part of
the main.cpp file.

If you include the safestuff.h header file in other source code files, the com-
piler adds the content to those source files as well. Compile and run the code in
Listings 7-3 through 7-5. When you run the application, you see the following
output:

Surprise, surprise!
The combination for Safe 12 is:
13-26-16
Let's check on Safe 11 too:
Safe Combination Unknown

182 BOOK 1 Getting Started with C++

If you have a source file containing some functions, creating a header file that
contains the associated function prototypes is generally a good practice. Then you
can name the header file the same as the source file, except with a different exten-
sion. In this example, you use the safestuff.h file to hold the prototype for the
safestuff.cpp file.

Adding the header only once
Code::Blocks includes several lines in the header file by default. These lines create
a symbol that tells the compiler whether a header file is already included in the
source file so that the compiler doesn’t add it twice. Adding a header twice is an
error because then you’d define the forward reference for a function twice. Here is
what you see when you initially create a header file with Code::Blocks:

#ifndef SAFESTUFF_H_INCLUDED
#define SAFESTUFF_H_INCLUDED
#endif // SAFESTUFF_H_INCLUDED

When you type the header code into Code::Blocks, type it between the #define
SAFESTUFF_H_INCLUDED and #endif // SAFESTUFF_H_INCLUDED lines. The section
“Using the Mysterious Header Wrappers,” later in this chapter, describes these
automatic entries in detail.

Using angle brackets or quotes
You may have noticed something about the code in Listing 7-3. When including
the safestuff.h file, you don’t put it inside angle brackets, as with the #include
<iostream> line. Instead, you put it inside quotes:

#include "safestuff.h"

That’s because programmers for years have been fighting over the rules of where
exactly on the hard drive to put the header files. The question is whether to put
them in the same directory or folder as your project or to place them in a directory
all by themselves.

Regardless of where you put your header files, here is the rule for when to use
quotes and when to use brackets: The compiler looks in several directories to find
header files. And it can, possibly, look in the same directory as the source file. If
you use angle brackets (that is, less-than and greater-than signs), as in #include
<string>, the compiler doesn’t look in the same directory as the source file. But if
you use double quotes, as in #include "safestuff.h", the compiler first looks in
the same directory as the source file. And if the compiler doesn’t find the header
file there, it looks in the remaining directories, as it would with angle brackets.

Sp
lit

ti
ng

 U
p

So
ur

ce

Co
de

 F
ile

s

CHAPTER 7 Splitting Up Source Code Files 183

Some people always use double quotes. That way, whether the header file is in the
same file as the source file or not, the compiler should find it. Most professional
programmers today always use angle brackets. This forces programmers to put
their header files in a common area. With really big projects, programmers like
to have a directory dedicated to source files and another directory dedicated to
header files. No header file is ever in the same directory as the source file.

For small projects, some people like to lump all the source and header files into a
single directory. These people typically use angle brackets around system header
files (such as #include <string>) and use double quotes around their own header
files. The projects in this book generally follow this rule. The example header files
are in the same directory as the source files and use double quotes for #include
lines. System headers use angle brackets for the #include lines.

If you follow the same approach used here, you immediately know whether the
#include line refers to one of your own header files or another header file. If it
refers to your own, it has double quotes.

If you start working on a large C++ project, you will probably find that project
managers use the rule of always using angle brackets. For large projects, this is
typically the best policy.

If you try to compile and you get a No such file or directory error on the
#include line, it’s probably because you put the header file in a source file direc-
tory but used angle brackets instead of double quotes. Try switching that line to
double quotes.

Sharing Variables among Source Files
When you declare a variable inside a function, it remains local to the function. But
you may want functions to share a single global variable: One function may store
something, and another may read its contents and write it to the console. To do
this, declare the global variable outside a function. Declaring the global variable
inside a source file works until you try to share it among multiple source files. If
you’re not careful, the source files end up with a separate copy of the global vari-
able. Within a single source file, the global variable can be shared among functions
but not among source files. That could be confusing.

There’s a trick to making this work. Declare the variable inside one and only one
of the source files. Then you declare it again inside one (and only one) header file,
but you precede it with the word extern, as in extern int DoubleCheeseburgers;.

184 BOOK 1 Getting Started with C++

The GlobalVariable example, shown in Listings 7-6, 7-7, and 7-8, demonstrates
the use of a single global variable that is shared among multiple source files.

LISTING 7-6:	 Making Use of a Global Variable

#include <iostream>
#include "sharealike.h"

using namespace std;

int main()
{
 DoubleCheeseburgers = 20;
 EatAtJoes();
 return 0;
}

LISTING 7-7:	 Using the sharealike.h Header File to Declare a Global Variable

#ifndef SHAREALIKE_H_INCLUDED
#define SHAREALIKE_H_INCLUDED

extern int DoubleCheeseburgers;
void EatAtJoes();

#endif // SHAREALIKE_H_INCLUDED

LISTING 7-8:	 Declaring Global Variable Storage in the sharealike.cpp File

#include <iostream>
#include "sharealike.h"

using namespace std;

int DoubleCheeseburgers = 0;

void EatAtJoes() {
 cout << "How many cheeseburgers today?" << endl;
 cout << DoubleCheeseburgers << endl;
}

Sp
lit

ti
ng

 U
p

So
ur

ce

Co
de

 F
ile

s

CHAPTER 7 Splitting Up Source Code Files 185

Be careful when you do this; getting it exactly right is very tricky. You declare the
variable once inside the header file, but you must remember the word extern.
That tells the various files, “This variable is declared elsewhere, but here’s its
name and type so that you can use it.” (It’s okay that the file that defines the vari-
able also includes the header file, which contains the extern declaration. In this
case, extern says that the variable is declared somewhere, not that it’s declared
externally outside this file.) Then you declare the variable in one of the source
files, without the word extern; this creates the actual storage bin for the variable.
Finally, you include the header file in each of your source files that uses the global
variable.

It’s a bad idea to declare any variable without initializing it. If you don’t initial-
ize the variable, you have no idea of what it contains. Not initializing the vari-
able could lead to difficult-to-find errors. Global variables are even worse in this
regard because now you don’t even have a good idea of precisely where to search.
Fortunately, Code::Blocks does help you in this regard. You can right-click any
occurrence of a global variable and choose Find Occurrences Of: <Variable Name>
from the context menu.

Using the Mysterious Header Wrappers
When you include a header file, you usually want to include it only once per
source file. But that can create a problem: Suppose that you have a huge soft-
ware project, and several header files include another of your header files, called
superheader.h. If you include all these other header files, how can you be sure to
pick up the superheader.h file only once?

The answer looks strange but does the trick. You start each header file with these
lines:

#ifndef SHAREALIKE_H_INCLUDED
#define SHAREALIKE_H_INCLUDED
#endif

Depending on which C++ IDE you use, your editor may add these lines automat-
ically, just as Code::Blocks does. In this case, you type the header file content
between the #define SHAREALIKE_H_INCLUDED and #endif lines. However, if your
IDE doesn’t add the lines automatically, be sure to add them so that your code
looks like the code in Listing 7-7. Otherwise, the compiler may spout errors that
you may not recognize immediately.

186 BOOK 1 Getting Started with C++

These header wrappers, as they are often called, ensure that the code in the
header gets processed only once per source code file each time you compile.
The wrappers use special lines called preprocessor directives. Basically, the second
line defines something that is sort of like a variable but is used only during
compilation; this something is called a symbol. In this case, the symbol is called
SHAREALIKE_H_INCLUDED.

The first line checks to see whether this symbol has been defined. If not, the com-
piler proceeds with the lines of code that follow. The next line defines the symbol,
so now it’s actually defined for later. Then the compiler does all the rest of the
lines in the file. Finally, the last line, #endif, simply finishes the very first line.

Now consider what could happen if you include this same file twice, as in

#include "sharealike.h"
#include "sharealike.h"

(That can happen indirectly if you include two different files that each include
sharealike.h.) The second time the compiler goes through sharealike.h, it sees
the first line, which checks to see whether the SHAREALIKE_H symbol is defined.
But this time it is! So instead of going through all the lines again, the compiler
skips to the #endif line that normally appears at the end of the file. Thus, your
header file is processed only once per source code file. Use the following rule to
make using headers easier:

When you create a header file, be sure to put the header wrappers around it. You
can use any symbol name you like, as long as it uses only letters, numbers, and
underscores and doesn’t start with a number and isn’t already a variable name
in your source or a C++ word. But most people base their choice on some varia-
tion of the filename itself, such as MYFILE_H or MYFILE_H_ or even _MYFILE_H_.
Code::Blocks, by convention, adds _INCLUDED to each symbol name, but it’s not
necessary that you follow suit unless you want to.

CHAPTER 8 Referring to Your Data Through Pointers 187

Referring to Your Data
Through Pointers

Where do you live? Don’t say it out loud, because thousands of people are
reading this book and you don’t want them all to know. So just think
about your address. Most places have some sort of address so that the

mail service knows where to deliver your packages and the cable guy can show up
sometime between now and 5:00 next Thursday. (So make sure that you’re there.)

Other things have addresses, too. For example, a big corporation in an office
building likely has all its cubes numbered. Offices in buildings usually have num-
bers, and apartments normally have numbers, too.

Now suppose that someone named Sam works in office number 180. Last week,
however, Sam got booted out the door for spending too much time surfing the
web. Now Sally gets first dibs on office number 180, even though she’s not tak-
ing over Sam’s position. Sam moved out; Sally moved in. Same office — different
person staying there.

The computer’s memory works similarly. Every little part of the computer’s
memory is associated with a number that represents its location, or address. In
this chapter, you discover that after you determine the address of a variable stored

Chapter 8

IN THIS CHAPTER

»» Using two types of memory: the stack
and the heap

»» Accessing variable addresses through
pointers

»» Creating variables on the heap by
using the new keyword

»» Taking pointers as parameters and
returning pointers

188 BOOK 1 Getting Started with C++

in memory, you can do powerful things with it, which gives you the tools to create
powerful applications.

If any single topic in C++ programming is most important, it is the notion of
pointers. Therefore, if you want to become a millionaire, read this chapter. Okay,
so it may not make you a millionaire, but suggesting it could give you the incen-
tive to master this chapter. Then you can become an ace programmer and make
lots of money.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookI\Chapter08 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Understanding the Changes in
Pointers for C++ 20

If you don’t understand pointers at all, you might want to first read the rest of the
chapter, starting with “Heaping and Stacking the Variables,” and return to this
first section later.

C++ will always need pointers, of course, but long-time C++ users have always
seen pointers as a burden, while new C++ users see pointers as some sort of
heroic nightmare rite of passage. The goal, then, is to make pointers easier and
more consistent to use as C++ continues to grow and mature. The following sec-
tions discuss how C++ pointers are changing in C++ 20.

Avoiding broken code
A raw pointer, one that you allocate using the new operator, serves important pur-
poses in your code. You often see it used for these purposes:

»» Dynamic allocation: Allows an application to allocate more mem-
ory as needed

»» Runtime polymorphism: Allows an application to pass pointers that may
point to different kinds of data at different times

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 189

»» Nullable references: Handles instances in which a pointer doesn’t point to
anything

»» Avoiding copies: Uses a single copy of an object instead of creating multiple
copies, which reduces the risk of errors

As your knowledge of C++ increases, you soon discover that these are critical appli-
cation needs, so replacing the raw pointer will be quite difficult. Fortunately, you
don’t have to use the new C++ 20 features immediately, even if you’re using a C++
compiler. You control whether your application uses the new approach through
compilation directives:

#feature <no_pointers> //opt-in to no pointers
#feature <cpp20> //opt-in to all C++20 features

Consequently, you don’t have to worry about your existing code suddenly break-
ing. The idea is to make the transition from raw pointers to something better as
smooth and transparent as possible. Given the realities of C++ development, you
likely will see some sort of legacy support for a long time. However, to move for-
ward, you must adapt to the new realities of pointers in C++.

Considering the issues
At this point, you might wonder why raw pointers are such a problem. After all, a
pointer is simply an address in memory that looks something like 0x9caef0. The
value it contains is the address, and by dereferencing the pointer, looking at the
address to which it points, you see the value that the pointer references. It’s just
like the address for your house. You send mail to the address, but the address isn’t
your house — it’s simply a pointer to your house.

At this point, it doesn’t sound as if using pointers would be a problem, despite
being a bit convoluted. The reason for using pointers in the first place is to avoid
carrying large objects around in your code. You can leave the object, like a house,
sitting in one place and simply point to it as needed. Imagine having to carry your
house around with you. Besides having a horrible backache, doing so would be
inconvenient and make your house harder to find. Instead, you give someone who
wishes to mail you a letter or visit you in your home the address. Early applica-
tions had to use every tiny bit of memory and CPU processing cycles efficiently or
face performance issues. Pointers allowed early applications to perform well by
simply pointing at big objects in memory, rather than passing them around.

190 BOOK 1 Getting Started with C++

The biggest problem with pointers is the same problem incurred by house
addresses. You need to think about the number of times you’ve received your
neighbor’s mail (and vice versa). Likewise, applications can have invalid point-
ers, and when the code tries to process this invalid address, it often crashes the
application. Of course, the worst problem is the null pointer, 0x000000, which you
expect to point to something. A null pointer points to nothing.

Another problem with pointers is that you spend a lot of time managing them,
and who can remember all that code! Every time you work with pointers, you risk:

»» Creating a memory leak: By not deallocating the pointer so you can reuse
the memory, the memory becomes inaccessible to the application. You could
actually run out of memory despite having memory available. The memory
becomes available again after the operating system frees it once the applica-
tion terminates.

PLACING A HEX ON C++
Sooner or later in your computer programming, you encounter a strange way of notat-
ing numbers on the computer. This strange way is called hexadecimal, or sometimes just
hex. In C++, you can recognize a hex number because it starts with the characters 0x.
These characters aren’t actually part of the number; they just notate it in the same way
as double quotes denote a string. Whereas the usual decimal numbers consist of the
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, a hex number consists of these digits plus six more:
A, B, C, D, E, and F. That makes a total of 16 digits. A good way to picture counting with
regular decimal numbers is to use the odometer in a car, which (if you’re honest) goes
only forward, not backward. It starts out with 00000000 (assuming eight digits, which is
a lot). The rightmost digit runs from 0 through 9, over and over. When any digit reaches
9 and all digits to the right of that are 9, the next digit to the left goes up by 1. For exam-
ple, when you reach 00000999, the next digit to the left goes up by 1 as each 9 goes
back to 0, to get 00001000.

With hex numbers, you count this same way, except that instead of stopping at 9 to
loop back, you then go to A, and then B, and then up to F. And then you loop back.
So the first 17 hex numbers are, using eight digits, 00000000, 00000001, 00000002,
00000003, 00000004, 00000005, 00000006, 00000007, 00000008, 00000009, 0000000A,
0000000B, 0000000C, 0000000D, 0000000E, 0000000F, 00000010. Notice that when
you hit F at the end, the number wraps around again, adding 1 to the next digit to the
left. When working with hex numbers, you may see such numbers as 0xAAAA0000
and 0x0000A3FF. And incidentally, 1 more than each of these is 0xAAAA0001 and
0x0000A400.

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 191

»» Using memory that hasn’t been initialized: The memory location could
contain anything and if you act on the data in that memory location, your
application will act oddly or simply crash.

»» Obtaining the wrong data: The application could point to the wrong location
and you might not know it. This means that the application is using the wrong
data, which could result in unanticipated output or data damage.

Writing cleaner and less bug-prone code
To write cleaner code with fewer bugs, you need to find a way to get the effects of a
pointer without any of the disadvantages of pointers. The C++ committee has been
working on this issue. For example, std::auto_ptr is deprecated (set for deletion,
but still allowed) in C++ 11 and removed in C++ 17. Here are some modern ways of
getting past pointers:

»» Using smart pointers: Boost (explained in Book 7, Chapter 4) has provided
access to smart pointers for a long time, and many developers use them
because they make both dynamic allocation and runtime polymorphism
easier to deal with. Using a smart pointer, such as std::unique_ptr or
std::shared_ptr, eliminates the need for you to manage memory manually.
Instead, the smart pointer addresses memory management needs for you so
that you can concentrate on writing business logic rather than performing
low-level programming tasks.

»» Relying on optional pointers: C++ 17 introduced std::optional as the
means for working with nullable references. When an optional pointer is null,
it has a value of std::nullopt, which is actually an important thing to know
when dealing with them. The only problem is that the implementation is
flawed because it lacked support for references (pointers to pointers) and
had no monadic (entity operator) interface (see http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2017/p0798r0.html for a discussion of
this extremely advanced concept not covered in this book). The short version
is that it didn’t do what raw pointers could do, but these problems are fixed
in C++ 20.

»» Passing objects around: A modern computer isn’t nearly as resource limited
as those in the past were, so modern languages commonly pass objects
around rather than create pointers to them. This solution addresses the need
to eliminate unwanted copies. C++ 20 provides two solutions for this task, both
of which rely on the idea of using the object obj, which is outside the function,
to directly construct the object being initialized inside the function and that is

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0798r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0798r0.html

192 BOOK 1 Getting Started with C++

returned from it. You can view this optimization as: T obj = f();, where f()
is a function that initializes obj of type T. Here is how the optimizations differ:

•	 Return Value Optimization (RVO): In this case, you could have a function
that looks like this:

T f() {
 ... // Do something here.
 return T(constructor arguments);

}

In this case, you could create three objects of type T: the unnamed
temporary object created by the return statement; the temporary object
returned by f() to the caller; and the named object, obj, copied from the
return from f(). Using RVO eliminates the two temporary objects by
initializing obj directly with the arguments passed inside the body of f().
This is actually a complex topic that’s well outside the purview of this book,
but you can read a discussion of the details of this topic at https://
shaharmike.com/cpp/rvo/.

•	 Named Return Value Optimization (NRVO): This form of optimization
goes a step further than RVO when the return statement uses a named
value, as shown here:

T f() {
 ... // Do something here.
 T result(constructor arguments);
 return result;

}

This technique effectively replaces the hidden object and the named object
inside the function with the object used for holding the result. The only caveat
is that result must be unique so that the compiler knows which object inside
f() to use to construct the memory in obj. NRVO is a particular kind of copy
elision (the process of joining together or merging of objects) discussed in
detail at https://en.cppreference.com/w/cpp/language/copy_elision.

Heaping and Stacking the Variables
C++ applications use two kinds of memory:

»» Heap: A common area in memory where you can store global variables. This
is where you also store objects and variables that you allocate from memory.

https://shaharmike.com/cpp/rvo/
https://shaharmike.com/cpp/rvo/
https://en.cppreference.com/w/cpp/language/copy_elision

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 193

»» Stack: The area where the computer stores both function information and
local value type variables for those functions. The stack also stores pointers to
local object type variables for functions.

Function storage is a little more complicated because each function gets its own
little private area at the top of the stack. It is called a stack because it’s treated
like a stack of papers: You can put something on the top of the stack, and you can
take something off the top of the stack, but you can’t put anything in the middle
or bottom. In addition, you can’t take anything from the middle or bottom. (You
can, however, peek at the values from any place in the stack and change those
values — it’s the memory block that isn’t removed.) The computer uses this stack
to keep track of all your function calls.

Suppose that you have a function called GoFishing(). The function GoFishing()
calls StopAndBuyBait(). Depending on the complexity of the bait business,
StopAndBuyBait() may call PayForBait(), which calls GetOutCash(). How can
the computer keep track of all this mess? It uses the stack. Begin with the follow-
ing code:

int GoFishing() {
 int baitMoney = 2;
 int numberWorms = StopAndBuyBait(baitMoney);
 if (numberWorms > 0) {
 return true;
 }
 return false;
}

int StopAndBuyBait(int customerMoney) {
 if (customerMoney > 0) {
 int wormsBought = customerMoney * 20;
 return wormsBought;
 }
 return 0;
}

The customer starts out with $2.00. When stopping in the store, the clerk asks
for the money. If the customer does have money, the clerk provides 20 worms for
each $1.00. The customer determines whether there was enough money to buy any
worms. If so, it’s time to go fishing. The stack for each of these calls appears in a
stack frame, which the application treats as a single entity for that function. This
code uses two stack frames, one for each function call, as shown in Figure 8-1.

194 BOOK 1 Getting Started with C++

From a stack perspective, the code begins by creating a stack frame for
GoFishing(). On this stack frame, it creates a variable holding a pointer with
the return address of the caller (which is unknown in this case). Adding a value
to the stack is called pushing. GoFishing() creates two variables, baitMoney and
numberWorms. From a stack perspective, because GoFishing() creates baitMoney
first, it also appears first on the stack.

When GoFishing() calls StopAndBuyBait(), it passes a single argument that
GoFishing() sees as baitMoney. However, StopAndBuyBait() sees the parameter
as customerMoney. The arguments that GoFishing() passes to StopAndBuyBait()
appear first as parameters within the stack frame that the application creates
for StopAndBuyBait(), followed by the return address for GoFishing(). Conse-
quently, before StopAndBuyBait() executes even a single line of code, its stack
frame already has two variables on it.

At this point, StopAndBuyBait() optionally creates a local variable, wormsBought.
Notice that in the stack frame, parameters appear first, followed by the return
address of the caller and then the local variables. When StopAndBuyBait() deter-
mines what to return to GoFishing(), it places this value in numberWorms because
numberWorms is set to receive this return value.

FIGURE 8-1:
The two

stack frames
used for the

example code.

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 195

CONVERTING BETWEEN HEXADECIMAL
AND DECIMAL
Every hex number has a decimal equivalent. When you make a list showing decimal
numbers side by side with hex numbers, you see, for example, that 0x0000001F is next
to the decimal number 31. Thus, these two numbers represent the same quantity of
items, such as apples.

You can represent hex numbers by using either uppercase or lowercase letters.
However, do not mix cases within a single number because it makes the number incred-
ibly hard to read and other developers will make mistakes. Don’t use 0xABab0000.
Instead, use either 0xabab0000 or 0xABAB0000.

If you want to convert between hex and decimal, you can use the Hex to Decimal
Converter application at https://www.binaryhexconverter.com/hex-to-
decimal-converter or the Decimal to Hex Converter application at https://www.
binaryhexconverter.com/decimal-to-hex-converter. These two applications
make it easy to convert between the two numbering systems, and you can use them
on any device that supports a browser.

To convert a hex number to decimal, select the Hex to Decimal Converter application
and type the hex number into the Hex Value field by using the number keys and the
letters A through F, such as FB1263. (You don’t need to type the zeroes at the beginning,
such as 00FB1263 — they don’t show up — nor do you type the 0x used in C++.) After
you finish typing it all, click Convert. The application instantly transforms the hex num-
ber into a decimal number! In this case, you see 16454243. You can go the other way,
too: If you have a decimal number, such as 16454243, you can select the Decimal to
Hex Converter application, type its value into the Decimal Value field, and click Convert
to convert it to hex. If you convert 16454243 to hex, you get back FB1263, which is what
you started with.

The Windows calculator also makes it easy to convert between hex and decimal
when placed in Programmer view, as shown in the following figure. The calculator
also supports binary (base 2) and octal (base 8) numbers. Just select the base you want
to use and the calculator performs the conversion automatically. (The precise Calculator
features you have for performing this task depend on your version of Windows. The
blog post at http://blog.johnmuellerbooks.com/2012/01/30/examining-the-
calculator-in-windows-7/ complains about the changes that Windows 7 brought.
Windows 10 offers more of the same.)

(continued)

https://www.binaryhexconverter.com/hex-to-decimal-converter
https://www.binaryhexconverter.com/hex-to-decimal-converter
https://www.binaryhexconverter.com/decimal-to-hex-converter
https://www.binaryhexconverter.com/decimal-to-hex-converter
http://blog.johnmuellerbooks.com/2012/01/30/examining-the-calculator-in-windows-7/
http://blog.johnmuellerbooks.com/2012/01/30/examining-the-calculator-in-windows-7/

196 BOOK 1 Getting Started with C++

The application then starts to dismantle the StopAndBuyBait() stack frame
by popping (removing) the values off the stack. It throws wormsBought away (if
StopAndBuyBait() created it) because the application has already placed this
value in numberWorms. The application saves the GoFishing() return address for
later use. It then throws customerMoney away and removes the stack frame.

The return address is a pointer to a specific place in memory that marks the
continuation point in the code for GoFishing(). So, the next step is to read the
next processing instruction for GoFishing() that comes after the return from
StopAndBuyBait().

Getting a variable’s address
Because every variable lives somewhere in memory, every variable has an address.
If you have a function that declares an integer variable called NumberOfPotholes,
then when your application calls this function, the computer will allocate space
for NumberOfPotholes somewhere in memory.

You can convert words, too (if you’re bored). The hex number and disco group ABBA is
43962 in decimal. And the hex number FADE is 64222. Have fun!

(continued)

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 197

If you want to find the address of the variable NumberOfPotholes, you simply
throw an ampersand (&) in front of it. Listing 8-1 shows the VariableAddress
example, which obtains the address of a variable and prints it.

LISTING 8-1:	 Using the & Character to Obtain the Address of a Variable

#include <iostream>

using namespace std;

int main() {
 int NumberOfPotholes = 532587;
 cout << &NumberOfPotholes << endl;
 return 0;
}

When you run this application, a hexadecimal number appears on the console.
This number may or may not match ours, and it may or may not be the same each
time you run the application. The result depends on exactly how the computer
allocated your variable for you and the order in which it did things. This could be
very different between versions of compilers. When you run Listing 8-1, you see
something like the following (it varies with each run):

0x22ff74

The output you see from this application is the address of the variable called Num-
berOfPotholes. In other words, that number is the hex version of the place where
the NumberOfPotholes variable is stored in memory. The output is not the con-
tent of the variable or the content of the variable converted to hex; rather, it’s the
address of the variable in hex.

Knowing the address of a variable doesn’t tell you about the variable content, but
C++ programmers use addresses in other ways:

»» Modifying the variable content directly using what are called pointer variables.
A pointer variable is just like any other variable except that it stores the address
of another variable.

»» Performing any of the tasks mentioned in the “Avoiding broken code” section
of the chapter.

»» Modifying values pointed at by the address indirectly using any of a number
of math techniques.

»» Comparing entities such as objects based on their pointers.

198 BOOK 1 Getting Started with C++

To declare a pointer variable, you need to specify the type of variable it will point
to. Then you precede the variable’s name with an asterisk, as in the following:

int *ptr;

This line declares a variable that points to an integer. In other words, it can contain
the address of an integer variable. And how do you grab the address of an integer
variable? Easy! By using the & notation! Thus, you can do something like this:

ptr = &NumberOfPotholes;

This line puts the address of the variable NumberOfPotholes in the ptr variable.
Remember that ptr doesn’t hold the number of potholes; rather, it holds the
address of the variable called NumberOfPotholes.

You specify the type of pointer by the type of item it points to. If a pointer variable
points to an integer, its type is pointer to integer. In C++ notation, its type is int *
(with a space between them) or int* (no space); you are allowed to enter it with or
without a space. If a pointer variable points to a string, its type is pointer to string,
and notation for this type is string *.

The ptr variable holds an address, but what’s at that address? That address is the
location in memory of the storage bin known as NumberOfPotholes. Right at that
spot in memory is the data stored in NumberOfPotholes.

Think this pointer concept through carefully. If you have to, reread this section a
few times until it’s locked in your head. Then meditate on it. Wake up in the night
thinking about it. Call strangers on the telephone and chitchat about it. The more
you understand pointers, the better off your programming career will be — and
the more likely you are to make a million dollars.

Changing a variable by using a pointer
After you have a pointer variable holding another variable’s address, you can use
the pointer to access the information in the other variable. That means you have
two ways to get to the information in a variable: Use the variable name itself (such
as NumberOfPotholes), or use the pointer variable that points to it.

If you want to store the number 6087 in NumberOfPotholes, you can do this:

NumberOfPotholes = 6087;

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 199

Or you can use the pointer. To use the pointer, you first declare it as follows:

ptr = &NumberOfPotholes;

Then, to change NumberOfPotholes, you don’t just assign a value to it. Instead,
you throw an asterisk in front of it, like so:

*ptr = 6087;

If ptr points to NumberOfPotholes, these two lines of code will have the same
effect: Both will change the value to 6087. This process of sticking the aster-
isk before a pointer variable is called dereferencing the pointer. Look at the
DereferencePointer example, shown in Listing 8-2, which demonstrates all this.

LISTING 8-2:	 Modifying the Original Variable with a Pointer Variable

#include <iostream>

using namespace std;

int main() {
 int NumberOfPotholes;
 int *ptr;

 ptr = &NumberOfPotholes;
 *ptr = 6087;

 cout << NumberOfPotholes << endl;
 return 0;
}

In Listing 8-2, the first line of main() declares an integer variable, and the second
line declares a pointer to an integer. The next line takes the address of the inte-
ger variable and stores it in the pointer. Then the fourth line modifies the origi-
nal integer by dereferencing the pointer. And just to make sure that the process
worked, the next line prints the value of NumberOfPotholes. When you run the
application, you see the following output:

6087

You can also read the value of the original variable through the pointer. Look at
the ReadPointer example, shown in Listing 8-3. This code accesses the value

200 BOOK 1 Getting Started with C++

of NumberOfPotholes through the pointer variable, ptr. When the code gets the
value, it saves it in another variable called SaveForLater.

LISTING 8-3:	 Accessing a Value through a Pointer

#include <iostream>

using namespace std;

int main() {
 int NumberOfPotholes;
 int *ptr = &NumberOfPotholes;
 int SaveForLater;

 *ptr = 6087;
 SaveForLater = *ptr;
 cout << SaveForLater << endl;

 *ptr = 7000;
 cout << *ptr << endl;
 cout << SaveForLater << endl;
 return 0;
}

When you run this application, you see the following output:

6087
7000
6087

Notice that the code changes the value through ptr again — this time to 7000.
When you run the application, you can see that the value did indeed change, but
the value in SaveForLater remained the same. That’s because SaveForLater is
a separate variable, not connected to the other two. The other two, however, are
connected to each other.

Pointing at a string
Pointer variables can point to any type, including strings. However, after you say
that a variable points to a certain type, it can point to only that type. That is, as
with any variable, you cannot change its type. The compiler won’t let you do it.

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 201

To create a pointer to a string, you simply make the type of the variable string *.
You can then set it equal to the address of a string variable. The StringPointer
example, shown in Listing 8-4, demonstrates this idea.

LISTING 8-4:	 Pointing to a String with Pointers

#include <iostream>

using namespace std;

int main() {
 string GoodMovie;
 string *ptrToString;

 GoodMovie = "Best in Show";
 ptrToString = &GoodMovie;

 cout << *ptrToString << endl;
 return 0;
}

In Listing 8-4, you see that the pointer named ptrToString points to the variable
named GoodMovie. But when you want to use the pointer to access the string, you
need to dereference the pointer by putting an asterisk (*) in front of it. When you
run this code, you see the results of the dereferenced pointer, which is the value
of the GoodMovie variable:

Best in Show

You can change the value of the string through the pointer, again by dereferencing
it, as in the following code:

*ptrToString = "Galaxy Quest";
cout << GoodMovie << endl;

The code dereferences the pointer to set it equal to the string "GalaxyQuest".
Then, to show that it truly changed, the code prints the GoodMovie variable. The
result of this code, when added at the end of Listing 8-4 (but prior to the
return 0), is

Galaxy Quest

202 BOOK 1 Getting Started with C++

You can also use the pointer to access the individual parts of the string, as shown
in the StringPointer2 example in Listing 8-5.

LISTING 8-5:	 Using Pointers to Point to a String

#include <iostream>

using namespace std;

int main() {
 string AMovie;
 string *ptrToString;

 AMovie = "L.A. Confidential";
 ptrToString = &AMovie;

 for (unsigned i = 0; i < AMovie.length(); i++) {
 cout << (*ptrToString)[i] << " ";
 }
 cout << endl;

 return 0;
}

When you run this application, you see the letters of the movie appear with spaces
between them, as in

L . A . C o n f i d e n t i a l

When you access the characters of the string through a pointer, you need to put
parentheses around the asterisk and the pointer variable. Otherwise, the compiler
gets confused and first tries to access the index in brackets with the variable name
and afterward applies the asterisk. That’s backward, and it doesn’t make sense to
the computer, so the compiler gives you an error message. But you can make it all
better by using parentheses, as shown in Listing 8-5.

This application loops through the entire string, character by character. The string’s
length() function tells how many characters are in the string. The code inside the
loop grabs the individual characters and prints them with a space after each.

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 203

Notice that i is of type unsigned rather than int. The length() function returns
an unsigned value rather than an int value, which makes sense because a string
can’t have a negative length. If you try to use an int for i, the compiler displays
the following warning:

warning: comparison between signed and unsigned integer

The application still runs, but you need to use the correct data types for loop
variables. Otherwise, when the loop value increases over the amount that the loop
variable can support, the application will fail. Trying to find such an error can
prove frustrating even for the best developers. It’s important to not ignore warn-
ings even if they appear harmless.

You can also change the individual characters in a string through a pointer. You
can do this by using a line like (*ptrToString)[5] = 'X';. Notice you still need to
put parentheses around the variable name along with the dereferencing character.

The length of a string is also available through the pointer. You can call the
length() function by dereferencing the pointer, again with the carefully placed
parentheses, such as in the following:

for (unsigned i = 0; i < (*ptrToString).length(); i++) {
 cout << (*ptrToString)[i] << " ";
}

Pointing to something else
When you create a pointer variable, you must specify the type of data it points
to. After that, you cannot change the type of data it points to, but you can change
what it points to. For example, if you have a pointer to an integer, you can make it
point to the integer variable called ExpensiveComputer. Then, later, in the same
application, you can make it point to the integer variable called CheapComputer.
Listing 8-6 demonstrates this technique in the ChangePointer example.

LISTING 8-6:	 Using Pointers to Point to Something Else and Back Again

#include <iostream>

using namespace std;

int main() {
 int ExpensiveComputer;

(continued)

204 BOOK 1 Getting Started with C++

 int CheapComputer;
 int *ptrToComp;

 ptrToComp = &ExpensiveComputer;
 *ptrToComp = 2000;
 cout << *ptrToComp << endl;

 ptrToComp = &CheapComputer;
 *ptrToComp = 500;
 cout << *ptrToComp << endl;

 ptrToComp = &ExpensiveComputer;
 cout << *ptrToComp << endl;
 return 0;
}

This code starts out by initializing all the goodies involved — two integers and a
pointer to an integer.

Next, the code points the pointer to ExpensiveComputer and uses the pointer to
put 2000 inside ExpensiveComputer. It then writes the contents of Expensive-
Computer, again by using the pointer.

Then the code changes what the pointer points to. To do this, you set the pointer
to the address of a different variable, &CheapComputers. The next line stores 500
in CheapComputers. And, again, you print it.

Now, just to drive home the point, in case the computer isn’t listening, you then
point the pointer back to the original variable, ExpensiveComputer. But you don’t
store anything in it. This time, you simply print the cost of this high-powered
supermachine. You do this again by dereferencing the pointer. And when you run
the application, you see that ExpensiveComputer still has 2000 in it, which is what
was originally put in it. This means that after you point the pointer to something
else and do some finagling, the original variable remains unchanged.

Be careful if you use one pointer to bounce around several different variables. It’s
easy to lose track of which variable the pointer is pointing to.

Tips on pointer variables
This section contains tips on using pointer variables. You can declare two pointer
variables of the same type by putting them together in a single statement, as you

LISTING 8-6:	 (continued)

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 205

can with regular variables. However, you must precede each one with an asterisk,
as in the following line:

int *ptrOne, *ptrTwo;

If you try to declare multiple pointers on a single line but put an asterisk only
before the first pointer, only that one will be a pointer. The rest will not be. This
can cause serious headaches later because this line compiles fine:

int *ptrOne, Confused;

Here, Confused is not a pointer to an integer; rather, it’s just an integer. Beware!

Some people like to put the asterisk immediately after the type, as in the following
example, to emphasize the fact that the type is pointer to integer:

int* ptrOne;

However, this approach makes it easy to leave out the asterisks for any pointer
variables that follow.

Creating New Raw Pointers
It isn’t possible to predict some kinds of memory use in your application, but
the requirements aren’t known when you write the code. For example, streaming
data from the Internet or creating new records in a database are both examples of
unpredictable memory use. When working with unpredictable memory require-
ments, you allocate (request memory) and deallocate (release the memory you
requested) as needed in a process called dynamic memory management. You use the
heap, an area of unallocated memory, to perform dynamic memory management.

Most modern programming languages provide a means for managing memory for
you. The reason for using this strategy is that older memory management tech-
niques are error prone. You often see these common memory errors using older
methods:

»» Code tries to use the memory without allocating it first.

»» Memory remains allocated after use, creating a memory leak.

»» Uninitialized memory contains random data.

206 BOOK 1 Getting Started with C++

Consequently, most modern languages simply allow you to create and delete
variables using one simple approach, and a process called garbage collection (the
freeing of unused memory) occurs in the background. C++ is moving in this direc-
tion. However, the transition is taking some time.

Up to this point, you allocated memory using various approaches including the
new keyword. Using new simply meant that you needed memory for a specific pur-
pose. The new keyword is deprecated in C++ 20 and will disappear altogether in C++
23. The following sections begin with two examples of using new because you see
new used in all current existing code of any complexity at this point. The remain-
ing three sections tell you about the updated C++ 20 method of managing memory.

Using new
To declare a storage bin on the heap using existing methods, first you need to set
up a variable that will help you keep track of the storage bin. This variable must
be a pointer variable.

Suppose that you already have an integer declared out on the heap somewhere.
(You see how to do that in the next paragraph.) Oddly enough, such variables
don’t have names. Just think of it as an integer on the heap. Then, with the inte-
ger variable, you could have a second variable. This second variable is not on the
heap, and it’s a pointer holding the address of the integer variable. So if you want
to access the integer variable, you do so by dereferencing (looking at the address
of) the pointer variable.

To allocate memory on the heap, you need to do two things: First, declare a pointer
variable. Second, call a function named new. The new function is a little different
from other functions in that you don’t put parentheses around its parameter. For
this reason, it’s actually an operator. Other operators are + and – and are for adding
and subtracting integers. These other operators behave similarly to functions, but
you don’t use parentheses.

To use the new operator, you specify the type of variable you want to create. For
example, the following line creates a new integer variable:

int *somewhere = new int;

After the computer creates the new integer variable on the heap, it stores the
address of the integer variable in somewhere. And that makes sense: somewhere
is a pointer to an integer, so it’s prefaced by the * (pointer) operator. Thus,
somewhere holds the address of an integer variable. The UseNew example, shown
in Listing 8-7, demonstrates how pointers work when using new.

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 207

LISTING 8-7:	 Allocating Memory by Using new

#include <iostream>

using namespace std;

int main() {
 int *ptr = new int;
 *ptr = 10;
 cout << *ptr << endl;
 cout << ptr << endl;
 return 0;
}

When you run this application, you see this sweet and simple output (the second
value will change each time you run the example):

10
0x73af10

In this application, you first allocate a pointer variable, which you call ptr. Then
you call new with an int type, which returns a pointer to an integer. You save that
return value in the ptr variable.

Then you start doing your magic on it. Okay, so it’s not all that magical, but you
save a 10 in the memory that ptr points to. And then you print the value stored in
the memory that ptr points to.

To see for yourself that ptr is pointing to a memory location and not the actual
value of 10, the code also prints ptr without dereferencing it (using the * oper-
ator). The output is a hexadecimal value such as 0x9caef0, but this output will
change each time because the memory allocation occurs in a different location on
the heap each time.

As you can see, ptr contains the address of the memory allocated by the new
operator. But unlike regular variables, the variable pointed at by ptr doesn’t have
a name. And because it doesn’t have a name, the only way you can access it is
through the pointer. It’s kind of like an anonymous author with a publicist. If you
want to send fan mail to the author, you have to go through the publicist. Here,
the only way to reach this unnamed but famous variable is through the pointer.

But this doesn’t mean that the variable has a secret name such as BlueCheese and
that, if you dig deep enough, you might discover it; it just means that the variable
has no name. Sorry.

208 BOOK 1 Getting Started with C++

When you call new, you get back a pointer. This pointer is of the type that you
specify in your call to new. You can then store the pointer only in a pointer variable
of the same type.

When you use the new operator, the usual terminology is that you are allocating
memory on the heap.

By using pointers to access memory on the heap, you can take advantage of many
interesting C++ features. For example, you can use pointers along with something
called an array. An array (as described in Book 5, Chapter 1) is simply a large stor-
age bin that has multiple slots, each of which holds one item. If you set up an
array that holds pointers, you can store all these pointers without having to name
them individually. And these pointers can point to complex things, called objects.
(Book 2, Chapter 1 covers objects and Book 2, Chapter 2 discusses arrays.) You
could then pass all these variables (which could be quite large, if they’re strings)
to a function by passing only the array, not the strings themselves. That step
saves memory on the stack.

In addition to objects and arrays, you can have a function allocate memory and
return a variable pointing to that memory. Then, when you get the variable back
from the function, you can use it, and when you finish with the variable, delete it
(freeing the memory). Finally, you can pass a pointer into a function. When you do
so, the function can actually modify the data the pointer references for you. (See
“Passing Pointer Variables to Functions” and “Returning Pointer Variables from
Functions,” later in this chapter, for details.)

Using an initializer
When you call new, you can provide an initial value for the memory you are allocat-
ing. For example, when allocating a new integer, you can, in one swoop, also store
the number 10 in the integer. The Initializer, example shown in Listing 8-8,
demonstrates how to do this.

LISTING 8-8:	 Putting a Value in Parentheses to Initialize Memory That You Allocate

#include <iostream>

using namespace std;

int main() {
 int *ptr = new int(10);
 cout << *ptr << endl;
 return 0;
}

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 209

This code calls new, but also provides a number in parentheses. That number is
put in the memory initially, instead of being assigned to it later. This line of code
is equivalent to the following two lines of code:

int *ptr = new int;
*ptr = 10;

When you initialize a value in the new operator, the technical phrase for what you
are doing is invoking a constructor. The reason is that the compiler adds a bunch of
code to your application — code that operates behind the scenes. This code is the
runtime library. The library includes a function that initializes an integer variable
if you pass an initial value. The function that does this is known as a constructor.
When you run it, you are invoking it. Thus, you are invoking the constructor. For
more information on constructors, see Book 2, Chapter 1.

Freeing Raw Pointers
When you allocate memory on the heap by calling the new operator and you’re
finished using the memory, you need to let the computer know, regardless of
whether it’s just a little bit of memory or a lot. The computer doesn’t look ahead
into your code to find out whether you’re still going to use the memory. So in your
code, when you are finished with the memory, you free the memory.

The way you free the memory is by calling the delete operator and passing the
name of the pointer:

delete MyPointer;

This line would appear after you’re finished using a pointer that you allocated by
using new. (Like the new operator, delete is also an operator and does not require
parentheses around the parameter.)

The FreePointer example, shown in Listing 8-9, provides a complete demon-
stration of allocating a pointer, using it, and then freeing it. Note the use of the
replace() method, which first appears in the “Replacing parts of a string” sec-
tion of Book 1 Chapter 6. You use the arrow operator (->) to access this string
method of phrase. The “Using classes and raw pointers” section of Book 2
Chapter 1 describes the arrow operator in more detail.

210 BOOK 1 Getting Started with C++

LISTING 8-9:	 Using delete to Clean Up Your Pointers

#include <iostream>

using namespace std;

int main() {
 string *phrase =
 new string("All presidents are cool!!!");
 cout << *phrase << endl;

 (*phrase)[20] = 'r';
 phrase->replace(22, 4, "oked");
 cout << *phrase << endl;

 delete phrase;
 return 0;
}

When you run this application, you see the following output:

All presidents are cool!!!
All presidents are crooked

This code allocates a new string and initializes it, saving its address in the pointer
variable called phrase. The code outputs the phrase, manipulates it, and then
writes it again. Finally, the code frees the memory used by the phrase.

Although people usually say that you’re deleting the pointer or freeing the pointer,
you’re actually freeing the memory that the pointer points to. The pointer can still
be used for subsequent new operations.

When you free memory, the memory becomes available for other tasks. How-
ever, immediately after the call to delete, the pointer still points to that particu-
lar memory location, even though the memory is free. Using the pointer without
pointing it to something else causes errors. Therefore, don’t try to use the pointer
after freeing the memory it points to until you set the pointer to point to some-
thing else through a call to new or by setting it to another variable.

Whenever you free a pointer, a good habit is to set the pointer to the value 0 or
nullptr (when using C++ 11 or above). Then, whenever you use a pointer, first
check whether it’s equal to 0 (or nullptr) and use it only if it’s not 0. This strategy
always works because the computer will never allocate memory for you at address
0. So the number 0 can be reserved to mean I point to nothing at all.

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 211

The following code sample shows how to use this strategy. First, this code frees
the pointer and then clears it by setting it to 0:

delete ptrToSomething;
ptrToSomething = 0;

The reason to use nullptr in place of 0 when you can is that nullptr is clearer —
it says precisely what you’re doing to the pointer. This code checks whether the
pointer is not 0 before using it:

ptrToComp = new int;
*ptrToComp = 10;
if (ptrToComp != 0) {
 cout << *ptrToComp << endl;
}

Call delete only on memory that you allocated by using new. Although the
Code::Blocks compiler doesn’t seem to complain when you delete a pointer that
points to a regular variable, it serves no purpose to do so. You can free only mem-
ory on the heap, not local variables on the stack. In addition, you should avoid
freeing the same pointer multiple times because doing so can create hard-to-find
bugs; the application may have already reallocated that memory for some other
purpose.

An older method of freeing a pointer involves setting the pointer to NULL.
Code::Blocks raises an error when you attempt to use NULL normally because NULL
isn’t part of the standard and it’s considered outdated. However, you may have a
lot of older code that uses NULL. In this case, you must add #include <cstddef>
to your code to allow it to compile. However, it would be better to update the code
to use either 0 or nullptr.

Working with Smart Pointers
As mentioned previously in the chapter, smart pointers are the direction that C++
is taking, so you need to use them in all new application development. The rea-
son is simple: Using smart pointers reduces the amount of code you must create,
reduces errors, makes applications more efficient, and virtually eliminates many
common application issues, such as memory leaks. The following sections offer
an overview of smart pointers. Most of the code will run with C++ 17, but some of
the items are C++ 20 specific.

212 BOOK 1 Getting Started with C++

Creating smart pointers using
std::unique_ptr and std::shared_ptr
Smart pointers do a lot of work for you when it comes to memory management, so
you should use them in new projects and when converting old projects. The big-
gest advantage of smart pointers is that they automatically deallocate resources
for you, so you don’t encounter problems like memory leaks in your applications.
However, they can do a lot more for you by enforcing good programming practices
through the compiler. No longer can you create code that’s easy to crash because
you’re attempting to use a pointer that doesn’t point anywhere. You also gain
access to unique functions and operators that help you better understand how
memory is used.

This section discusses two smart pointer classes from an overview perspec-
tive: unique_ptr and shared_ptr. The main difference between them is that
a unique_ptr is the only pointer that can point to a resource. If you attempt
to copy a unique_ptr to another pointer, the compiler will complain. Using a
unique_ptr keeps you from making copies that could cause problems in deal-
locating a resource. However, there are times when you actually do need to copy
pointers, such as dealing with a multithreaded environment. In this case, you use
a shared_ptr because you can copy a shared_ptr to another pointer. In fact, it
even includes a function that tells you how many references currently exist to the
resource. Whether you use unique_ptr or shared_ptr, both object types wrap a
raw pointer in an object that performs all the management tasks for you.

Normally you use unique_ptr when working in an environment where you don’t
need to copy pointers. Using unique_ptr makes your code significantly safer
and more bulletproof. The UniquePtr example, shown in Listing 8-10, gets you
started on using unique_ptr.

CONFIGURING CODE::BLOCKS FOR
SMART POINTERS
To use the examples in the smart pointer sections of this chapter, you must configure
Code::Blocks to use C++ 17 conventions. To do this, choose Settings ➪ Compiler. You see
the Global Compiler Settings dialog box. Select the Have G++ Follow the Coming C++1z
(aka C++ 17) ISO C++ Language Standard option; then click OK. If you don’t choose this
setting, you see error messages during the build process. Even if you add the required
#include <memory> line in your code, the compiler will act as if it knows nothing at all
about smart pointers.

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 213

LISTING 8-10:	 Using a unique_ptr to Perform Common Tasks

#include <iostream>
#include <memory>

using namespace std;

int main() {
 unique_ptr<int> ptr1(new int());
 *ptr1 = 100;
 cout << "ptr1 value: " << *ptr1 << endl;

 int myValue = 42;
 unique_ptr<int> ptr2(&myValue);
 cout << "ptr2 value: " << *ptr2 << endl;

 unique_ptr<int> ptr3 = make_unique<int>(99);
 cout << "ptr3 value: " << *ptr3 << endl;
 cout << "ptr3 address: " << ptr3.get() << endl;

 unique_ptr<int> ptr4;
 ptr4 = move(ptr3);
 if (ptr3 == nullptr) {
 cout << "ptr3 is nullptr." << endl;
 }
 cout << "ptr4 value: " << *ptr4 << endl;
 cout << "ptr4 address: " << ptr4.get() << endl;

 return 0;
}

RESOLVING SMART POINTER
EXPERIMENTATION PROBLEMS
Working with the new pointer types can prove frustrating when you continually see
errors instead of results. When you encounter problems using Code::Blocks to work
with new pointer types, make sure you have the correct version installed and the
right settings configured. If you still have problems, consider trying the techniques on
https://wandbox.org/, which can sometimes provide better results because the
pointer methodologies are new. In some cases, you may find that old habits are getting
in the way of new processes, so it’s also essential to verify that your code is written to
use the new pointer types.

https://wandbox.org/

214 BOOK 1 Getting Started with C++

The example shows three ways to create a unique_ptr:

»» Use the new operator.

»» Create a variable and point to it.

»» Employ the make_unique() function.

In all three cases, you get a unique_ptr with the value you specify. Notice that you
must specify the pointer type using <int> (for an int value). As with other point-
ers, you can’t really create a generic pointer that can point to anything.

A unique_ptr provides you with a number of functions. Unlike most pointers, you
can’t simply specify the pointer name and obtain its address because unique_ptr
exercises stricter control over accessing the address information. You must use
the get() function instead, as shown in the code.

As previously mentioned, you can’t make one unique_ptr equal to another
unique_ptr. However, you can use the move() function to move the address of one
unique_ptr to another unique_ptr. The swap() function simply swaps addresses
between two pointers.

This example also shows the use of nullptr. As you can see, using nullptr is
clearer than using 0 in your code. Here is the output from this example:

ptr1 value: 100
ptr2 value: 42
ptr3 value: 99
ptr3 address: 0x5daf28
ptr3 is nullptr.
ptr4 value: 99
ptr4 address: 0x5daf28

To really understand unique_ptr versus shared_ptr, you need to compare usage
side by side. The SharedPtr example, shown in Listing 8-11, demonstrates some
differences that you need to consider when choosing between the two pointer
objects.

LISTING 8-11:	 Using a shared_ptr for Copying

#include <iostream>
#include <memory>

using namespace std;

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 215

int main() {
 int myValue = 42;
 shared_ptr<int> ptr1(new int(myValue));
 cout << "ptr1 value: " << *ptr1 << endl;
 cout << "ptr1 use count: " << ptr1.use_count()
 << endl;

 shared_ptr<int> ptr2 = ptr1;
 cout << "ptr2 value: " << *ptr2 << endl;
 cout << "ptr1 address: " << ptr1 << endl;
 cout << " ptr2 address: " << ptr2 << endl;
 cout << "ptr1 use count: " << ptr1.use_count()
 << endl;

 ptr2.reset();
 cout << "ptr1 use count: " << ptr1.use_count()
 << endl;

 ptr1.reset();
 cout << "ptr1 use count: " << ptr1.use_count()
 << endl;

 return 0;
}

When working with a shared_ptr, you can make one pointer equal to another
pointer, as this example shows. The code demonstrates that both ptr1 and ptr2
point to the same memory location and have the same value. Consequently, the
resource (not the pointers) is shared between the two pointers.

To make it easier to determine how many references a resource has, you use the
use_count() function. Each additional reference increments the count so that
you’re never in the dark as to how many references the resource has.

Of course, now you need some way to remove references when they’re no longer
needed. To perform this task, you use reset(). The code uses ptr2.reset() to
remove the second reference to myValue. As shown in the following output, the
use count decreases each time you reset() a pointer.

ptr1 value: 42
ptr1 use count: 1
ptr2 value: 42
ptr1 address: 0x6caf08

216 BOOK 1 Getting Started with C++

ptr2 address: 0x6caf08
ptr1 use count: 2
ptr1 use count: 1
ptr1 use count: 0

The important thing to remember about copying pointers is that copying a pointer
only copies the pointer address, not the underlying reference. Consequently, if
you copy a pointer to an array, there is still just one array, but now you have two
references to that array. To create a copy of an array, you would need to create
a second array of the same size and copy the data, index by index, from the first
array to the second array.

Some significant differences exist between the C++ 17 and the C++ 20 versions of
the smart pointer classes. One of the most important changes from a coding per-
spective is that C++ 20 relies on the spaceship operator (see the “Considering the
new spaceship operator” sidebar of Book 1, Chapter 5 for details) in place of the !=,
<, <=, >, and >= operators. If you try to use these operators in a C++ 20 application,
you see an error message. See https://en.cppreference.com/w/cpp/memory/
unique_ptr and https://en.cppreference.com/w/cpp/memory/shared_ptr for
other version differences that could cause errors when updating your code.

Defining nullable values using
std::optional and std::nullopt
An optional value is one that may or may not be there. For example, a caller may
supply an int value when calling your function, or may send nothing at all. In
some cases, when an error occurs, the value may simply not exist. C++ developers
have tried to come up with all sorts of solutions to the problem of values not being
provided, but none of them is as good as using optional. If a value doesn’t appear
in the optional object, it’s easy to check using nullopt.

You may wonder why optional appears in this chapter. After all, it should possi-
bly appear in Book 1, Chapter 6 when working with functions. In many respects,
optional appears as a pointer because it supports many of the same features as
unique_ptr and shared_ptr do. For example, you have access to the reset()
and swap() functions, as described at https://en.cppreference.com/w/cpp/
utility/optional. It’s actually easier to understand optional after you get to
this point in the book, which is why it appears here.

The Optional example, shown in Listing 8-12, demonstrates how to create a
function that could receive a string, but then again, perhaps not. (Note that this
example may not run in Code::Blocks because of problems in GCC. Currently,

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 217

you must change the #include <optional> to read #include <experimental/
optional> because the support is experimental. There are other necessary changes
as well, which you can see in the OptionalExperimental project in the download-
able source code.)

LISTING 8-12:	 Using optional to Avoid Instances of Nothing

#include <iostream>
#include <optional>

using namespace std;

void myFunction(optional<string> name = nullopt) {
 if (name == nullopt) {
 cout << "I wish I knew your name!" << endl;
 } else {
 cout << "Hello " << name.value() << "!" << endl;
 }
}

int main() {
 myFunction();
 myFunction("Sarah");
 return 0;
}

In this case, you see myFunction(), which accepts nothing or a string. If the
caller sends nothing, then name equals nullopt. On the other hand, if the caller
sends a string, the code uses name.value() to obtain the string and print it
onscreen. Note that you can’t access the string directly but must call value()
instead. Here is the output from this example:

I wish I knew your name!
Hello Sarah!

You might be tempted to think that nullopt somehow equals nullptr. How-
ever, this isn’t the case. If you try to replace the nullopt check in Listing 8-12
with (ptr1 == nullptr), the compiler will complain loudly that you’re using the
wrong data type.

218 BOOK 1 Getting Started with C++

Passing Pointer Variables to Functions
One of the most important uses for pointers is this: If a pointer points to a
variable, you can pass the pointer to a function, and the function can modify
the original variable. This functionality lets you write functions that can actu-
ally modify the variables passed to them. Even though this section discusses raw
pointers, the same techniques work with smart pointers.

Normally, when you call a function and you pass a few variables to the function,
the computer just grabs the values out of the variables and passes those values.
Take a close look at the VariablePointer example, shown in Listing 8-13.

LISTING 8-13:	 A Function Cannot Change the Original Variables Passed into It

#include <iostream>

using namespace std;

void ChangesAreGood(int myparam) {
 myparam += 10;
 cout << "Inside the function:" << endl;
 cout << myparam << endl;
}

int main() {
 int mynumber = 30;
 cout << "Before the function:" << endl;
 cout << mynumber << endl;

 ChangesAreGood(mynumber);
 cout << "After the function:" << endl;
 cout << mynumber << endl;

 return 0;
}

Listing 8-13 includes a function called ChangesAreGood() that modifies the
parameter it receives. (It adds 10 to its parameter called myparam.) It then prints
the new value of the parameter.

The main() function initializes an integer variable, mynumber, to 30 and prints its
value. It then calls the ChangesAreGood() function, which changes its parameter.

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 219

After coming back from the ChangesAreGood() function, main() prints the value
again. When you run this application, you see the following output:

Before the function:
30
Inside the function:
40
After the function:
30

Before the function call, mynumber is 30. And after the function call, it’s still 30.
But the function added 10 to its parameter. This means that when the function
modified its parameter, the original variable remains untouched. The two are sep-
arate entities. Only the value 30 went into the function. The actual variable did
not. It stayed in main(). But what if you write a function that you want to modify
the original variable?

A pointer contains a number, which represents the address of a variable. If you
pass this address into a function and the function stores that address into one
of its own variables, its own variable also points to the same variable that the
original pointer did. The pointer variable in main() and the pointer variable in
the function both point to the same variable because both pointers hold the same
address.

That’s how you let a function modify data in a variable: You pass a pointer. But
when you call a function, the process is easy because you don’t need to make a
pointer variable. Instead, you can just call the function, putting an & in front of
the variable. Then you’re not passing the variable or its value — instead, you’re
passing the address of the variable.

The VariablePointer2 example, shown in Listing 8-14, is a modified form of
Listing 8-13; this time, the function actually manages to modify the original
variable.

LISTING 8-14:	 Using Pointers to Modify a Variable Passed into a Function

#include <iostream>

using namespace std;

void ChangesAreGood(int *myparam) {
 *myparam += 10;
 cout << "Inside the function:" << endl;

(continued)

220 BOOK 1 Getting Started with C++

 cout << *myparam << endl;
}

int main() {
 int mynumber = 30;
 cout << "Before the function:" << endl;
 cout << mynumber << endl;

 ChangesAreGood(&mynumber);
 cout << "After the function:" << endl;
 cout << mynumber << endl;

 return 0;
}

When you run this application, you see the following output:

Before the function:
30
Inside the function:
40
After the function:
40

Notice the important difference between this and the output from Listing 8-13:
The final line of output is 40, not 30. The variable was modified by the function!

To understand how this happened, first look at main(). The only difference in
main() is that it has an ampersand (&) in front of the mynumber argument in the
call to ChangesAreGood(). ChangesAreGood() receives the address of mynumber.

Now the function has some major changes. The function header takes a pointer
rather than a number. You perform this task by adding an asterisk (*) so that the
parameter is a pointer variable. This pointer receives the address being passed
into it. Thus, it points to the variable mynumber. Therefore, any modifications
made by dereferencing the pointer will change the original variable. The follow-
ing line changes the original variable.

 (*myparam) += 10;

LISTING 8-14:	 (continued)

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 221

The ChangesAreGood() function in Listing 8-14 no longer modifies its own
parameter. The parameter holds the address of the original mynumber variable,
and that never changes. Throughout the function, the pointer variable myparam
holds the mynumber address. And any changes the function performs are on the
dereferenced variable, which is mynumber.

Returning Pointer Variables
from Functions

Functions can return values, including pointers. To set up a function to return a
pointer, specify the type followed by an asterisk at the beginning of the function
header. The ReturnPointer example, shown in Listing 8-15, demonstrates this
technique. The function returns a pointer that is the result of a new operation.

LISTING 8-15:	 Returning a Pointer from a String Involves Using an Asterisk
in the Return Type

#include <iostream>
#include <sstream>
#include <stdlib.h>

using namespace std;

string *GetSecretCode() {
 string *code = new string;

PASSING BY VALUE VERSUS BY REFERENCE
If you work with other languages, you’ll come across the terms passing by value and
passing by reference. The first term, passing by value, means sending the actual value of
a variable to a function when you call it. When working with C++, you accomplish this
task by calling the function with the variable, as shown in Listing 8-13. The second term,
passing by reference, means sending the address of the variable to the function so that
the function can modify the original content of that variable. When working with C++,
you accomplish this task by calling the function with a pointer, as shown in Listing 8-14.
C++ uses the terminology it does because C++ can work with pointers directly rather
than hide the underlying mechanics of what is happening using special techniques or
keywords.

(continued)

222 BOOK 1 Getting Started with C++

 code->append("CR");

 int randomnumber = rand();
 ostringstream converter;
 converter << randomnumber;
 code->append(converter.str());

 code->append("NQ");
 return code;
}

int main() {
 string *newcode;

 for (int index = 0; index < 5; index++) {
 newcode = GetSecretCode();
 cout << *newcode << endl;
 }

 return 0;
}

The main() function creates a pointer to a string named newcode. GetSecret-
Code() returns a pointer to a string, so newcode and the function return value
match. When you use newcode, you must dereference it.

When you run this application, you see something like the following output:

CR41NQ
CR18467NQ
CR6334NQ
CR26500NQ
CR19169NQ

Never return from a function the address of a local variable in the function. The
local variables live in the stack space allocated for the function, not in the heap.
When the function is finished, the computer frees the stack space used for the
function, making room for the next function call. If you try this, the variables will
be okay for a while, but after enough function calls follow, the variable’s data will
get overwritten.

LISTING 8-15:	 (continued)

Re
fe

rr
in

g
to

 Y
ou

r
D

at
a

Th
ro

ug
h

Po
in

te
rs

CHAPTER 8 Referring to Your Data Through Pointers 223

Just as the parameters to a function are normally values, a function normally
returns a value. In the case of returning a pointer, the function is still returning
just a value — it is returning the value of the pointer, which is a number repre-
senting an address.

RANDOM NUMBERS AND STRINGS
Some special code appears in GetSecretCode() that requires explanation. The call
to int randomnumber = rand(); generates a random number. To obtain a random
number and convert it to a string, you add two more include lines:

#include <stdlib.h>
#include <sstream>

The first line provides access to the rand() function. The second line provides access to
the ostringstream type. Here are the three lines that perform the magic:

int randomnumber = rand();
ostringstream converter;
converter << randomnumber;

The first of these creates a random number by calling rand(), which returns an int.
The next line creates a variable of type ostringstream, which is a type that’s handy for
converting numbers to strings. A variable of this type has features similar to that of a
console. You can use the insertion operator (<<), except that instead of going to
the console, anything you write goes into a string of type ostringstream (which comes
from the words output, string, and stream; usually, things that allow the insertion oper-
ator << or the extraction operator >> to perform input and output are called streams).
You can add the resulting string onto the code string variable using:

code->append(converter.str());

The part inside parentheses — converter.str() — returns an actual string version
of the converter variable. You use the append() function to add the string to code.

2Understanding
Objects and
Classes

Contents at a Glance
CHAPTER 1:	 Working with Classes. . 227

Understanding Objects and Classes. . 227
Working with a Class. . 241
Starting and Ending with Constructors and Destructors. 259
Building Hierarchies of Classes. . 264
Creating and Using Object Aliases . . 267

CHAPTER 2:	 Using Advanced C++ Features 269
Filling Your Code with Comments. . 270
Converting Types. . 272
Reading from the Console. . 277
Understanding Preprocessor Directives . . 282
Using Constants. . 292
Using Switch Statements. . 295
Supercharging enums with Classes . . 298
Working with Random Numbers. . 300
Storing Data in Arrays. . 302

CHAPTER 3:	 Planning and Building Objects. . 309
Recognizing Objects . . 310
Encapsulating Objects. 316
Building Hierarchies. . 322

CHAPTER 4:	 Building with Design Patterns. . 335
Delving Into Pattern History. . 336
Introducing a Simple Pattern: the Singleton. 337
Watching an Instance with an Observer . . 341
Mediating with a Pattern . . 349

CHAPTER 1 Working with Classes 227

Working with Classes

Back in the early 1990s, the big buzzword in the computer world was object-
oriented. For anything to sell, it had to be object-oriented. Programming
languages were object-oriented. Software applications were object-

oriented. Computers were object-oriented. Unfortunately, object-oriented was
simply a cool catchphrase at the time that meant little in real terms. Often,
ideas begin poorly formed and gain resolution as people work to implement the
idea in the real world.

Now it’s possible to explore what object-oriented really means and how you can
use it to organize your C++ applications. In this chapter, you discover object-
oriented programming and see how you can do it in C++. Although people disagree
on the strict definition of object-oriented, in this book it means programming
with objects and classes.

Understanding Objects and Classes
Consider a pen, a regular, old pen. Here’s what you can say about it:

»» Ink Color: Black

»» Shell Color: Light gray

Chapter 1

IN THIS CHAPTER

»» Understanding objects and classes

»» Becoming familiar with methods and
properties

»» Making parts of a class public,
private, and protected

»» Using constructors and destructors

»» Building hierarchies of classes

228 BOOK 2 Understanding Objects and Classes

»» Cap Color: Black

»» Style: Ballpoint

»» Length: Six inches

»» Brand: Paper Mate

»» Ink Level: 50 percent full

»» Capability #1: Write on paper

»» Capability #2: Break in half

»» Capability #3: Run out of ink

Now, look around for other things, such as a printer. Here’s a description of a
printer:

»» Kind: Laser

»» Brand: HP

»» Model: MFP M479fdw

»» Ink Color: Color

»» Case Color: Cream

»» Input trays: One

»» Output trays: One

»» Connection: Ethernet/Wi-Fi/ Wi-Fi Direct

»» Capability #1: Reads print job requests from the device

»» Capability #2: Prints on sheets of paper

»» Capability #3: Prints a test page

»» Capability #4: Needs the toner cartridges replaced when empty

These lists describe the objects you might see. They provide dimensions, color,
model, brand, and other details. The lists also describe what the objects can do.
The pen can break in half and run out of ink. The printer can take print jobs, print
pages, and have its cartridges replaced.

When describing what objects can do, you carefully write it from the perspective
of the object itself, not from the perspective of the person using the object. A good
way to name the capability is to test it by preceding it with the words “I can” and

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 229

see if it makes sense. Thus, because “I can write on paper” works from the per-
spective of a pen, the list contains write on paper for one of the pen’s capabilities.
But is seeing all the objects in the universe possible, or are some objects hidden?
Certainly, some objects are physical, like atoms or the dark side of the moon, and
you can’t see them. But other objects are abstract. For example, you may have a
credit card account. What is a credit card account, exactly? A credit card account
is abstract because you can’t touch it — it has no physical presence. The follow-
ing sections of the chapter examine various kinds of objects: those with physical
representations and those that are abstract.

USING ENUMERATIONS
Someone may think that the number 12 is a good representation of the color blue, and
the number 86 is a good representation of the color red. Purple? That’s 182. Beige?
That’s getting up there — it’s 1047. Yes, this sounds kind of silly. But suppose that you
want to create a variable that holds the color blue. Using the standard types of inte-
gers, floating-point numbers, characters, and letters, you don’t have a lot of choices. In
the old days, people would just pick a number to represent each color and store that
number in a variable. Or, you could have saved a string, as in blue. But C++ presents
a better alternative. It’s called an enumeration, which mates a human-understandable
term like blue to a computer-friendly value like 12. Remember that for each type,
there’s a whole list of possible values. An integer, for example, can be a whole number
within a particular range. (This range varies between computers, but it’s usually pretty
big.) Strings can be any characters, all strung together. But what if you want a value
called blue? Or red? Or even beige? Then you need enumerations. This line creates
an enumeration type:

enum MyColor {blue, red, green, yellow, black, beige};

You now have a new type called MyColor, which you can use the same way you can use
other types, such as int, double, or string. For example, you can create a variable of
type MyColor and set its value to one of the values in the curly braces:

MyColor inkcolor = blue;
MyColor shellcolor = black;

The variable inkcolor is of type MyColor, and its value is blue. The variable shell-
color is also of type MyColor, and its value is black.

230 BOOK 2 Understanding Objects and Classes

Classifying classes and objects
When you pick up a pen, you can ask somebody, “What type of object is this an
instance of?” Most people would probably say, “a pen.” In computer program-
ming, instead of using type of object, you say class. This thing in your hand belongs
to the pen class. Now if you point to the object parked out in the driveway and
ask, “What class does that belong to?” the answer is, “class Car.” Of course, you
could be more specific. You may say that the object belongs to class 2020 Ford
Taurus.

When you see a pen, you might ask what class this object belongs to. If you then
pick up another pen, you see another example of the same class. One class; sev-
eral examples. If you stand next to a busy street, you see many examples of the
class called car. Or you may see many examples of the class Ford Explorer, a few
instances of the class Toyota Corolla, and so on. It depends on how you classify
those objects roaring down the road. Regardless, you likely see several examples
of any given class.

So when you organize things, you specify a class, which is the type of object. And
when you’re ready, you can start picking out examples (or instances) of the class.
Each class may have several instances. Some classes have only one instance.
That’s a singleton class. For example, at any given time, the class United States
President would have one instance.

CLASS NAMES AND CLASS FILES
In Listings 1-3 and 1-5, nearby in this chapter, you see the filenames match the name
of the class. Common practice when creating a class is to put the class definition in a
header file of the same name as the class but with an .h extension. And you put the
class method code in a source code file of the same name as the class but this time with
a .cpp extension. You also capitalize the filenames the same as the class name; thus,
the files are called Pen.h and Pen.cpp. Naming the files the same as classes has lots of
advantages:

•	 You automatically know the name of the header file you need to include if you want
to use a certain class.

•	 It provides a general consistency, which is always good in reducing the complexities
of programming.

•	When you see a header file, you know what class is probably inside it.

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 231

Describing methods and data
If you choose a class, you can describe its characteristics. However, because you’re
describing only the class characteristics, you don’t actually specify them. You may
say the pen has an ink color, but you don’t actually say what color. That’s because
you don’t yet have an example of the class Pen. You have only the class itself.
When you finally find an example, it may be one color, or it may be another. So, if
you’re describing a class called Pen, you may list the characteristics presented in
the introduction to this section.

You don’t specify ink color, shell color, length, or any of these properties (terms
that describe the class) as actual values. You’re listing only general characteristics
for all instances of the class Pen. That is, every pen has these properties. But the
actual values for these properties might vary from instance to instance. One pen
may have a different ink color from another, but both might have the same brand.
Nevertheless, they are both separate instances of the class Pen.

After creating an instance of class Pen, you can provide values for the properties.
For example, Table 1-1 lists the property values of three actual pens.

In Table 1-1, the first column holds the property names. The second column holds
property values for the first pen. The third column holds the property values for
the second pen, and the final column holds the property values for the third pen.
All the pens in the class share properties. But the values for these properties may
differ from pen to pen. When you instantiate (build or create) a new Pen, you follow
the list of properties, giving the new pen instance its own values. You may make
the shell purple with yellow speckles, or you may make it transparent. But you
would give it a shell that has some color, even if that color is transparent.

TABLE 1-1	 Specifying Property Values for Instances of Class Pen
Property Name First Pen Second Pen Third Pen

Ink Color Blue Red Black

Shell Color Grey Red Grey

Cap Color Blue Black Black

Style Ballpoint Fountain Felt-tip

Length 5.5 inches 5 inches 6 inches

Brand Office Depot Parker Paper Mate

Ink Level 30% 60% 90%

232 BOOK 2 Understanding Objects and Classes

In Table 1-1, you didn’t see a list of methods (ways of interacting with the Pen class
to exercise its capabilities). But all these pens have the same methods:

»» Method #1: Write on paper

»» Method #2: Break in half

»» Method #3: Run out of ink

Unlike properties, methods don’t change from instance to instance. They are the
same for each class.

When you describe classes to build a computer application using a class, you are
modeling. In the preceding examples, you modeled a class called Pen. In the fol-
lowing section, you implement this model by writing an application that mimics
a pen using the Pen class.

If you work with enums (the code form of enumerations), you need to decide
what to name your new type. For example, you can choose MyColor or MyColors.
Many people, when they write a line such as enum MyColor {blue, red, green,
yellow, black, beige};, make the name plural (MyColors) because this is a list
of colors. It’s best to make the term singular, as in MyColor, because you use only
one color at a time. When you declare a variable, it makes more sense: MyColor
inkcolor; would mean that inkcolor is a color — not a group of colors.

Implementing a class
To implement a class in C++, you use the keyword class. And then you add the
name of the class, such as Pen. You then add an open brace, list your properties
and methods, and end with a closing brace.

Most people capitalize the first letter of a class name in C++, and if their class
name is a word, they don’t capitalize the remaining letters. Although you don’t
have to follow this rule, many people do. You can choose any name for a C++ class
provided it is not a C++ keyword; it consists only of letters, digits, and under-
scores; and it does not start with a number.

The PenClass example, shown in Listing 1-1, contains a C++ class description
that appears inside the Pen.h header file. (See Book 1, Chapter 7, for informa-
tion on how to put code in a header file.) Review the header file, and you see how
it implements the different characteristics. The properties of a header file are
just like variables: They have a type and a name. The methods are implemented

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 233

using functions. All this code goes inside curly brackets and is preceded by a class
header. The header gives the name of the class. And, oh yes, the word public is
stuck in there, and it has a colon after it. The “Accessing members,” section later
in this chapter explains the word public. By itself, this code isn’t very useful,
but you put it to use in Listing 1-2, an application that you can actually compile
and run.

LISTING 1-1:	 Pen.h Contains the Class Description for Pen

#ifndef PEN_H_INCLUDED
#define PEN_H_INCLUDED
using namespace std;
enum Color {
 blue,
 red,
 black,
 clear,
 grey
};

enum PenStyle {
 ballpoint,
 felt_tip,
 fountain_pen
};

class Pen {
public:
 Color InkColor;
 Color ShellColor;
 Color CapColor;
 PenStyle Style;
 float Length;
 string Brand;
 int InkLevelPercent;

 void write_on_paper(string words) {
 if (InkLevelPercent <= 0) {
 cout << "Oops! Out of ink!" << endl;
 }
 else {
 cout << words << endl;

(continued)

234 BOOK 2 Understanding Objects and Classes

 InkLevelPercent = InkLevelPercent - words.length();
 }
 }

 void break_in_half() {
 InkLevelPercent = InkLevelPercent / 2;
 Length = Length / 2.0;
 }

 void run_out_of_ink() {
 InkLevelPercent = 0;
 }
};
#endif // PEN_H_INCLUDED

When you write a class, you always end it with a semicolon. Write that down on a
sticky note and hang it on the refrigerator. The effort spent in doing this will be
well worth avoiding the frustration of wondering why your code won’t compile.

In a class definition, you describe the characteristics and capabilities (that is, sup-
ply the properties and methods, respectively).

Note in Listing 1-1, earlier in this chapter, that the methods access the properties.
However, we said that these variables don’t have values yet, because this is just a
class, not an instance of a class. How can that be? When you create an instance of
this class, you can give values to these properties. Then you can call the methods.
And here’s the really great part: You can make a second instance of this class and
give it its own values for the properties. Yes, the two instances will each have their
own sets of properties. And when you run the methods for the second instance,
these functions operate on the properties for the second instance. Isn’t C++ smart?
Now look at Listing 1-2. This is a source file that uses the header file in Listing 1-1.
In this code, you see the Pen class in action.

LISTING 1-2:	 main.cpp Contains Code That Uses the Class Pen

#include <iostream>
#include "Pen.h"

using namespace std;

int main() {
 Pen FavoritePen;

LISTING 1-1:	 (continued)

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 235

 FavoritePen.InkColor = blue;
 FavoritePen.ShellColor = grey;
 FavoritePen.CapColor = blue;
 FavoritePen.Style = ballpoint;
 FavoritePen.Length = 5.5;
 FavoritePen.Brand = "Office Depot";
 FavoritePen.InkLevelPercent = 30;

 Pen WorstPen;
 WorstPen.InkColor = red;
 WorstPen.ShellColor = red;
 WorstPen.CapColor = black;
 WorstPen.Style = fountain_pen;
 WorstPen.Length = 5.0;
 WorstPen.Brand = "Parker";
 WorstPen.InkLevelPercent = 60;

 cout << "This is my favorite pen" << endl;
 cout << "Color: " << FavoritePen.InkColor << endl;
 cout << "Brand: " << FavoritePen.Brand << endl;
 cout << "Ink Level: " << FavoritePen.InkLevelPercent
 << "%" << endl;
 FavoritePen.write_on_paper("Hello I am a pen");
 cout << "Ink Level: " << FavoritePen.InkLevelPercent
 << "%" << endl;

 return 0;
}

There are two variables of class Pen: FavoritePen and WorstPen. To access
the properties of these objects, you type the name of the variable holding the
object, a dot (or period), and then the property name. For example, to access the
InkLevelPercent member of WorstPen, you type:

WorstPen.InkLevelPercent = 60;

Remember, WorstPen is the variable name, and this variable is an object. It is an
object or an instance of class Pen. This object has various properties, including
InkLevelPercent.

You can also run some of the methods that are in these objects. This code calls:

FavoritePen.write_on_paper("Hello I am a pen");

236 BOOK 2 Understanding Objects and Classes

This called the function write_on_paper() for the object FavoritePen. Look at
the code for this function, which is in the header file, Listing 1-1:

void write_on_paper(string words) {
 if (InkLevelPercent <= 0) {
 cout << "Oops! Out of ink!" << endl;
 }
 else {
 cout << words << endl;
 InkLevelPercent = InkLevelPercent - words.length();
 }
}

This function uses the variable called InkLevelPercent. But InkLevelPercent
isn’t declared in this function. The reason is that InkLevelPercent is part of the
object and is declared in the class. Suppose you call this method for two different
objects, as in the following:

FavoritePen.write_on_paper("Hello I am a pen");
WorstPen.write_on_paper("Hello I am another pen");

The first of these lines calls write_on_paper() for the FavoritePen object;
thus, inside the code for write_on_paper(), the InkLevelPercent refers to Ink-
LevelPercent for the FavoritePen object. It looks at and possibly decreases the
variable for that object only. But WorstPen has its own InkLevelPercent property,
separate from that of FavoritePen. So in the second of these two lines, write_on_
paper() accesses and possibly decreases the InkLevelPercent that lives inside
WorstPen. In other words, each object has its own InkLevelPercent. When you
call write_on_paper(), the function modifies the property based on which object
you are calling it with. The first line calls it with FavoritePen. The second calls
it with WorstPen. When you run this application, you see the following output:

This is my favorite pen
Color: 0
Brand: Office Depot
Ink Level: 30%
Hello I am a pen
Ink Level: 14%

You should notice something about the color line. Here’s the line of code that
writes it:

cout << "Color: " << FavoritePen.InkColor << endl;

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 237

This line outputs the InkColor member for FavoritePen. But what type is
InkColor? It’s the new Color enumerated type. But something is wrong. It printed
0 despite being set as follows:

FavoritePen.InkColor = blue;

The code sets it to blue, not 0. Unfortunately, that’s the breaks with using enum.
You can use it in your code, but under the hood, it just stores numbers. When
printed, you get a number. The compiler chooses the numbers for you, and it
starts the first entry in the enum list as 0, the second as 1, then 2, then 3, and
so on. Thus, blue is stored as 0, red as 1, black as 2, clear as 3, and grey as 4.
Fortunately, people have found a way to create a new class that handles the enum
for you (that is, it wraps around the enum), and then you can print what you really
want: blue, red, black, clear, and grey. Book 2, Chapter 2 has tips on how to do
this astounding feat.

Remember that you can create several objects (also called instances) of a single
class. Each object gets its own properties, which you declare in the class. To access
the members of an object, you use a period, or dot.

Separating method code
When you work with functions, you can either make sure that the code to your
function is positioned before any calls to the function, or you can use a forward
reference, also called a function prototype. Book 1, Chapter 6 discusses this feature.

THE STRING CLASS
If you’ve been reading the previous chapters of Book 1 (and now this first chapter of
Book 2), and trying the applications, you have seen the string type. Now for the big
secret: string is actually a class. When you create a variable of type string, you are
creating an object of class string. That’s why, to use the string functions, you first
type the variable name, a dot, and then the function name: You are really calling a
method for the string object that you created. Similarly, when you work with point-
ers to strings, instead of a dot you can use the -> notation to access the methods. (See
“Using classes and raw pointers,” later in this chapter, for more information.) When
working with newer versions of C++, the string class is part of the std namespace,
which is why you add using namespace std; to the beginning of your code. If you
use an older version of C++, the string class appears as part of the string file. In
this case, you include <string> to provide the necessary header files to declare the
string class.

238 BOOK 2 Understanding Objects and Classes

When you work with classes and methods, you have a similar option. Most C++
programmers prefer to keep the code for their methods outside the class defini-
tion. The reason for placing them outside is to make the code easier to read; you
don’t end up with a single, huge block of code that is incredibly difficult to follow.
In addition, someone using the class may not care about how the methods work,
so keeping things simple is the best option. The class definition contains only
method prototypes, or, at least, mostly method prototypes. If the method is one
or two lines of code, people may leave it in the class definition.

When you use a method prototype in a class definition, you write the prototype by
ending the method header with a semicolon where you would normally have the
open brace and code. If your method looks like this:

void break_in_half() {
 InkLevelPercent = InkLevelPercent / 2;
 Length = Length / 2.0;
}

a method prototype would look like this:

void break_in_half();

After you write the method prototype in the class, you write the method code
again outside the class definition. However, you need to doctor it up just a bit. In
particular, you need to throw in the name of the class, so that the compiler knows
which class this method goes with. The following is the same method described
earlier, but with the class information included. You separate the class name and
method name with a scope resolution operator (::) that links the method to the
class:

void Pen::break_in_half() {
 InkLevelPercent = InkLevelPercent / 2;
 Length = Length / 2.0;
}

You put the method after your class definition. And you would want to put the
method code inside one of your source code files if your class definition is in a
header file.

You can use the same method name in different classes. As are variables in dif-
ferent functions, method names are associated with a particular class using the
scope resolution operator. Although you don’t want to go overboard on duplicat-
ing method names, if you feel a need to, you can certainly do it without a problem.

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 239

For example, toString() is a common method name and you often see it provided
with a wide range of classes in your application.

The PenClass2 example, shown in Listings 1-3 and 1-4, contains the modified
version of the Pen class that appeared earlier in this chapter in Listing 1-1. You can
use these two files together with Listing 1-2, which hasn’t changed.

LISTING 1-3:	 Using Method Prototypes with the Modified Pen.h file

#ifndef PEN_H_INCLUDED
#define PEN_H_INCLUDED

using namespace std;
enum Color {
 blue,
 red,
 black,
 clear,
 grey
};

enum PenStyle {
 ballpoint,
 felt_tip,
 fountain_pen
};

class Pen {
public:
 Color InkColor;
 Color ShellColor;
 Color CapColor;
 PenStyle Style;
 float Length;
 string Brand;
 int InkLevelPercent;
 void write_on_paper(string words);
 void break_in_half();
 void run_out_of_ink();
};

#endif // PEN_H_INCLUDED

240 BOOK 2 Understanding Objects and Classes

LISTING 1-4:	 Containing the Methods for Class Pen in the New Pen.cpp File

#include <iostream>
#include "Pen.h"

using namespace std;

void Pen::write_on_paper(string words) {
 if (InkLevelPercent <= 0) {
 cout << "Oops! Out of ink!" << endl;
 }
 else {
 cout << words << endl;
 InkLevelPercent = InkLevelPercent - words.length();
 }
}

void Pen::break_in_half() {
 InkLevelPercent = InkLevelPercent / 2;
 Length = Length / 2.0;
}

void Pen::run_out_of_ink() {
 InkLevelPercent = 0;
}

All the functions from the class are now in a separate source (.cpp) file. The
header file now just lists prototypes and is a little easier to read. The source file
includes the header file at the top. That’s required; otherwise, the compiler won’t
know that Pen is a class name, and it will get confused (as it so easily can).

The parts of a class
Here is a summary of the parts of a class and the different ways classes can work
together:

»» Class: A class is a type. It includes properties and methods. Properties describe
the class, and methods describe its behaviors.

»» Object: An object is an instance of a class. Think of the class as a blueprint and
the object as the building created from the blueprint. You need only one
blueprint to build multiple buildings of precisely the same type. Each building
is an instance of that blueprint.

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 241

»» Class definition: The class definition describes the class. It starts with the
word class, and then has the name of the class, followed by an open brace
and closing brace. Inside the braces are the members of the class.

»» Property: A property is a characteristic in a class, such as a color, style, or
other descriptive element. You list the properties inside the class (normally
before any methods, but there is no rule that says you must do so). Each
instance of the class gets its own copy of each property.

»» Method: A method is a capability of a class — some task that the class can
perform. As with properties, you list methods inside the class. When you call a
method for a particular instance, the method accesses the properties for the
instance.

When you divide the class, you put part in the header file and part in the source
code file. The following list describes what goes where:

»» Header file: Put the class definition in the header file. Properties appear as
part of the class definition within the header. You can include the method
code inside the class definition if it’s a short method. Most people prefer not
to put any method code longer than a line or two in the header — in fact,
many don’t put any method code at all in the header. You may want to name
the header file the same as the class but with an .h or .hpp extension. Thus,
the class Pen, for instance, might be in the file Pen.h.

»» Source file: If your class has methods, and you didn’t put the code in the class
definition, you need to put the code in a source file. When you do, precede the
function name with the class name and the scope resolution operator (::). If
you named the header file the same as the class, you probably want to name
the source file the same as the class as well but with a .cpp extension.

Working with a Class
Many handy tricks are available for working with classes. In this section, you
explore several clever ways of working with classes, starting with the way you
can hide certain parts of your class from other functions that are accessing them.

Accessing members
When you work with an object in real life, there are often parts of the object that
you interact with and other parts that you don’t. For example, when you use the
computer, you type on the keyboard but don’t open the box and poke around with

242 BOOK 2 Understanding Objects and Classes

a wire attached to a battery. For the most part, the stuff inside is off-limits except
when you’re upgrading it.

In object terminology, the words public and private refer to properties and meth-
ods. When you design a class, you might want to make some properties and meth-
ods freely accessible by class users. You may want to keep other members tucked
away. A class user is the part of an application that creates an instance of a class
and calls one of its methods. In Listing 1-2, earlier in the chapter, main() is a class
user. If you have a function called FlippityFlop() that creates an instance of
your class and does a few things to the instance, such as change some its proper-
ties, FlippityFlop() is a class user. In short, a user is any function that accesses
your class.

When designing a class, you may want only specific users calling certain
methods. You may want to keep other methods hidden away, to be called only
by other methods within the class. Suppose you’re writing a class called Oven.
This class includes a method called Bake(), which takes a number as a parame-
ter representing the desired oven temperature. Now you may also have a method
called TurnOnHeatingElement() and one called TurnOffHeatingElement().

Here’s how it would work. The Bake() method starts out calling TurnOnHeating
Element(). Then it keeps track of the temperature, and when the temperature is
correct, it calls TurnOffHeatingElement(). You wouldn’t want somebody walking
in the kitchen and calling the TurnOnHeatingElement() method without touch-
ing any of the dials, only to leave the room as the oven gets hotter and hotter
with nobody watching it. You allow the users of the class to call only Bake(). The
other two methods, TurnOnHeatingElement() and TurnOffHeatingElement(),
are reserved for use only by the Bake() function.

You bar users from calling functions by making specific functions private. Func-
tions that you want to allow access to you make public. After you design a class,
if you write a function that instantiates an object based on that class that tries to
call one of an object’s private methods, you get a compiler error when you try to
compile it. The compiler won’t allow you to call it.

The OvenClass example, shown in Listing 1-5, defines a sample Oven class and a
main() that uses it. Look at the class definition. It has two sections: one private
and the other public. The code for the functions appears after the class definition.
The two private functions don’t do much other than print a message. (Although
they’re also free to call other private functions in the class.) The public function,
Bake(), calls each of the private functions, because it’s allowed to.

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 243

LISTING 1-5:	 Using the Public and Private Words to Hide Parts of Your Class

#include <iostream>

using namespace std;

class Oven {
private:
 void TurnOnHeatingElement();
 void TurnOffHeatingElement();
public:
 void Bake(int Temperature);
};

void Oven::TurnOnHeatingElement() {
 cout << "Heating element is now ON! Be careful!" << endl;
}

void Oven::TurnOffHeatingElement() {
 cout << "Heating element is now off. Relax!" << endl;
}

void Oven::Bake(int Temperature) {
 TurnOnHeatingElement();
 cout << "Baking!" << endl;
 TurnOffHeatingElement();
}

int main() {
 Oven fred;
 fred.Bake(875);
 return 0;
}

When you run this application, you see some messages:

Heating element is now ON! Be careful!
Baking!
Heating element is now off. Relax!

Nothing too fancy here. Now if you tried to include a line in your main() such as
the one in the following code, where you call a private function

fred.TurnOnHeatingElement();

244 BOOK 2 Understanding Objects and Classes

you see an error message telling you that you can’t do it because the function is
private. In Code::Blocks, you see this message:

error: 'void Oven::TurnOnHeatingElement()' is private

When you design your classes, consider making all the functions private by
default, and then only make those public that you want users to access. Some
people, however, prefer to go the other way around: Make them all public, and
only make those private that you are sure you don’t want users to access. There
are good arguments for either approach; however, the preference in this book is
to make public only what must be public. This approach minimizes the risk of
some other application that’s using that class creating errors by calling things the
programmer doesn’t really understand.

You don’t necessarily need to list the private members first followed by the public
members. You can put the public members first if you prefer. Some people put
the public members at the top so they see them first. That makes sense. Also, you
can have more than one private section and more than one public section. For
example, you can have a public section, a private section, and then another public
section, as in the following code:

class Oven {
public:
 void Bake(int Temperature);
private:
 void TurnOnHeatingElement();
 void TurnOffHeatingElement();
public:
 void Broil();
};

Using classes and raw pointers
This and other sections of the chapter discuss the use of raw pointers with objects.
In the “Understanding the Changes in Pointers for C++ 20” section of Book 1,
Chapter 8, you discover that there are other pointer types, including smart and
optional pointers. Because most code still relies on raw pointers to work with
objects, the majority of this chapter focuses on their use.

As with any variable, you can have a pointer variable that points to an object. As
usual, the pointer variable’s type must match the type of the class. This creates a
pointer variable that points to a Pen instance:

Pen *MyPen;

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 245

The variable MyPen is a pointer, and it can point to an object of type Pen. The vari-
able’s own type is pointer to Pen, or in C++ notation, Pen *. Because you’re always
working with pointers when interacting with objects, you leave ptr off the variable
name to save typing time and focus attention on the variable’s purpose, which is
to serve as your personal pen.

A line of code like Pen *MyPen; creates a variable that serves as a pointer to an
object. But this line, by itself, does not actually create an instance. By itself, it
points to nothing. To create an instance, you have to call new. This is a common
mistake among C++ programmers; sometimes people forget to call new and won-
der why their applications crash.

After you create the variable MyPen, you can create an instance of class Pen and
point MyPen to it using the new keyword, like so:

MyPen = new Pen;

Or you can combine both Pen *MyPen; and the preceding line:

Pen *MyPen = new Pen;

Now you have two variables: You have the actual object, which is unnamed and sit-
ting on the heap. (See the “Heaping and Stacking the Variables” section of Book 1,
Chapter 8, for more information on pointers and heaps.) You also have the pointer
variable, which points to the object: two variables working together. Because the
object is out on the heap, the only way to access it is through the pointer. To access
the members through the pointer, you use a special notation — a minus sign fol-
lowed by a greater-than sign. It bears a passing resemblance to an arrow (and is
therefore called the arrow operator), as the following line makes clear:

MyPen->InkColor = red;

This goes through the MyPen pointer to set the InkColor property of the object
to red.

As with other variables you created with new, after you are finished using an
object, you should call delete to free the memory used by the object pointed to
by MyPen. To do so, start with the word delete and then the name of the object
pointer, MyPen, as in the following:

delete MyPen;

246 BOOK 2 Understanding Objects and Classes

Store a 0 in the pointer after you delete the object it points to. When you call
delete on a pointer to an object, you are deleting the object itself, not the pointer.
If you don’t store a 0 in the pointer, it still points to where the object used to be.

The PenClass3 example, shown in Listing 1-6, demonstrates the process of
declaring a pointer, creating an object and pointing to it, accessing the object’s
members through the pointer, deleting the object, and clearing the pointer
back to 0.

LISTING 1-6:	 Managing an Object’s Life

#include <iostream>
#include "../PenClass2/Pen.h"

using namespace std;

int main() {
 Pen *MyPen;
 MyPen = new Pen;
 MyPen->InkColor = red;

CREATING A PEN.CPP AND PEN.H
REFERENCE
To use this example and others in the chapter that reference Pen.cpp and Pen.h,
you must include Pen.cpp and Pen.h from the PenClass2 example using the tech-
nique described in the “Creating a project with multiple existing files” section of Book 1,
Chapter 7. Notice that because Pen.h doesn’t appear in the current directory, you must
make a relative reference (the ../PenClass2/ part) to it in Listing 1-6. As shown in the
following figure, if you add Pen.cpp and Pen.h to the project first, and then type the
#include " statement, Code::Blocks will actually provide the relative reference for you.

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 247

 cout << MyPen->InkColor << endl;
 delete MyPen;
 MyPen = 0;
 return 0;
}

Table 1-2 reiterates the process (steps) shown in Listing 1-6 in a more formal
way. The table is called “Steps to Using Objects” rather than something more
specific such as “Using Objects with Pointers” because the majority of your work
with objects will be through pointers. Therefore, this is the most common way of
using pointers.

Now that you have an overview of the process through Listing 1-6 and understand
the basics through Table 1-2, you can see how to formalize the procedure. The fol-
lowing steps describe precisely how to work with raw pointers and objects:

1.	 Declare the pointer.

The pointer must match the type of object you intend to work with, except that
the pointer’s type name in C++ is followed by an asterisk, *.

2.	 Call new, passing the class name, and store the results of new in the
pointer.

You can combine Steps 1 and 2 into a single step.

3.	 Access the object’s members through the pointer with the arrow
operator, ->.

You could dereference the pointer and put parentheses around it, but
everyone uses the shorthand notation.

TABLE 1-2	 Steps to Using Objects
Step Sample Code Action

1 Pen *MyPen; Declares the pointer

2 MyPen = new Pen; Calls new to create the object

3 MyPen->InkColor = red; Accesses the members of the object
through the pointer

4 delete MyPen; Deletes the object

5 MyPen = 0; Clears the pointer

248 BOOK 2 Understanding Objects and Classes

4.	 When you are finished with the pointer, call delete.

This step frees the object from the heap. Remember that this does not delete
the pointer itself, but frees the object memory.

5.	 Clear the pointer by setting it to 0.

If your delete statement is at the end of the application, you don’t need to
clear the pointer to 0 because the pointer is going out of scope. The pointer
won’t exist any longer, so setting it to 0 isn’t essential, but it’s good practice
because you get into the habit of doing it in places where clearing the pointer
to 0 would be important.

Using classes and smart pointers
If you’re working with C++ 17 or above, you probably want to use smart pointers
with your objects, rather than the labor-intensive and error-prone raw point-
ers. The SmartPtr example, shown in Listing 1-7, shows the same process as
Listing 1-6 but uses smart pointers instead. You still need to add Pen.cpp and
Pen.h from PenClass2.

LISTING 1-7:	 Managing an Object’s Life Using Smart Pointers

#include <iostream>
#include <memory>
#include "../PenClass2/Pen.h"

using namespace std;

int main() {
 unique_ptr<Pen> MyPen;
 MyPen.reset(new Pen());
 MyPen->InkColor = red;
 cout << MyPen->InkColor << endl;
 MyPen.reset();
 return 0;
}

You wouldn’t ordinarily assign an object to a unique_ptr as a separate step, but
this example shows you how by using reset(). In this case, you actually reset
MyPen to point to a new object, new Pen(), which must include the opening and
closing parentheses. If you were to do this in an application, reset() would
take care of freeing any old object before pointing MyPen to any new object. The
“Creating smart pointers using std::unique_ptr and std::shared_ptr” section of
Book 1, Chapter 8 shows the standard approach to creating smart pointers.

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 249

Notice that you still use the arrow operator to assign the color red to
MyPen->InkColor and to retrieve the value later. This part of the code appears
the same as when using a raw pointer. The final step is to free the object memory
using reset(). The pointer will automatically delete itself, saving you a line of
code in this example.

Passing objects to functions
When you write a function, normally you base your decision about using point-
ers on whether or not you want to change the original variables passed into the
function. Suppose you have a function called AddOne(), and it takes an integer as
a parameter. If you want to modify the original variable, you can use a pointer (or
you can use a reference). If you don’t want to modify the variable, just pass the
variable by value.

The following prototype represents a function that can modify the variable passed
into it:

void AddOne(int *number);

And this prototype represents a function that cannot modify the variable passed
into it:

void AddOne(int number);

With objects, you can do something similar. For example, this function takes a
pointer to an object and can, therefore, modify the object:

void FixFlatTire(Car *mycar);

This version doesn’t allow modification of the original object:

void FixFlatTire(Car mycar);

However, unlike a primitive type, the function gets its own instance. In other
words, every time you call this function, it creates an entirely new instance of
class Car. This instance would be a duplicate copy of the myCar object that is an
instance of class Car — it wouldn’t be the same instance.

When you work with objects, a complete copy is not always a sure thing. The orig-
inal object may have properties that are pointers to other objects, but the object
copy may not get copies of those pointers. The properties that contain pointers
may end up blank (due to a lack of proper copying technique), point to the same

250 BOOK 2 Understanding Objects and Classes

values as the original (a shallow copy), or point to new variables (a deep copy).
The difference is the kind of copy that the object provides:

»» Shallow: C++ copies the object and its property values precisely as provided in
the original object. If the original object doesn’t rely on any sort of dynamic
memory allocation, as is the case when working the primitives, the copy will
work precisely as planned.

»» Deep: C++ not only copies the original object, but also allocates memory for
any objects pointed to by the original object. So, the copy not only copies the
original object, but any objects pointed to by that object. The two copies are
completely separate.

A problem occurs when any of the subsidiary objects also have pointers to
other objects. Now you have an entirely new level of objects to worry about.
The topic of shallow and deep copying can become incredibly complex. If you
want to know more, check out the article at https://www.learncpp.com/
cpp-tutorial/915-shallow-vs-deep-copying/.

The smart move with objects is to always pass objects as pointers. Don’t pass
objects directly into functions. Yes, it risks bad code changing the object, but care-
ful C++ programmers want the actual object, not a copy. Having access to the
original outweighs the risk of an accidental change. This chapter explains how
to prevent accidental changes by using the const parameters in the next section.

Because your function receives its objects as pointers, you continue accessing
them by using the arrow operator. For example, the function FixFlatTire() may
do this:

void FixFlatTire(Car *mycar) {
 mycar->RemoveTire();
 mycar->AddNewTire();
}

Or, if you prefer references, you would do this:

void FixFlatTire2(Car &mycar) {
 mycar.RemoveTire();
 mycar.AddNewTire();
}

Remember that pointers contain the address of an object, while a reference is
simply another name (alias) for an object. Even though the reference is still an
address, it’s the actual address of the object, rather than a pointer to the object.
(Book 1, Chapter 8 discusses pointers in more detail.) In this code, because you’re

https://www.learncpp.com/cpp-tutorial/915-shallow-vs-deep-copying/
https://www.learncpp.com/cpp-tutorial/915-shallow-vs-deep-copying/

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 251

dealing with a reference, you access the object’s members using the dot operator
(.) rather than the arrow operator (->).

Another reason to use only pointers and references as parameters for objects is
that a function that takes an object as a parameter usually wants to change the
object. Such changes require pointers or references.

Using const parameters in functions
A constant is a variable or object that another function can’t change even when
you pass a reference to it to another function. To define a variable or an object
as constant, unchangeable, you use the const keyword. For example, to define a
variable as constant, you use:

const int MyInt = 3;

If someone were to come along and try to use this code:

MyInt = 4;

The compiler would display an error message saying, error: assignment of
read-only variable 'MyInt'. The same holds true for a function using a const
primitive like this one:

void DisplayInt(const int Value) {
 cout << Value << endl;
}

It’s possible to display Value or interact with it in other ways, but trying to change
Value will raise an error. This version will raise an error because Value is being
changed:

void DisplayInt(const int Value) {
 Value += 1;
 cout << Value << endl;
}

The const keyword is useful when working with objects because you generally
don’t want to pass an object directly. That involves copying the object, which is
messy. Instead, you normally pass by using a pointer or reference, which would
allow you to change the object. If you put the word const before the parameter,
the compiler won’t allow you to change the parameter. The PenClass4 example
that appears in Listing 1-8 has const inserted before the parameter. The function
can look at the object but can’t change it.

252 BOOK 2 Understanding Objects and Classes

LISTING 1-8:	 The Inspect Function Is Not Allowed to Modify Its Parameter

#include <iostream>
#include "../PenClass2/Pen.h"

using namespace std;

void Inspect(const Pen *Checkitout) {
 cout << Checkitout->Brand << endl;
}

int main() {
 Pen *MyPen = new Pen();
 MyPen->Brand = "Spy Plus Camera";
 Inspect(MyPen);
 return 0;
}

Now suppose that you tried to change the object in the Inspect function. You may
have put a line in that function like this:

Checkitout->Length = 10.0;

If you try this, the compiler issues an error. In Code::Blocks, you get: error:
assignment of member 'Pen::Length' in read-only object.

If you have multiple parameters, you can mix const and non-const. If you go
overboard, this can be confusing. The following line shows two parameters that
are const and another that is not. The function can modify only the members of
the object called one.

void Inspect(const Pen *Checkitout, Spy *one,
 const Spy *two);

Using the this pointer
Consider a function called OneMoreCheeseGone(). It’s not a method, but it takes
an object of instance Cheese as a parameter. Its prototype looks like this:

void OneMoreCheeseGone(Cheese *Block);

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 253

This is just a simple function with no return type. It takes an object pointer as a
parameter. For example, after you eat a block of cheese, you can call:

OneMoreCheeseGone(MyBlock);

Now consider this: If you have an object on the heap, it has no name. You access
it through a pointer variable that points to it. But what if the code is currently
executing inside a method of an object? How do you refer to the object itself?

C++ has a secret variable that exists inside every method: this. It’s a pointer vari-
able. The this variable always points to the current object. So if code execution is
occurring inside a method and you want to call OneMoreCheeseGone(), passing in
the current object (or block of cheese), you would pass this.

The following sections discuss what you might call the standard use of this, the
version of this that exists in most code now. Once you understand the standard
use of this, you move on to modifications to this that occur in C++ 20. Like most
pointer usage in C++ 20, this has undergone changes to make it safer, smarter,
and easier.

Defining standard this pointer usage
This section tells you how this is used for application development in most appli-
cations today. The CheeseClass example, shown in Listing 1-9, demonstrates
this.

LISTING 1-9:	 Passing an Object from Inside Its Methods by Using the this Variable

#include <iostream>

using namespace std;

class Cheese {
public:
 string status;
 void eat();
 void rot();
};

int CheeseCount;

void OneMoreCheeseGone(Cheese *Block) {
 CheeseCount--;

(continued)

254 BOOK 2 Understanding Objects and Classes

 Block->status = "Gone";
};

void Cheese::eat() {
 cout << "Eaten up! Yummy" << endl;
 OneMoreCheeseGone(this);
}

void Cheese::rot() {
 cout << "Rotted away! Yuck" << endl;
 OneMoreCheeseGone(this);
}

int main() {
 Cheese *asiago = new Cheese();
 Cheese *limburger = new Cheese();

 CheeseCount = 2;
 asiago->eat();
 limburger->rot();

 cout << endl;
 cout << "Cheese count: " << CheeseCount << endl;
 cout << "asiago: " << asiago->status << endl;
 cout << "limburger: " << limburger->status << endl;
 return 0;
}

The this listing has four main parts. First is the definition for the class called
Cheese. The class contains a couple of methods.

Next is the function OneMoreCheeseGone() along with a global variable that it
modifies. This function subtracts one from the global variable and stores a string
in a property, status, of the object passed to it.

Next come the actual methods for class Cheese. (You must put these functions
after OneMoreCheeseGone() because they call it. If you use a function prototype as
a forward reference for OneMoreCheeseGone(), the order doesn’t matter.)

Finally, main() creates two new instances of Cheese. Then it sets the global vari-
able to 2, which keeps track of the number of blocks left. Next, it calls the eat()

LISTING 1-9:	 (continued)

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 255

function for the asiago cheese and rot() for the limburger cheese. And then it
prints the results of everything that happened: It displays the Cheese count, and
it displays the status of each object.

When you run the application in Listing 1-9, you see this output:

Eaten up! Yummy
Rotted away! Yuck

Cheese count: 0
asiago: Gone
limburger: Gone

The first line is the result of calling asiago->eat(), which prints one message.
The second line is the result of calling limburger->rot(), which prints another
message. The third line is simply the value in the variable CheeseCount. This vari-
able was decremented once each time the computer called OneMoreCheeseGone().
Because the function was called twice, CheeseCount went from 2 to 1 to 0. The
final two lines show the contents of the status variable in the two objects. (One-
MoreCheeseGone() stores "Gone" in these variables.)

Take a careful look at the OneMoreCheeseGone() function. It operates on the cur-
rent object provided as a parameter by setting its status variable to the string
Gone. The eat() method calls it, passing the current object using this. The rot()
method also calls it, again passing the current object via this.

Changes to the this pointer in C++ 20
Unless you’re actually working with C++ 20 at a somewhat detailed level, you can
probably skip this section and not really lose much. Of course, you may just be
curious and learning something new is always a good thing.

C++ 20 brings a few changes to the this pointer with it. Even though you don’t
see anything about functional programming until Book 3, it’s important to know
that like the examples in this chapter, you can use the this pointer in a lambda
expression. A lambda expression is a mathematically based approach to dealing
with certain kinds of programming problems that is concise and easier to under-
stand than some standard C++ approaches. You can also pass a lambda expres-
sion, essentially a kind of function, to other functions as you would any other
argument. The change of the use of the this pointer for lambda expressions is
simply a clarification — you must now actually declare use of the this pointer
before you’re allowed to use it. You can get an overview of lambda expressions in

256 BOOK 2 Understanding Objects and Classes

the “Using Lambda Expressions for Implementation” section of Book 3 Chapter 1
and read about using lambda expressions in your code in Book 3 Chapter 2. The
discussion at http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
p0806r2.html will fill in some very technical details if you’re interested.

It’s important to note that the C++ definition of an object as described in this
chapter differs from the definition used by some other languages. There is lengthy
and involved discussion of the topic at https://blog.panicsoftware.com/
objects-their-lifetimes-and-pointers/, but the point is that if you under-
stand objects as described in this chapter, then you know how C++ developers
view them. You may have noticed that there is a great deal of emphasis in this
chapter on destroying objects by releasing their storage. The “Starting and End-
ing with Constructors and Destructors” section of this chapter discusses another
technique, which is to call a destructor. However, until C++ 20, standard objects,
such as string, don’t have a destructor as such, the calling of it is a no-op (a no
operation, nothing happens). Because the manner in which objects are destroyed
is changing, so is the use of the this pointer, which relies on the existence of an
object to work.

The this pointer can also come into play in situations that most people are unlikely
to see unless they’re performing advanced tasks. For example, you can use the
this pointer to access initialized members of a partially constructed object—one
that hasn’t had every member fully initialized.

Overloading methods
You may want a method in a class to handle different types of parameters. For
example, you might have a class called Door and a method called GoThrough().
You might want the GoThrough() method to take as parameters objects of class
Dog, class Human, or class Cat. Depending on which class is entering, you might
want to change the GoThrough() function’s behavior.

A way to handle this is by overloading the GoThrough() function. C++ lets you
design a class that has multiple methods that are all named the same. How-
ever, the parameters must differ between these methods. With the GoThrough()
method, one version will take a Human, another a Dog, and another a Cat.

View the code for the DoorClass example in Listing 1-10 and notice the
GoThrough() methods. There are three of them. To use these methods, main()
creates four different objects — a cat, a dog, a human, and a door. It then sends
each creature through the door.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0806r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0806r2.html
https://blog.panicsoftware.com/objects-their-lifetimes-and-pointers/
https://blog.panicsoftware.com/objects-their-lifetimes-and-pointers/

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 257

LISTING 1-10:	 Overloading Functions in a Class

#include <iostream>

using namespace std;

class Cat {
public:
 string name;
};

class Dog {
public:
 string name;
};

class Human {
public:
 string name;
};

class Door {
private:
 int HowManyInside;
public:
 void Start();
 void GoThrough(Cat *acat);
 void GoThrough(Dog *adog);
 void GoThrough(Human *ahuman);
};

void Door::Start() {
 HowManyInside = 0;
}

void Door::GoThrough(Cat *somebody) {
 cout << "Welcome, " << somebody->name << endl;
 cout << "A cat just entered!" << endl;
 HowManyInside++;
}

void Door::GoThrough(Dog *somebody) {
 cout << "Welcome, " << somebody->name << endl;
 cout << "A dog just entered!" << endl;

(continued)

258 BOOK 2 Understanding Objects and Classes

 HowManyInside++;
}

void Door::GoThrough(Human *somebody) {
 cout << "Welcome, " << somebody->name << endl;
 cout << "A human just entered!" << endl;
 HowManyInside++;
}

int main() {
 Door entrance;
 entrance.Start();

 Cat *SneekyGirl = new Cat;
 SneekyGirl->name = "Sneeky Girl";
 Dog *LittleGeorge = new Dog;
 LittleGeorge->name = "Little George";
 Human *me = new Human;
 me->name = "John";

 entrance.GoThrough(SneekyGirl);
 entrance.GoThrough(LittleGeorge);
 entrance.GoThrough(me);

 delete SneekyGirl;
 delete LittleGeorge;
 delete me;
 return 0;
}

The application allows dogs and cats to enter like humans. The beginning of this
application declares three classes, Cat, Dog, and Human, each with a name mem-
ber. Next is the Door class. A private member, HowManyInside, tracks how many
beings have entered. The Start() function activates the door. Finally, the class
contains the overloaded functions. They all have the same name and the same
return type. You can have different return types, but for the compiler to recognize
the functions as unique, they must differ by parameters. These do; one takes a Cat
pointer; one takes a Dog pointer; and one takes a Human pointer.

Next is the code for the methods. The first function, Start() sets HowManyInside
to 0. The next three functions are overloaded. They do similar things, but they
write slightly different messages. Each takes a different type.

LISTING 1-10:	 (continued)

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 259

The first step in main() is to create a Door instance. The code doesn’t use a pointer
to show that you can mix pointers with stack variables in an application. After
creating the Door instance, the code calls Start(). Next, the code creates three
creature instances: Cat, Dog, and Human, and sets the name property for each.

The calls to the entrance.GoThrough() method passes a Cat, a Dog, and a Human
(all in order). Because you can see the Door class, you know the code calls three
different methods that are all named the same. But when using the class, you con-
sider them one method that accepts a Cat, a Dog, or a Human. That’s the goal of
overloading: to create what feels like versions of the one function. Here’s what you
see when you run this application:

Welcome, Sneeky Girl
A cat just entered!
Welcome, Little George
A dog just entered!
Welcome, John
A human just entered!

Starting and Ending with Constructors
and Destructors

You can add two special methods to your class that let you provide special startup
and shutdown functionality: a constructor and a destructor. The following sections
provide details about these methods.

Starting with constructors
When you create a new instance of a class, you may want to do some basic object
setup. Suppose you have a class called Apartment, with a private property called
NumberOfOccupants and a method called ComeOnIn(). The code for ComeOnIn()
adds 1 to NumberOfOccupants.

When you create a new instance of Apartment, you probably want to start Num-
berOfOccupants at 0. The best way to do this is by adding a special method, a
constructor, to your class. This method has a line of code such as

NumberOfOccupants = 0;

260 BOOK 2 Understanding Objects and Classes

Whenever you create a new instance of the class Apartment, the computer first
calls this constructor for your new object, thereby setting NumberOfOccupants to
0. Think of the constructor as an initialization function: The computer calls it when
you create a new object.

To write a constructor, you add it as another method to your class, and make it
public. You name the constructor the same as your class. For the class Apartment,
you name the constructor Apartment(). The constructor has no return type, not
even void. You can have parameters in a constructor; see “Adding parameters
to constructors,” later in this chapter. Listing 1-11, later in this section, shows a
sample constructor along with a destructor, which is covered in the next section.

Ending with destructors
When you delete an instance of a class, you might want some cleanup code to
straighten things out before the object memory is released. For example, your
object may have properties that are pointers to other objects. It’s essential
to delete those other objects. You put cleanup code in a special function called
a destructor. A destructor is a finalization function that the computer calls before
it deletes your object.

The destructor function gets the same name as the class, except it has a tilde, ~, at
the beginning of it. (The tilde is usually in the upper-left corner of the keyboard.)
For a class called Squirrel, the destructor would be ~Squirrel(). The destructor
doesn’t have a return type, not even void, because you can’t return anything from
a destructor (the object is gone, after all). You just start with the function name
and no parameters. The next section, “Sampling constructors and destructors,”
shows an example that uses both constructors and destructors.

Constructors and destructors are a way of life for C++ programmers. Nearly every
class has a constructor, and many also have a destructor.

Sampling constructors and destructors
The WalnutClass example, shown in Listing 1-11, uses a constructor and destruc-
tor. This application involves two classes, the main one called Squirrel that dem-
onstrates the constructor and destructor, and one called Walnut, which is used by
the Squirrel class.

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 261

LISTING 1-11:	 Initializing and Finalizing with Constructors and Destructors

#include <iostream>

using namespace std;

class Walnut {
public:
 int Size;
};

class Squirrel {
private:
 Walnut *MyDinner;
public:
 Squirrel();
 ~Squirrel();
};

Squirrel::Squirrel() {
 cout << "Starting!" << endl;
 MyDinner = new Walnut;
 MyDinner->Size = 30;
}

Squirrel::~Squirrel() {
 cout << "Cleaning up my mess!" << endl;
 delete MyDinner;
}

int main() {
 Squirrel *Sam = new Squirrel;
 Squirrel *Sally = new Squirrel;

 delete Sam;
 delete Sally;
 return 0;
}

The Squirrel class has a property called MyDinner that is a pointer to a Walnut
instance. The Squirrel constructor creates an instance of Walnut and stores it
in MyDinner. The destructor deletes the instance of Walnut. In main(), the code
creates two instances of Squirrel. Each instance gets its own Walnut to eat.

262 BOOK 2 Understanding Objects and Classes

Each Squirrel creates its Walnut when it starts and deletes the Walnut when the
Squirrel is deleted.

Notice in this code that the constructor has the same name as the class,
Squirrel(). The destructor also has the same name, but with a tilde, ~, tacked on
to the beginning of it. Thus, the constructor is Squirrel() and the destructor is
~Squirrel(). Destructors never take parameters and you can’t call them directly,
but the runtime calls them automatically when it’s time to destroy an object.

When you run this application, you can see the following lines, which were spit
up by the Squirrel in its constructor and destructor. (You see two lines of each
because main() creates two squirrels.)

Starting!
Starting!
Cleaning up my mess!
Cleaning up my mess!

If the Walnut class also had a constructor and destructor, and you made the
MyDinner property a variable in the Squirrel class, rather than a pointer, the
computer would create the Walnut instance after it creates the Squirrel instance,
but before it calls the Squirrel() constructor. It then deletes the Walnut instance
when it deletes the Squirrel instance, after calling the ~Squirrel() destructor.
The code performs these steps for each instance of Squirrel.

CONSTRUCTORS AND DESTRUCTORS
WITH STACK VARIABLES
Listing 1-11 creates two Squirrels on the heap by using pointers and calling

Squirrel *Sam = new Squirrel;
Squirrel *Sally = new Squirrel;

But you could also create them on the stack by declaring them without pointers:

Squirrel Sam;
Squirrel Sally;

If you do this, the application will run fine, provided that you remove the delete lines.
You do not delete stack variables. The computer calls the destructor when the main()
function ends. That’s the general rule with objects on the stack: They are created when
you declare them, and they stay until the function ends.

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 263

Adding parameters to constructors
Like other methods, constructors allow you to include parameters. When you do,
you can use these parameters in the initialization process. To use them, you list
the arguments inside parentheses when you create the object. Because construc-
tors have parameters, you can create multiple overloaded constructors for a class
by varying the number and type of parameters.

Although int has a constructor, it isn’t a class. However, the runtime library (that
big mass of code that gets put in with your application by the linker) includes a
constructor and destructor that you can use when calling new for an integer.

Suppose that you want the Squirrel class to have a name property. Although
you could create an instance of Squirrel and then set its name property, you
can specify the name directly by using a constructor. The constructor’s prototype
looks like this:

Squirrel(string StartName);

Then, you create a new instance like so:

Squirrel *Sam = new Squirrel("Sam");

The constructor is expecting a string, so you pass a string when you create the
object.

The SquirrelClass example, shown in Listing 1-12, presents an application
that includes all the basic elements of a class with a constructor that accepts
parameters.

LISTING 1-12:	 Placing Parameters in Constructors

#include <iostream>

using namespace std;

class Squirrel {
private:
 string Name;
public:
 Squirrel(string StartName);

(continued)

264 BOOK 2 Understanding Objects and Classes

 void WhatIsMyName();
};

Squirrel::Squirrel(string StartName) {
 cout << "Starting!" << endl;
 Name = StartName;
}

void Squirrel::WhatIsMyName() {
 cout << "My name is " << Name << endl;
}

int main()
{
 Squirrel *Sam = new Squirrel("Sam");
 Squirrel *Sally = new Squirrel("Sally");

 Sam->WhatIsMyName();
 Sally->WhatIsMyName();

 delete Sam;
 delete Sally;
 return 0;
}

In main(), you pass a string into the constructors. The constructor code takes the
StartName parameter and copies it to the Name property. The WhatIsMyName()
method writes Name to the console.

Building Hierarchies of Classes
When you start going crazy describing classes, you usually discover hierar-
chies of classes. For example, you have a class Vehicle that you want to divide
into classes: Car, PickupTruck, TractorTrailer, and SUV. The Car class is fur-
ther divided into the StationWagon, FourDoorSedan, and TwoDoorHatchback
classes.

LISTING 1-12:	 (continued)

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 265

Or you could divide Vehicle into car brands, such as Ford, Honda, and Toyota.
Then you could divide the class Toyota into models, such as Prius, Avalon,
Camry, and Corolla. You can create similar groupings of objects for the other
class hierarchies; your decision depends on how you categorize things and how
the hierarchy is used. In the hierarchy, class Vehicle is at the top. This class has
properties you find in every brand or model of vehicle. For example, all vehicles
have wheels. How many they have varies, but it doesn’t matter at this point,
because classes don’t have specific values for the properties.

Each brand has certain characteristics that might be unique to it, but each has all
the characteristics of class Vehicle. That’s called inheritance. The class Toyota,
for example, has all the properties found in Vehicle. And the class Prius has all
the properties found in Toyota, which includes those inherited from Vehicle.

Creating a hierarchy in C++
In C++, you can create a hierarchy of classes. When you take one class and create
a new one under it, such as creating Toyota from Vehicle, you are deriving a new
class, which means Toyota is a child of Vehicle in the hierarchy.

To derive a class from an existing class, you write the new class as you would any
other class, but you extend the header after the class name with a colon, :, the
word public, and then the class you’re deriving from, as in the following class
header line:

class Toyota : public Vehicle {

When you do so, the class you create (Toyota) inherits the properties and methods
from the parent class (Vehicle). For example, if Vehicle has a public property
called NumberOfWheels and a public method called Drive(), the class Toyota has
these members, although you didn’t write the members in Toyota.

The VehicleClass example, shown in Listing 1-13, demonstrates class inheri-
tance. It starts with a class called Vehicle, and a derived class called Toyota. You
create an instance of Toyota in main() and call two methods for the instance,
MeAndMyToyota() and Drive(). The definition of the Toyota class doesn’t show
a Drive() function. The Drive() function is inherited from the Vehicle class.
You can call this function like a member of the Toyota class because in many
ways it is.

266 BOOK 2 Understanding Objects and Classes

LISTING 1-13:	 Deriving One Class from Another

#include <iostream>

using namespace std;

class Vehicle {
public:
 int NumberOfWheels;

 void Drive() {
 cout << "Driving, driving, driving..." << endl;
 }
};

class Toyota : public Vehicle {
public:
 void MeAndMyToyota() {
 cout << "Just me and my Toyota!" << endl;
 }
};

int main() {
 Toyota MyCar;
 MyCar.MeAndMyToyota();
 MyCar.Drive();
 return 0;
}

When you run this application, you see the output from two functions:

Just me and my Toyota!
Driving, driving, driving...

Understanding types of inheritance
When you create a class, its methods can access both public and private proper-
ties and methods. Users of the class can access only the public properties and
methods. When you derive a new class, it cannot access the private members in
the parent class. Private members are reserved for a class itself and not for any
derived class. When members need to be accessible by derived classes, there’s a
specification you can use beyond public and private: protected.

W
or

ki
ng

 w
it

h
Cl

as
se

s

CHAPTER 1 Working with Classes 267

Protected members and private members work the same way from a user perspec-
tive, but derived classes can access both protected and public members. Private
members are hidden from both users and derived classes. Always use protected
members when possible when you plan to derive classes from a parent class.

Creating and Using Object Aliases
An alias is another name for something. If your name is Robert, someone could use
an alias of Bob when calling your name. Both Robert and Bob point to the same
person — you. However, the names are actually different. One is your real name,
Robert, and the other is your alias, Bob. In real life, using aliases can make things
easier: saying Bob is definitely easier than saying Robert (although not by much).
Using aliases in C++ applications can make things easier, too.

One of the most common reasons to use an alias in C++ is to change the manner
in which an object is accessed. Moving a pointer to an object is always going to
be easier than moving the object itself because a pointer is simply a number that
specifies the address of the object. The object could contain complex data and
pointers to yet other objects. Moving objects is complicated and messy, so devel-
opers try to avoid it at all cost.

However, sending a pointer to someone gives the recipient access to the original
data. The recipient could modify the data in ways that you don’t want. So, you
could create an alias of the original object that is a constant. No one can modify a
constant. The ObjectAlias example, shown in Listing 1-14, demonstrates how to
create a constant alias of a string object. The same technique works with any other
sort of object you might want to work with.

LISTING 1-14:	 Creating an Object Alias

#include <iostream>

using namespace std;

int main() {
 string OriginalString = "Hello";
 const string &StringCopy(OriginalString);
 OriginalString = "Goodbye";
 cout << OriginalString << endl;
 cout << StringCopy << endl;
 return 0;
}

268 BOOK 2 Understanding Objects and Classes

The code begins by creating a string named OriginalString that contains a
value of Hello. It then creates a const string alias of OriginalString named
StringCopy. When the code changes the value of OriginalString, the value of
StringCopy is also changed because StringCopy points to the same location in
memory. So when you run this example, you see output of

Goodbye
Goodbye

It may not seem like you’ve accomplished anything, but if you try to modify the
value of StringCopy, Code::Blocks outputs an error message like this:

error: passing 'const string {aka const
std::basic_string<char>}' as 'this' argument of
'std::basic_string<_CharT, _Traits, _Alloc>&
std::basic_string<_CharT, _Traits,
_Alloc>::operator=(const _CharT*) [with _CharT = char;
_Traits = std::char_traits<char>; _Alloc =
std::allocator<char>; std::basic_string<_CharT, _Traits,
_Alloc> = std::basic_string<char>]' discards qualifiers
[-fpermissive]|

The point is that you can’t modify the value of StringCopy, but you can modify
the value of OriginalString. Sending StringCopy to someone who needs access
to the value is safe. Just to ensure that you understand what is happening, try
making StringCopy a standard string rather than a const string. You’ll be able
to modify the value, and the modification will now affect OriginalString as well.
StringCopy truly is an alias of OriginalString, but as a const string, it’s an
alias that prevents modification of the underlying string value.

CHAPTER 2 Using Advanced C++ Features 269

Using Advanced C++
Features

This chapter will amaze you because C++ has amazing advanced features. It
begins by helping you understand how to leave notes for yourself so that
you don’t embarrass yourself in front of your boss when you forget how

your code works. Comments can do a lot more, but for the most part, they’re there
to help you remember.

The next sections are all about helping your code jump through new hoops. You
discover that you can turn an int into a string, connect with the user at the com-
mand line, and tell the compiler to do something new with your code as part of
a preprocessor directive. In case that isn’t enough, you also find out new ways to
create variables using constants, enums, and random numbers.

The final sections are about working with code using switches so that you don’t
have to keep creating huge if...else if statement chains. You also gain knowl-
edge of the humble array, which will make your life considerably easier in so
many ways that space doesn’t allow total disclosure. Suffice it to say that storing
lists of data elements in a convenient form is just the start.

Chapter 2

IN THIS CHAPTER

»» Using comments

»» Working with conversions, consoles,
and preprocessor directives

»» Manipulating constants, enums, and
random numbers

»» Structuring code and data with
switches and arrays

270 BOOK 2 Understanding Objects and Classes

Filling Your Code with Comments
Your boss is irritable because that rush job you did was a little too rushed and
now the application keeps crashing. So, you have your boss standing there, right
behind you, wanting you to explain your code, except that you can’t. Your ner-
vousness makes all the code look like a jumble of alien words that you swear you
didn’t write, even though you know you did. Why can’t you remember? At this
point, you’d just love to go somewhere and hide for a while, but the boss is smok-
ing mad and you’ll never make your escape. You can avoid this situation and many
others in which your memory about your code is apt to fail. To remember what
your code does, you put comments into it. A comment is simply some words in the
code that the compiler ignores and include for the benefit of the humans reading
the code. Comments are also quite useful for colleagues who come by to help you
out of jams, or to allow someone to fix your code over the weekend when you’d
much rather spend time at the beach. Comments are essential to good coding. For
example, you may have some code like this:

total = 10;
for (i = 0; i < 10; i++)
{
 total = (total + i) * 3;
}

But this code may not be clear to you if you put it away for six months and come
back later to look at it. So instead, you can add some comments. You denote a
comment in C++ by starting a line with two slashes, like this:

// Initialize total to the number
// of items involved.
total = 10;

// Calculate total for the
// first ten sets.
for (i = 0; i < 10; i++)
{
 total = (total + i) * 3;
}

Now anyone working on the project can understand what the code does. Note the
white space between the groups of code. Using white space helps someone looking
at the code see where one thought ends and another begins. You should always
include white space in your code so that everyone can read the code more easily.
Of course, you could put in comments like this:

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 271

// My salary is too low
// I want a raise
total = 10;

// Someday they'll recognize
// my superior talents!
for (i = 0; i < 10; i++)
{
 total = (total + i) * 3;
}

However, comments like this don’t have much use in the code; besides, they may
have the reverse effect from the one you’re hoping for! The compiler ignores
comments; they’re meant for other humans. You can write whatever you want as
comments, and the compiler pretends that it’s not even there.

A comment begins with //, and it can begin anywhere on the line. In fact, contrary
to what you might think, you can even put comments at the end of a line contain-
ing C++ code, instead of on a separate line. Using comments on a code line lets you
focus a comment on just that line, as follows:

int subtotal = 10; // Initialize subtotal to 10.

This comment gives a little more explanation of what the line does. You usually
use line comments like this when you want to tell others what kind of information
a variable holds or explain a complex task. Normally, you explain blocks of code as
shown earlier in this section.

You can use two kinds of comments in C++. One is the double slash (as already
described). The other kind of comment begins with a slash-asterisk, /*, and ends
with an asterisk-slash, */. The comments go between these delimiters (special
character sequences) and can span several lines, as in the following example:

/* This application separates the parts of the
 sandwich into its separate parts. This
 process is often called "separation of
 parts".
 (c) 2020 Sandwich Parts Separators, Inc.
*/

This is all one comment, and it spans multiple lines. You normally use this kind
of comment to provide an overview of a task or describe the purpose of a function.
This kind of comment also works well for the informational headings that some
large company applications require. As with other comments, you can put these

272 BOOK 2 Understanding Objects and Classes

anywhere in your code, as long as you don’t break a string or word in two by putt-
ing a comment in the middle. Much of the code in the remainder of this chapter
has comments in it so that you can see how to use comments and so that you can
get a few more ideas about how the code works.

Some beginning programmers get the mistaken idea that comments appear in the
application window when the application runs. That is not the case. A comment
does not write anything to the console. To write things to the console, use cout.

Converting Types
Sometimes, you just don’t have the type of things you want. You might want to
trade in your 2014 Ford Taurus for that brand-new Porsche. But, needless to say,
unless you have plenty of money, that might be difficult.

But converting between different types in C++ — now, that’s a lot easier. For
example, you may have a string variable called digits, and it holds the string
"123". Further, you want to somehow get the numbers inside that string into an
integer variable called amount. Thus, you want amount to hold the value 123; that
is, you want to convert the string to a number.

Understanding how int and string
conversions work
In Listing 2-1, later in this chapter, you see how you can convert between numbers
and strings. Book 1, Chapter 8 shows some sample code for converting a number
to a string. This example employs that same technique along with a similar tech-
nique for converting a string back to a number.

Converting strings is an interesting concept in C++ because an outstanding feature
lets you write to and read from a string just as you would to and from a console.
For example, although you can write a number 12 out to a console by using code
like this:

cout << 12;

you can actually do the same thing with strings: You can write a number 12 to a
string, as in

mystring << 12;

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 273

After this line runs, mystring contains the value "12". However, to do this, you
need to use a special form of string called a stringstream. In the never-ending
world of computer terminology, a stream is something that you can write to and
read from in a flowing fashion (think about bits flowing through a wire — much as
a stream flows along a waterbed). For example, you might write the word "hello"
to a stringstream, and then the number 87, and then the word "goodbye". After
those three operations, the string contains the value "hello87goodbye".

Similarly, you can read from a stream. In the section “Reading from the Con-
sole,” later in this chapter, you discover how you can read from a console by using
the > notation. When you read from the console, although your application stops
and waits for the user to enter something, the real stream technology takes place
after the user types something and presses Enter: After the console has a series
of characters, your application reads in the characters as a stream, one character
after another. You can read a string, and then a series of numbers, and another
string, and so on.

With stringstream, you can do something similar. You would fill the string with
something rather than have the user fill it, as in the case of a console. From there,
you can begin to read from the string, placing the values into variables of different
types. One of these types is int. But because the stringstream is, at heart, just
a string, that’s how you convert a string of digits to an integer: You put the digit
characters in the string and read the string as a stream into your integer.

The only catch to using these techniques is that you need to know in advance
which kind of streaming you want to do. If you want to write to the stringstream,
you create an instance of a class called ostringstream. (The o is for output.) If
you want to read from a stringstream, you create an instance of a class called
istringstream. (The i is for input.)

Seeing int and string conversions in action
The TypeConvert example, shown in Listing 2-1, demonstrates several kinds of
int and string conversions that include truncating (lopping the decimal portion
off) and rounding (bringing the number value up or down to the nearest whole
number). The listing also includes two handy functions that you may want to
save for your own programming experience later. One is called StringToNumber()
(converts a string to a number) and the other is called NumberToString() (con-
verts a number to a string). This example includes plenty of comments as well
as demonstrates some extremely simple onscreen formatting using the tab (\t)
escape character (see the “Tabbing your output” section of Book 1, Chapter 3 for
details).

274 BOOK 2 Understanding Objects and Classes

LISTING 2-1:	 Converting Between Types Is Easy

#include <iostream>
#include <sstream> // for istringstream, ostringstream

using namespace std;

int StringToNumber(string MyString) {
 // Converts from string to number.
 istringstream converter(MyString);
 // Contains the operation results.
 int result;

 // Perform the conversion and return the results.
 converter >> result;
 return result;
}

string NumberToString(int Number) {
 // Converts from number to string.
 ostringstream converter;

 // Perform the conversion and return the results.
 converter << Number;
 return converter.str();
}

int main() {
 // Contains the theoretical number of kids.
 float NumberOfKids;
 // Contains an actual number of kids.
 int ActualKids;

 /* You can theoretically have 2.5 kids, but in the
 real world, you can't. Convert the theoretical number
 of kids to a real number by truncating NumberOfKids
 and display the results. */
 NumberOfKids = 2.5;
 ActualKids = (int)NumberOfKids;
 cout << "Float to Integer" << "\tTruncated" << endl;
 cout << NumberOfKids << "\t\t\t" << ActualKids << endl;

 // Perform the same task as before, but use a
 // theoretical 2.1 kids this time.

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 275

 NumberOfKids = 2.1;
 ActualKids = (int)NumberOfKids;
 cout << NumberOfKids << "\t\t\t" << ActualKids << endl;

 // This time we'll use 2.9 kids.
 NumberOfKids = 2.9;
 ActualKids = (int)NumberOfKids;
 cout<<NumberOfKids<<"\t\t\t"<<ActualKids<<endl<<endl;

 // This process rounds the number, instead of
 // truncating it. We do it using the same three
 // numbers as before.
 NumberOfKids = 2.5;
 ActualKids = (int)(NumberOfKids + .5);
 cout << "Float to Integer" << "\tRounded" << endl;
 cout << NumberOfKids << "\t\t\t" << ActualKids << endl;

 // Do it again using 2.1 kids.
 NumberOfKids = 2.1;
 ActualKids = (int)(NumberOfKids + .5);
 cout << NumberOfKids << "\t\t\t" << ActualKids << endl;

 // Do it yet again using 2.9 kids.
 NumberOfKids = 2.9;
 ActualKids = (int)(NumberOfKids + .5);
 cout<<NumberOfKids<<"\t\t\t"<<ActualKids<<endl<<endl;

 // In this case, use the StringToNumber() function to
 // perform the conversion.
 cout << "String to number" << endl;
 int x = StringToNumber("12345") * 50;
 cout << x << endl << endl;

 // In this case, use the NumberToString() function to
 // perform the conversion.
 cout << "Number to string" << endl;
 string mystring = NumberToString(80525323);
 cout << mystring << endl;
 return 0;
}

276 BOOK 2 Understanding Objects and Classes

The comments in Listing 2-1 give you a complete dialogue of how the code works,
so no discussion of it here is needed. Of course, you do want to see the output,
which appears in Figure 2-1. The important thing to remember is that rounding
is different from truncating in the results that it produces, and each method is
appropriate at specific times depending on the rules you want to use. For example,
when calculating, in whole dollars, how much someone owes you, you don’t want
to rely on truncating or you’ll end up with less money.

Considering other conversion issues
Another kind of conversion that’s useful is converting floating-point numbers
(that is, numbers with a decimal point) and integers and vice versa. In C++, this
conversion is easy: You just copy one to the other, and C++ takes care of the rest.

The only catch is that when C++ converts from a float to an integer, it always trun-
cates. That is, it doesn’t round up: When it converts 5.99 to an integer, it doesn’t
go up to 6; it goes down to 5. But there’s an easy trick around that: Add 0.5 to the
number before you convert it. If the number is in the upper half (that is, from 0.5
to 0.9999 and so on), then adding 0.5 first takes the number above or equal to the
upper whole number. Then, when the function rounds the number, the number
rounds down to the upper whole number. For example, if you start with 4.6, just
converting it outputs 4. But if you add 0.5, the 4.6 becomes 5.1, and then when
you convert that, you get 5. It works!

Going in the other direction is even easier: To convert an integer to a float, you
just copy it. If i is an integer and f is a float, you just set it as follows to convert it:

f = i;

FIGURE 2-1:
The formatted
output shows
the difference

between
truncating and

rounding.

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 277

Whenever you convert from a float to an int or from an int to float, you must
tell the compiler that you know what you’re doing by adding (int) or (float) in
front of the variable. Adding these keywords is called coercion or type conversion.
The act of coercing one type to another is called casting. For example, the following
line tells the compiler that you know you’re converting from a float to an int:

ActualKids = (int)NumberOfKids;

If you leave out the (int) part, the compiler normally displays a warning like
this one:

warning: converting to 'int' from 'float'

Using the proper coercion code is important because it also tells other developers
that you really do intend to perform the type conversion. Otherwise, other devel-
opers will point to that area of your code and deem it the source of an error, when
it might not be the true source. Using proper coding techniques saves everyone
time.

Reading from the Console
Throughout this book, you have used the console to see example output. You can
also use the console to get information from the user — a topic briefly mentioned
in the “Reading from the Console” section of Book 1, Chapter 4. To use the console
to get information from the user, instead of using the usual << with cout to write
to the console, you use the >> operator along with cin (pronounced “see-in”).

In the old days of the C programming language, reading data from the console and
placing it in variables was somewhat nightmarish because it required you to use
pointers. In C++, that’s no longer the case. If you want to read a set of characters
into a string called MyName, you just type

cin >> MyName;

That’s it! The application pauses, and the user can type something at the console.
When the user presses Enter, the string the user typed goes into the MyName string.

Reading from the console has some catches. First, the console uses spaces as
delimiters. That means that if you put spaces in what you type, only the let-
ters up to the space are put into the string. Anything after the space, the console
saves for the next time your application calls cin. That situation can be confusing.
Second, if you want to read into a number, the user can type any characters, not

278 BOOK 2 Understanding Objects and Classes

just numbers. The computer then goes through a bizarre process that converts any
letters into a meaningless number. Not good.

The ReadConsoleData example, shown in Listing 2-2, shows you how to read a
string and then a number from the console. Next, it shows you how you can force
the user to type only numbers. And finally, it shows how you can ask for a pass-
word with only asterisks appearing when the user types.

To make these last two tasks work correctly you use the conio library. This library
gives you better access to the console, bypassing cin. This example also uses the
StringToNumber() function, described in the “Seeing int and string conversions
in action” section, earlier in this chapter.

LISTING 2-2:	 Having the User Type Something

#include <iostream>
#include <sstream>
#include <conio.h>

using namespace std;

int StringToNumber(string MyString) {
 // Holds the string.
 istringstream converter(MyString);
 // Holds the integer result.
 int result;

 // Perform the conversion.
 converter >> result;
 return result;
}

string EnterOnlyNumbers() {
 string numAsString = ""; // Holds the numeric string.
 char ch = getch(); // Obtains a single character.

 // Keep requesting characters until the user presses
 // Enter.
 while (ch != '\r') { // \r is the enter key
 // Add characters only if they are numbers.
 if (ch >= '0' && ch <= '9') {
 cout << ch;

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 279

 numAsString += ch;
 }

 // Get the next character from the user.
 ch = getch();
 }

 return numAsString;
}

string EnterPassword() {
 // Holds the password string.
 string numAsString = "";
 // Obtains a single character from the user.
 char ch = getch();

 // Keep requesting characters until the user presses
 // Enter.
 while (ch != '\r') { // \r is the enter key
 // Display an asterisk instead of the input character.
 cout << '*';
 // Add the character to the password string.
 numAsString += ch;
 // Get the next character from the user.
 ch = getch();
 }

 return numAsString;
}

int main() {
 // Just a basic name-entering
 string name;
 cout << "What is your name? ";
 cin >> name;
 cout << "Hello " << name << endl;

 // Now you are asked to enter a number,
 // but the computer allows you to enter anything!
 int x;
 cout << endl;
 cout << "Enter a number, any number! ";

(continued)

280 BOOK 2 Understanding Objects and Classes

 cin >> x;
 cout << "You chose " << x << endl;

 // This time you can only enter a number.
 cout << endl;
 cout << "This time enter a number!" << endl;
 cout << "Enter a number, any number! ";
 string entered = EnterOnlyNumbers();
 int num = StringToNumber(entered);
 cout << endl << "You entered " << num << endl;

 // Now enter a password!
 cout << endl;
 cout << "Enter your password! ";
 string password = EnterPassword();
 cout << endl << "Shhhh, it's " << password << endl;
 return 0;
}

The first parts of main() are straightforward. It calls cin >> name; to read a
string, name, from the console; then main() prints Hello plus name to the console.
Next, main() calls cin >> x; to read and print an integer from the console.

Calling EnterOnlyNumbers() ensures that the user can enter only digits. The first
thing EnterOnlyNumbers() does is declare a string called numAsString. When the
user types a letter or number, it comes in as a character, so the code saves them
one by one in a string variable (because a string is really a character string). To
find out what the user types, EnterOnlyNumbers() calls getch(), which returns a
single character. (For example, if the user presses Shift+A to produce a capital A,
getch() returns the character A.)

AVOIDING GETCH() FUNCTION PROBLEMS
Some compilers complain if you use the getch() function. If you want to use it, try the
_getch() function instead. Both functions perform the same task. Some vendors claim
that _getch() is compliant with the International Standards Organization (ISO), but it
isn’t. The getch() and _getch() functions are useful, low-level library functions that
you can use without hesitation, but they don’t appear as part of any standard. The GNU
GCC compiler, provided with Code::Blocks, can use either form of the function.

LISTING 2-2:	 (continued)

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 281

After retrieving a single character, EnterOnlyNumbers() starts a loop, watching
for the '\r' character, which represents a carriage return. The loop continues
processing characters until the user presses the Enter key. At that point, the char-
acter received by getch() is '\r', so the loop exits and returns the number as a
string.

Inside the loop, EnterOnlyNumbers() tests the value of the character, seeing
whether it’s in the range '0' through '9'. Yes, characters are associated with a
sequence, and fortunately, the digits are all grouped together. So it’s possible to
determine whether the character is a digit character by checking to see whether
it’s in the range '0' through '9':

if (ch >= '0' && ch <= '9')

If the user presses a number key, the code enters the if statement. Because the
user pressed a number key, the code writes the value to the console and adds
the digit character to the end of the string. The code has to write it to the console
because, when it calls getch(), the computer doesn’t automatically print any-
thing. But that’s a good thing here, because after leaving the if statement, the
code calls getch() again for another round. Thus, if the user pressed something
other than the Enter key or a number, the character the user pressed doesn’t even
appear on the console, and it doesn’t get added to the string, either.

The EnterPassword() routine is similar to the EnterOnlyNumbers() routine,
except that it allows the user to enter any character (including spaces). So no if
statement is filtering out certain letters. And further, instead of printing only the
character that the user types, it prints an asterisk: *. That gives the feeling of a
password entry, which is a good feeling.

When you run this application, you get output similar to the following:

What is your name? Hank
Hello Hank

Enter a number, any number! abc123
You chose 0

This time you'll only be able to enter a number!
Enter a number, any number! 5001
You entered 5001

Enter your password! *****
Shhhh, it's hello

282 BOOK 2 Understanding Objects and Classes

The first line went well; there aren’t any spaces so the name Hank made it into
the output. But then when asked to enter a number, the user types abc123. The
output of 0 indicates that cin can’t convert the input to an int. If you type 123abc
instead, you see 123 as the output. The next section doesn’t allow the user to type
anything but numbers because it calls EnterOnlyNumbers(). In the final two lines,
the user enters a password, and you can see that the computer displays asterisks
after each key press. This is because EnterPassword() contains the line cout <<
'*';. You see the actual password output as the last on the screen.

Understanding Preprocessor Directives
When you compile an application, the first thing the compiler does is run your
code through something called a preprocessor. The preprocessor simply looks for
certain statements in your code that start with the # symbol. You have already
seen one such statement in every one of your applications: #include. These pre-
processor statements are known as directives because they tell the preprocessor
to do something; they direct it. The following sections tell you more about the
preprocessor and describe how it works.

Understanding the basics of preprocessing
Think of the preprocessor as just a machine that transforms your code into a tem-
porary, fixed-up version that’s all ready to be compiled. For example, look at this
preprocessor directive:

#include <iostream>

If the preprocessor sees this line, it inserts the entire text from the file called
iostream (yes, that’s a filename; it has no extension) into the fixed-up version of
the source code. Suppose that the iostream file looks like this:

int hello = 10;
int goodbye = 20;

Just two lines are all that’s in it. (Of course, the real iostream file is much more
sophisticated.) And suppose that your own source file, MyProgram.cpp, has this in
it (as found in the Preprocessor example):

#include <iostream>

int main()

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 283

{
 std::cout << "Hello world!" << std::endl;
 return 0;
}

Then, after the preprocessor finishes its preprocessing, it creates a temporary
fixed-up file (which has the lines from the iostream file inserted into the MyPro-
gram.cpp file where the #include line had been) to look like this:

int hello = 10;
int goodbye = 20;

int main()
{
 std::cout << "Hello world!" << std::endl;
 return 0;
}

In other words, the preprocessor replaced the #include line with the contents of
that file. Now, the iostream file could have #include lines, and those lines would
be replaced by the contents of the files they refer to. As you may imagine, what
started out as a simple application with just a few lines could actually have hun-
dreds of lines after the preprocessor gets through with it.

Creating constants and macros
with #define
The preprocessor also provides you with a lot of other directives besides #include.
One of the more useful ones is the #define directive. Here’s a sample #define
line:

#define MYSPECIALNUMBER 42

After the preprocessor sees this line, every time it encounters the word MYSPE-
CIALNUMBER, it replaces it with the word 42 (that is, whatever sequence of letters,
numbers, and other characters follow the definition). In this case, #define creates
a kind of constant where the word is easier to understand than the value associ-
ated with it. But #define also lets you create what are called macros, which are a
sort of script. This line defines the oldmax() macro:

#define oldmax(x, y) ((x)>(y)?(x):(y))

284 BOOK 2 Understanding Objects and Classes

SEEING THE PREPROCESSOR IN ACTION
You may want to see how the preprocessor actually works. To see it in action, you
must open a Windows command prompt or a terminal window to the location of your
source code, such as C:\CPP_AIO4\BookII\Chapter02\Preprocessor. The next
thing you need to know is where Code::Blocks is located on your system, such as C:\
CodeBlocks\MinGW\bin. At this point, you can type a special GCC compiler command
with the name of the .CPP file you want to check out, such as Main.cpp, and a special
command-line switch, -E. For a Windows system, you can probably type \CodeBlocks\
MinGW\bin\GCC -E main.cpp >> Preprocessed.cpp and press Enter.

The -E command-line switch tells the GCC compiler you normally use with Code::Blocks
to output only preprocessed code. The >> operator tells Windows to place the out-
put in Preprocessed.cpp rather than display it onscreen. When you run the default
Code::Blocks code through the preprocessor it contains somewhere around 16,497
lines! You can see the output in Preprocessed.cpp, which is included in the
Preprocessor folder of the downloadable source code. Many of those are blank lines,
for various reasons, but nevertheless, it’s a very big file!

You actually have access to a second preprocessor. To access the second preprocessor,
type \CodeBlocks\MinGW\bin\CPP main.cpp >> Preprocessed2.cpp and press Enter
in the same folder as your source code (as in the previous example using GCC). CPP
stands for C preprocessor and it’s interesting to look at its output, which is precisely the
same as using GCC with the -E command-line switch.

In looking at the preprocessor output, you see a combination of actual code and what
are called line markers. A line marker is a kind of preprocessor comment that tells you
where something comes from. Here is a small sample of what you see when you pre-
process the main.cpp file of the Preprocessor example. Some lines have been pur-
posely shortened, with the missing content replaced by an ellipsis (. . .):

1 "main.cpp"
1 "<built-in>"
1 "<command-line>"
1 "main.cpp"
1 "C:/CodeBlocks/MinGW/lib/.../include/c++/iostream" 1 3
36 "C:/CodeBlocks/MinGW/lib/.../include/c++/iostream" 3

The comments all take the same form: the line number within the target file; the name
of the target file; and processing flags used with the target file. So, the example starts
in main.cpp line 1, looks for the built-in and command-line entries but doesn’t find

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 285

After the preprocessor sees this line, it replaces every occurrence of oldmax()
followed by two arguments with ((x)>(y)?(x):(y)), using the appropriate sub-
stitutes for x and y. For example, if you then have this line

q = oldmax(abc, 123);

the preprocessor replaces the line with

q = ((abc)>(123)?(abc):(123));

and does nothing more with the line. Book 1, Chapter 4, refers to the output code
as a conditional operator. The variable q is set to the value in abc if the abc value
is greater than 123; otherwise, the q gets set to 123.

However, the preprocessor doesn’t have an understanding of the conditional oper-
ator, and q doesn’t get set to anything during preprocessing. All the preprocessor
knows is how to replace text in your source code file. The preprocessor replaced
the earlier line of code that contained oldmax() with the next line containing the
conditional operator. That’s it. The preprocessor doesn’t run any code, it does-
n’t make the comparison, and it doesn’t put anything in q. The preprocessor just
changes the code.

Notice that #define oldmax(x, y) places x and y in parentheses. This is because
oldmax() takes two arguments, x and y, and the parentheses serve to tell the

them, and then starts again with main.cpp line 1. None of these entries has flags. The
next line does. It appears on main.cpp line 1 with the #include <iostream> direc-
tive. The preprocessor opens iostream and starts processing it on line 36. Both these
lines have flags with these meanings:

1.	 Start a new file (iostream in the example code).

2.	 Return to the previous file.

3.	 The following text comes from a system header file, so the compiler should ignore
certain warnings.

4.	 The following text should be treated as if it is wrapped in an extern "C" block.

This is enough information to get you started in understanding how preprocessed out-
put works. You can learn more at https://gcc.gnu.org/onlinedocs/gcc-3.4.6/
cpp/Preprocessor-Output.html.

https://gcc.gnu.org/onlinedocs/gcc-3.4.6/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/gcc-3.4.6/cpp/Preprocessor-Output.html

286 BOOK 2 Understanding Objects and Classes

compiler that they are arguments. Consequently, q = oldmax(abc, 123); is
oldmax() with the required arguments, abc and 123.

Although you can still use #define statements in C++, in general you should
simply create a function instead of a macro or use a constant instead of a symbol.
Symbols and macros are used in older and outdated styles of programming.
However, you still see them used for some purposes, such as conditional compi-
lation, which appears in the next section of the chapter.

Performing conditional compilation
At times, you may want to compile one version of your application for one situa-
tion and compile another for a different situation. For example, you may want to
have a debug version of your application that has in it some extra goodies that spit
out special information for you that you can use during the development of your
application. Then, after your application is ready to ship to the masses so that
millions of people can use it, you no longer want that extra debug information. To
accomplish this transition between debug and production versions, you can use a
conditional compilation like this:

#ifdef DEBUG
 cout << "The value of j is " << j << endl;
#else
 cout << j << endl;
#endif

The lines that begin with # are preprocessor directives. The preprocessor has its
own version of if statements. In your code, you can have a line like the following,
with nothing after it:

#define DEBUG

This line defines a symbol (rather than a constant with a value). It works just like
the symbols described earlier, except that it’s not set to be replaced by anything.
You can also define such symbols in the command-line options to GCC or which-
ever compiler you use.

In Code::Blocks, you choose Project ➪ Build Options. In the Project Build Options
dialog box that opens, click the Compiler Settings tab, followed by the #defines
subtab, as shown in Figure 2-2. You type your define symbols as shown in the
figure. Be sure to place each symbol on a separate line.

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 287

Code::Blocks provides a special method for setting Debug or Release builds. You
choose Build ➪ Select Target and then choose the build you want from the menu.
Notice that there are three entries in the left pane of Figure 2-2. Selecting Prepro-
cessor2 lets you add defines, such as HAL2000, that affect both Debug and Release
builds. Selecting Debug lets you add defines that affect only the Debug build, such
as DEBUG. Note that selecting a particular build target doesn’t automatically create
a symbol, such as DEBUG, for you.

Now, when the preprocessor starts going through your application and gets to the
#ifdef DEBUG line, it checks to see whether the DEBUG symbol is defined. If
the symbol is defined, it spits out to its fixed-up file the lines that follow, up
until the #else line. Then it skips any lines that follow that, up until the #endif
line. For the earlier example in this section, if DEBUG is defined, the block of code
starting with #ifdef DEBUG through the line #endif is replaced by the code in the
first half of the block:

cout << "The value of j is " << j << endl;

But if the DEBUG symbol is not defined, the preprocessor skips over the lines up
until the #else, and spits out the lines that follow, up until the #endif. In this
case, it’s replaced by the code following the #else line:

cout << j << endl;

When the preprocessor goes through your file, it’s only creating a new source
code file the compiler uses to create an executable. That means that these #ifdef
lines affect your application only when the compiler runs the preprocessor. When
you compile the application and run it, these #ifdef lines are gone. So remember
that #ifdef lines don’t affect how your application runs — only how it compiles.

FIGURE 2-2:
Provide the

compiler options
you want to

use to change
the application

output.

288 BOOK 2 Understanding Objects and Classes

Exercising the basic preprocessor directives
It’s time to see the various preprocessor directives in action. The Preprocessor2
example, shown in Listing 2-3, demonstrates all the preprocessor directives
discussed in this chapter so far. In addition, you see predefined macros demon-
strated, such as __FILE__. The C++ standard and your compiler provide predefined
macros to allow you to output information such as the current filename without
having to develop these macros yourself. You can see a list of predefined macros
at https://riptutorial.com/cplusplus/example/4867/predefined-macros.

LISTING 2-3:	 Using Many Different Preprocessor Directives

#include <iostream>

using namespace std;

#ifdef UNIVAC
const int total = 200;
const string compname = "UNIVAC";
#elif defined(HAL2000)
const int total = 300;
const string compname = "HAL2000";
#else
const int total = 400;
const string compname = "My Computer";
#endif

// This is outdated, but you might see it on
// occasion. Don't write code that does this!
#define oldmax(x, y) ((x)>(y)?(x):(y))
#define MYSPECIALNUMBER 42

int main() {
 cout << "Welcome to " << compname << endl;
 cout << "Total is:" << endl;
 cout << total << endl << endl;

 // Try out the outdated things.
 cout << "*** max ***" << endl;
 cout << oldmax(5,10) << endl;
 cout << oldmax(20,15) << endl;
 cout << MYSPECIALNUMBER << endl << endl;

https://riptutorial.com/cplusplus/example/4867/predefined-macros

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 289

 // Here are some standard redefined macros.
 cout << "*** Predefined Macros ***" << endl;
 cout << "This is file " << __FILE__ << endl;
 cout << "This is line " << __LINE__ << endl;
 cout << "Compiled on " << __DATE__ << endl;
 cout << "Compiled at " << __TIME__ << endl << endl;

 // Here's how some people use #define, to
 // specify a "debug" version or "release" version.
 cout << "*** total ***" << endl;
 int i;
 int j = 0;
 for (i = 0; i<total; i++)
 {
 j = j + i;
 }

#ifdef DEBUG
 cout << "The value of j is " << j << endl;
#else
 cout << j << endl;
#endif

 return 0;
}

When you run Listing 2-3 without any symbols using the Release target (choose
Build ➪ Select Target ➪ Release), you see this output:

Welcome to My Computer
Total is:
400

*** max ***
10
20
42

*** Predefined Macros ***
This is file C:\CPP_AIO\BookI\Chapter09
 \Preprocessor2\main.cpp
This is line 35
Compiled on Apr 23 2020

290 BOOK 2 Understanding Objects and Classes

Compiled at 15:19:38

*** total ***
79800

Note, at the beginning, that the code tests for the symbol UNIVAC. But that if
block is a bit more complex because it also has an #elif (else if) construct. The
language of the preprocessor has no elseifdef or anything like it. Instead, you
have to write it like so:

#elif defined(HAL2000)

With this block, the preprocessor checks for the symbol UNIVAC; if the preproces-
sor finds UNIVAC, it spits out these lines:

const int total = 200;
const string compname = "UNIVAC";

Otherwise, the preprocessor looks for HAL2000; if the preprocessor finds it, it adds
these lines to the fixed-up code:

const int total = 300;
const string compname = "HAL2000";

And finally, if neither UNIVAC nor HAL2000 is set, the preprocessor adds these
lines:

const int total = 400;
const string compname = "My Computer";

Remember that in each case, these two lines are sent out to the fixed-up ver-
sion in place of the entire block starting with #ifdef UNIVAC and ending with
#endif. If you add UNIVAC to the #defines tab of the Project Build Options dialog
box shown previously in Figure 2-2, you change how the preprocessor configures
its output. To see the following output, you must choose Build ➪ Rebuild, and then
Build ➪ Run, rather than use the Build ➪ Build and Run command as normal.

Welcome to UNIVAC
Total is:
200

*** max ***
10

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 291

20
42

*** Predefined Macros ***
This is file C:\CPP_AIO\BookI\Chapter09
 \Preprocessor2\main.cpp
This is line 35
Compiled on Apr 23 2020
Compiled at 15:26:56

*** total ***
19900

To see a different output version, replace UNIVAC with HAL2000 in the #defines tab
of the Project Build Options dialog box shown previously in Figure 2-2. Choose
Build ➪ Select Target ➪ Debug to change the executable type. Finally, rebuild your
application by choosing Build ➪ Rebuild. Here is what you see when you choose
Build ➪ Run.

Welcome to HAL2000
Total is:
300

*** max ***
10
20
42

*** Predefined Macros ***
This is file C:\CPP_AIO\BookI\Chapter09\
 Preprocessor2\main.cpp
This is line 37
Compiled on Dec 18 2013
Compiled at 10:30:23

*** total ***
The value of j is 44850

The downloadable source includes a project file that has all the required defines
included with it. If you type this source yourself, you must create the appropriate
defines as well or the output won’t match what you see in the book. Simply select-
ing a debug build, for example, won’t provide the DEBUG define for you.

292 BOOK 2 Understanding Objects and Classes

Using Constants
When you’re programming, you may sometimes want a certain fixed value that
you plan to use throughout the application. For example, you might want a string
containing the name of your company, such as "Bob’s Fixit Anywhere Anyhoo".
And you don’t want someone else working on your application to pass this string
into a function as a reference and modify it by mistake, turning it into the name
of your global competitor, "Jims Fixum Anyhoo Anytime". That could be bad. Or,
if you’re writing a scientific application, you might want a fixed number, such as
pi = 3.1415926 or root2 = 1.4142135.

You can create such constants in C++ by using the const keyword. When you create
a constant, it works just like a variable, except that you can’t change it later in the
application. For example, to declare your company name, you might use

const string CompanyName = "Bobs Fixit Anywhere Anyhoo";

Of course, you can always modify this particular string in your code, but later in
your code, you can’t do something like this:

CompanyName = CompanyName + ", Inc.";

The compiler issues an error for that line, complaining that it’s a constant and
you can’t change it.

After you declare the CompanyName constant, you can use it to refer to your com-
pany throughout your code. The Constants example in Listing 2-4 shows you
how to do this. Note the three constants toward the top called ParkingSpaces,
StoreName, and pi. In the rest of the application, you use these just like any other
variables — except that you don’t try to change them.

LISTING 2-4:	 Using Constants for Permanent Values That Do Not Change

#include <iostream>

using namespace std;

const int ParkingSpaces = 80;
const string StoreName = "Joe's Food Haven";
const float pi = 3.1415926;

int main() {
 cout << "Important Message" << endl;

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 293

 cout << "Here at " << StoreName << endl;
 cout << "we believe you should know" << endl;
 cout << "that we have " << ParkingSpaces;
 cout << " full-sized" << endl;
 cout << "parking spaces for your parking" << endl;
 cout << "pleasure." << endl;
 cout << endl;
 cout << "We do realize that parking" << endl;
 cout << "is tight at " << StoreName << endl;
 cout << "and so we are going to double our" << endl;
 cout << "spaces from " << ParkingSpaces << " to ";
 cout << ParkingSpaces * 2;
 cout << ". Thank you again!" << endl << endl;
 float radius = 5;
 float area = radius * radius * pi;
 cout << "And remember, we sell " << radius;
 cout << " inch radius apple pies" << endl;
 cout << "for a full " << area << " square" << endl;
 cout << "inches of eating pleasure!" << endl;
 return 0;
}

When you run this application, you see the following:

Important Message
Here at Joe's Food Haven
we believe you should know
that we have 80 full-sized
parking spaces for your parking
pleasure.

We do realize that parking
is tight at Joe's Food Haven
and so we are going to double our
spaces from 80 to 160. Thank you again!

And remember, we sell 5 radius inch apple pies
for a full 78.5398 square
inches of eating pleasure!

294 BOOK 2 Understanding Objects and Classes

The biggest advantage to using constants is this: If you need to make a change to
a string or number throughout your application, you make the change only once.
For example, if you have the string "Bob’s Fixit Anywhere Anyhoo" pasted a
gazillion times throughout your application, and suddenly you incorporate and
need to change your application so that the string says "Bob's Fixit Anywhere
Anyhoo, LLC", you would need to do some serious search-and-replace work. But
if you have a single constant in the header file for use by all your source code files,
you need to change it only once. You modify the header file with the new constant
definition and recompile your application, and you’re ready to go.

There’s a common saying in the programming world: “Don’t use any magic num-
bers.” The idea is that if, somewhere in your code, you need to calculate the num-
ber of cows that have crossed over the bridge to see whether the bridge will hold
up and you know that the average weight of a cow is 632 pounds, don’t just put
the number 632 in your code. Somebody else reading it may wonder where that
number came from. Instead, make an AverageCowWeight constant and set it equal
to 632. Then use AverageCowWeight anytime you need that number. Plus, if cows
evolve into a more advanced species and their weight changes, all you need to
do is make one change in your code — you change the header file containing the
const declaration. Here’s a sample line that declares AverageCowWeight:

const int AverageCowWeight = 632;

You don’t have to create most common mathematical constants in your code.
Instead, you add #include <math.h> to the top of your code and then use the
constants as defined at @@@https://www.gnu.org/software/libc/manual/
html_node/Mathematical-Constants.html. For example, if you want to use the
value of pi in your code, you use the M_PI constant.

Unfortunately, the math header isn’t part of the ANSI standard, so sometimes
you have to jump through hoops to use it. Older compilers may require that you
add #define _USE_MATH_DEFINES at the top of the source code file before any
#include statements.

If you have the Code::Blocks compiler set to use the C++ 11 or above standard, the
__STRICT_ANSI__ define (added by default) will keep you from using a constant,
such as M_PI, in your code. To overcome this issue, add the line #undef __STRICT_
ANSI__ to the beginning of your code. Here is a short example of what you need
to do:

https://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html
https://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 295

#undef __STRICT_ANSI__

#include <iostream>
#include <math.h>

using namespace std;

int main()
{
 cout << M_PI << endl;
 return 0;
}

C++ 20 and above developers have some relief from this problem in the form of
std::numbers::pi that you access with #include <numbers> (see https://
en.cppreference.com/w/cpp/numeric).

Using Switch Statements
Many times in programming, you may want to compare a variable to one thing,
and if it doesn’t match, compare it to another and another and another. To do this
with an if statement, you need to use a whole bunch of else if lines. Using if
statements works out pretty well, but you can do it in another way: Use the switch
statement.

The approach shown in this section doesn’t work for all types of variables. In fact,
it works with only the various types of integers and characters. It won’t even work
with character strings. However, when you need to make multiple comparisons
for integers and characters, using this approach is quite useful.

Here’s a complete switch statement that you can refer to as you read about the
individual parts in the paragraphs that follow. This switch compares x to 1, and
then 2, and, finally, includes a catchall section called default if x is neither 1 nor 2:

int x;
cin >> x;
switch (x)
{

https://en.cppreference.com/w/cpp/numeric
https://en.cppreference.com/w/cpp/numeric

296 BOOK 2 Understanding Objects and Classes

 case 1:
 cout << "It's 1!" << endl;
 break;
 case 2:
 cout << "It's 2!" << endl;
 break;
 default:
 cout << "It's something else!" << endl;
 break;
}

To use the switch statement, you type the word switch and then the variable or
expression that you want to test in parentheses. Suppose that x is type int and
you want to compare it to several different values. You would first type

switch (x) {

The preceding item in parentheses isn’t a comparison; it’s a variable. You can also
put complex expressions inside the parentheses, but they must evaluate to either
an integer or a character. For example, if x is an integer, you can test

switch (x + 5) {

because x + 5 is still an integer. A switch statement compares only a single vari-
able or expression against several different items. If you have complex compari-
sons, you instead use a compound if statement.

After the header line for the switch statement, you list the values you want to
compare the expression to. Each entry starts with the word case followed by the
value to compare the expression against, and then a colon, as in

case 1:

Next is the code to run in the event that the expression matches this case (here, 1).

cout << "It's 1" << endl;

To complete a specific case, you add the word break. Every case in the switch
statement usually has a break line, which ends the case. If you leave out the
break statement (either purposely or accidentally), when the computer runs this
case, execution continues with the next case statement code.

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 297

Note the end of the example switch block has a final default case. It applies to
the situation when none of the preceding cases applies. The default case isn’t
required; you can leave it off if you don’t need it. However, if you do include it, you
put it at the end of the switch block because it’s the catchall case.

The SwitchStatement example in Listing 2-5 is a complete application that
demonstrates a switch statement. It also shows you how you can make a simple,
antiquated-looking menu application on the console. You don’t need to press
Enter after you choose the menu item; you just press the key for your menu selec-
tion. That’s thanks to the use of getch() rather than cin.

LISTING 2-5:	 Making Multiple Comparisons in One Big Block

#include <iostream>
#include <conio.h>

using namespace std;

int main() {
 // Display a list of options.
 cout << "Choose your favorite:" << endl;
 cout << "1. Apples " << endl;
 cout << "2. Bananas " << endl;
 cout << "3. Lobster " << endl;

 // Obtain the user's selection.
 char ch = getch();

 // Continue getting user selections until the user
 // enters a valid number.
 while (ch < '1' || ch > '3') {
 ch = getch();
 }

 // Use a switch to display the user's selection.
 cout << "You chose " << ch << endl;
 switch (ch) {
 case '1':
 cout << "Apples are good for you!" << endl;
 break;
 case '2':
 cout << "Bananas have plenty of potassium!" << endl;
 break;

(continued)

298 BOOK 2 Understanding Objects and Classes

 case '3':
 cout << "Expensive, but you have good taste!" << endl;
 break;
 }

 return 0;
}

Supercharging enums with Classes
When you work with classes, you can use a technique called wrapping, which helps
you manage a resource. Book 2, Chapter 1 discusses the enum keyword and shows
how you can use it to create your own types. However, when you print the enu-
meration, you don’t see the word, such as red or blue; you see a number. The
DisplayEnum example, shown in Listing 2-6, is a simple class that wraps an enum
type by converting the number into a human readable form, which is a kind of
resource management. You can use this class with enum ColorEnum, as main()
demonstrates. When you run this application, you see the single word red in the
console.

LISTING 2-6:	 Creating a Class for enums

#include <iostream>

using namespace std;

class Colors {
public:
 enum ColorEnum {blue, red, green};
 Colors(Colors::ColorEnum value);
 string AsString();
protected:
 ColorEnum value;
};

Colors::Colors(Colors::ColorEnum init) {
 value = init;
}

string Colors::AsString() {

LISTING 2-5:	 (continued)

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 299

 switch (value) {
 case blue:
 return "blue";
 case red:
 return "red";
 case green:
 return "green";
 default:
 return "Not Found";
 }
}

int main() {
 Colors InkColor = Colors::red;
 cout << InkColor.AsString() << endl;
 return 0;
}

In this example, the switch statement doesn’t include any break statements.
Instead, it uses return statements. The return causes the computer to exit the
function entirely, so you have no reason to worry about getting out of the switch
statement. You may wonder why the switch statement includes a default clause.
After all, it will never get called. In this case, if you don’t supply a default clause,
the compiler displays the following message:

warning: control reaches end of non-void function

Whenever possible, add the code required for your application to compile with-
out warnings. Adding the default clause simply ensures that the AsString()
function always returns a value, no matter what happens. In addition, having the
default clause will make it apparent that a color has been added to the enum, but
isn’t handled by the switch statement.

The expression Colors::red may be unfamiliar to you. That means you’re using
the red value of the ColorEnum type. However, because ColorEnum is declared
inside the class Color, you can’t just say red. You have to first say the class name,
and then two colons, and then the value. Thus, you type Colors::red.

The code in main() creates the InkColor instance and sets it not to a Color object
but to an enum. This works because C++ has a neat little trick: You can create a con-
structor that takes a certain type. In this case, Color has a constructor that takes
a ColorEnum. Then when you create a stack variable (not a pointer), you can just
set it equal to a value of that type. The computer will implicitly call the constructor,
passing it that value.

300 BOOK 2 Understanding Objects and Classes

Working with Random Numbers
Sometimes, you need the computer to generate random numbers for you. But
computers aren’t good at doing tasks at random. Humans can toss dice or flip
a coin, but the computer must do things in a predetermined fashion. The com-
puter geniuses of the past century have come up with algorithms that generate
pseudorandom numbers. These numbers are almost random or seemingly random.
They’re sufficiently random for many purposes.

The only catch with these random-number generators is that you need to seed
them, that is, provide them with an input value as a starting point for the cal-
culation. If you provide the same seed each time, the starting output number

ADDING COUT CAPABILITIES
It would be nice if the Colors class allowed you to just call cout, as in cout << Ink
Color << endl; without having to call Ink Color.AsString() to get a string ver-
sion. C++ has a capability called operator overloading, which is a technique for extend-
ing the functionality of an operator. When you type something cout << followed by a
variable, you are calling a function: <<. Several versions of the << functions (they are
overloaded) are available; each has a different type. For example, int handles the cases
when you write out an integer, as in int x = 5;, and then cout << x;. Because the
<< function doesn’t use parentheses, it is an operator.

To add cout capabilities to your class, just write another << function for your class.
Here’s the code. This is not a class method; it goes outside your class. Add it to Listing 2-6
anywhere after the class declaration but before main(). Here goes:

ostream& operator << (ostream& out, Colors& inst)
{
 out << inst.AsString();
 return out;
}

Because this function is an operator, you have to throw in the word operator. The type
of cout is ostream, incidentally; thus, you take an ostream as a parameter and you
return the same ostream. The other parameter is the type you are printing: in this case,
it’s a Colors instance, and once again, it’s passed by reference. After you add this code,
you can change the line cout << InkColor.As String() << endl; to simply

cout << InkColor << endl;

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 301

is the same, as is the sequence of additional output numbers. Consequently,
pseudorandom-number generators need some sort of seed that changes in an
apparently random fashion. Fortunately, the seconds component of the current
time is a changeable input that appears random when used correctly. When you
run an application, most likely you won’t start running it at precisely the same
second in time. The RandomNumber example shown in Listing 2-7 shows how to
generate a random number.

LISTING 2-7:	 Seeding the Random-Number Generator

#include <iostream>
#include <time.h>
#include <stdlib.h>

using namespace std;

int main()
{
 // Seed the random-number generator
 time_t now;
 time(&now);
 srand(now);

 // Print out a list of random numbers
 for (int i=0; i<5; i++)
 {
 cout << rand() % 100 << endl;
 }

 return 0;
}

The example follows a process that you often see when working with random
numbers. To obtain the time, you must include time.h. Initializing and using the
random-number generator requires that you include stdlib.h.

1.	 Obtain the current time to start the random-number generator by creating a
variable called now of a special type called time_t (which is just a number).

2.	 Call the time() function, passing the address of now, which obtains the
number of seconds since January 1, 1970.

3.	 Initialize the random number using the time seed by calling srand().

4.	 Create a random number based on the seed by calling rand().

302 BOOK 2 Understanding Objects and Classes

Each time you call rand(), you receive a new random int. However, the num-
ber may not be in the range you want. To limit the numbers in the range from 0
through 99, the code uses the modulus 100 of the number. (That’s the remainder
when you divide the number by 100.) The first time you run Listing 2-7, you may
see the following output:

19
69
85
83
47

The second time, you may see this output. It’s different than before:

79
67
38
72
73

Storing Data in Arrays
Most programming languages support a data structure called an array. An array is
a list of variables, all stored side by side in a row. You access them through a single
name. Each variable in the array must be of the same type. This section tells you
how to work with arrays for data storage purposes in a simple manner. A more
detailed discussion of creating and using arrays in an advanced way appears in the
“Building Up Arrays” section of Book 5, Chapter 1.

When you create an array, you specify how many items the array holds. For exam-
ple, you can have an array of 100 integers. Or you can have an array of 35 strings
or an array of 10 pointers to the class BrokenBottle. If the code you’re working
with represents a type, you can create an array out of it.

When you create an array, you give it a name. You can access the array’s
elements (items) by using that name followed by an index number in brackets.
The first element is always 0. Thus, if you have an array of five integers called
AppendixAttacks, the first element is AppendixAttacks[0]. The second is
AppendixAttacks[1], and then AppendixAttacks[2], AppendixAttacks[3], and
finally AppendixAttacks[4].

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 303

Because an array starts with element number 0, the final element in the array has
an index that is 1 less than the size of the array. Thus, an array of 89 elements has
indexes ranging from 0 to 88.

Declaring and accessing an array
Here’s how you declare an array:

int GrilledShrimp[10];

This line declares an array of 10 integers called GrilledShrimp. You first put the
type (which is really the type of each element in the array), and then the name for
the array, and then the number of elements in brackets. And because this declares
10 integers, their indexes range from 0 to 9.

To access the first element of the array, you put the number 0 in brackets after
the type name, as in

GrilledShrimp[0] = 10;

Often, people use a loop to fill in an array or access each member. People usually
call this looping through the array. The ArrayLoop example, in Listing 2-8, shows
how to create and use a basic array.

LISTING 2-8:	 Using a Loop to Loop Through the Array

#include <iostream>

using namespace std;

int main() {
 int Values[5];
 int VSize = sizeof(Values)/sizeof(*Values);
 cout << "Array count: " << VSize << endl;

 for (int i=0; i < VSize; i++) {
 Values[i] = i * 2;
 cout << Values[i] << endl;
 }

 return 0;
}

304 BOOK 2 Understanding Objects and Classes

It’s never a good idea to hard-code the length of your array anywhere in your
code because the array length could change. Rather, calculate the size of the array
using the sizeof() function. The example shows you how to perform this task
by obtaining the actual length of Values in bytes and dividing it by the size of
the individual array elements, which requires *Values. The result, VSize, is the
number of array elements. When you use a for loop to loop through the array, you
set the counter variable, i, to end the loop when it equals or exceeds the value of
VSize.

When you use arrays, don’t go beyond the array bounds. Due to some old rules of
the early C language, the compiler doesn’t warn you if you write a loop that goes
beyond the upper boundary of an array. You may not get an error when you run
your application, either.

Arrays of pointers
Arrays are particularly useful for storing pointers — a variable that contains the
address of an item in memory — to objects. If you have lots of objects of the same
type, you can store them in an array.

Although you can store the actual objects in the array, most people don’t because
they take up too much space. Most people fill the array with pointers to the objects.
To declare an array of pointers to objects, remember the asterisk in the type dec-
laration, like this:

CrackedMusicCD *missing[10];

The ArrayPointer example, shown in Listing 2-9, declares an array of pointers.
In this example, after declaring the array, you fill the elements of the array with
zeroes. Remember that each element is a pointer; that way, you can immediately
know whether the element points to something by just comparing it to 0. If it’s 0,
it’s not being used. If it has something other than 0, it has a pointer in it.

LISTING 2-9:	 Using an Array to Store a List of Pointers to Your Objects

#include <iostream>

using namespace std;

class CrackedMusicCD {
public:
 string FormerName;
 int FormerLength;

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 305

 int FormerProductionYear;
};

int main() {
 CrackedMusicCD *Missing[10];
 int SMissing = sizeof(Missing)/sizeof(*Missing);

 for (int i=0; i < SMissing; i++) {
 Missing[i] = 0;
 }
 return 0;
}

If you want to create a whole group of objects and fill the array with pointers to
these objects, you can do this kind of thing:

for (int i=0; i < SMissing; i++) {
 Missing[i] = new CrackedMusicCD;
}

Because each element in the array is a pointer, if you want to access the properties
or methods of one of the objects pointed to by the array, you need to dereference
the pointer — obtain the value pointed to by the pointer — by using the shortcut
-> notation:

Missing[0]->FormerName = "Shadow Dancing by Andy Gibb";

This sample line accesses the FormerName property of the object whose address
is in the first position of the array. When you’re finished with the object pointers
in the array, you can delete the objects by calling delete for each member of the
array, as in this example:

for (int i=0; i < SMissing; i++) {
 delete Missing[i];
 Missing[i] = 0;
}

The preceding code, clears each array element to 0. That way, the pointer is reset
to 0 and no longer points to anything after its object is gone.

306 BOOK 2 Understanding Objects and Classes

Passing arrays to functions
Sometimes you need to pass an entire array to a function. Though passing entire
objects to arrays can be unwieldy, passing an entire array can be dangerous. Arrays
can be enormous, with thousands of elements. If each element is a pointer, each
element could contain several bytes, which works with smaller arrays, but could
cause problems with arrays containing thousands of elements. When you pass
a huge array on the stack, you may overflow the application’s stack — meaning
the application crashes. Fortunately, the compiler automatically treats arrays as
pointers for you, but you still need to understand what is happening underneath
the cover.

As with passing objects, your best bet is to pass an array’s address. You pass the
function a pointer to the array. But passing an array’s address to a function is
confusing to code. The ArrayPassing example, shown in Listing 2-10, is a sample
that passes an array, without directly coding any pointers and addresses.

LISTING 2-10:	 Passing an Array to a Function by Declaring the Array in the
Function Header

#include <iostream>

using namespace std;

const int MyArraySize = 10;

void Crunch(int myarray[], int size) {
 for (int i=0; i<size; i++) {
 cout << myarray[i] << endl;
 }
}

int main() {
 int BigArray[MyArraySize];

 for (int i=0; i<MyArraySize; i++)
 {
 BigArray[i] = i * 2;
 }

 Crunch(BigArray, MyArraySize);
 return 0;
}

U
si

ng
 A

dv
an

ce
d

C+
+

Fe
at

ur
es

CHAPTER 2 Using Advanced C++ Features 307

When you run this application, it prints the nine members of the array. The array
appears in the function header without specifying a size. This means that you can
pass an array of any size to the function. The size parameter defines the array
size for the function. This example uses a constant rather than calculating the
array size; then if you decide later to modify the application by changing the size
of the array, you need to change only the one constant at the top of the applica-
tion. Otherwise, you risk missing one of the 10s.

The example doesn’t actually pass BigArray to Crunch. Instead, it passes the
array’s address. When you pass an array this way, the compiler writes code to pass
a pointer to the array. You don’t worry about it. The name of an array is actually a
pointer to the first element in the array.

@@@Thus, BigArray (as an argument) is the same as &(BigArray[0]). (You put
parentheses around the BigArray[0] part so that the computer knows that the &
refers to the combination of BigArray[0], not just BigArray.) So you could have
used this in the call:

Crunch(&(BigArray[0]), MyArraySize);

Adding and subtracting pointers
You can do interesting things when you add numbers to and subtract num-
bers from a pointer to an array element that is stored in a pointer variable as an
address. If you take the address of an element in an array and store it in a variable,
such as one called cur (for current), as in

cur = &(Numbers[5]);

where Numbers is an array of integers, you can access the element at Numbers[5]
by dereferencing the pointer, as in

cout << *cur << endl;

Then you can add and subtract numbers from the pointer, like these lines:

cur++;
cout << *cur << endl;

The compiler knows how much memory space each array element takes. When
you add 1 to cur, it advances to the next element in the array. And so the cout that
follows prints the next element — in this case, Numbers[6].

308 BOOK 2 Understanding Objects and Classes

The PointerArithmetic example, shown in Listing 2-11, shows how to move
about an array. The code declares a variable called cur, which is a pointer to an
integer. The array holds integers, so this pointer can point to elements in the array.

LISTING 2-11:	 Moving by Using Pointer Arithmetic

#include <iostream>

using namespace std;

int main() {
 int Numbers[10];
 int SNumbers = sizeof(Numbers) / sizeof(*Numbers);

 for (int i=0; i<SNumbers; i++)
 {
 Numbers[i] = i * 10;
 }

 int *cur = Numbers;
 cout << *cur << endl;
 cur++;
 cout << *cur << endl;
 cur += 3;
 cout << *cur << endl;
 cur--;
 cout << *cur << endl;
 return 0;
}

The code begins with cur pointing to the first element. The array name is the
address of the first element. The code then adds and subtracts from the value of
cur to point to other array elements. When you run the application, here is the
output you see:

0
10
40
30

You can’t do multiplication and division with pointers.

CHAPTER 3 Planning and Building Objects 309

Planning and Building
Objects

Step outside for a moment and look down. What is the thing you are stand-
ing on? (Hint: It’s giant, it’s made of rock and sand and stone and molten
lava, and it’s covered with oceans and land.) The answer? A thing! (Even a

planet is a thing.) Now go back inside. What’s the thing that you opened — the
thing with a doorknob? It’s a thing, too! It’s a slightly different kind of thing,
but a thing nevertheless. What are you standing in inside? Okay, you get the idea.
Everything you can imagine is a thing — or, to use another term, an object.

Over the years, researchers in the world of computer programming have figured
out that one of the better ways to program computers is to divide whatever it is
you’re trying to model into a bunch of objects. These objects have methods (capa-
bilities) and properties (characteristics). (Eventually they have relationships, but
that comes later.)

In this chapter, you see how to make use of objects to create a software applica-
tion. In the process, you get to twist some of the nuts and bolts of C++ that relate
to objects and get tips on how to get the most out of them.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookII\Chapter03 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Chapter 3

IN THIS CHAPTER

»» Recognizing objects so that you
can create classes

»» Encapsulating classes into
self-contained capsules

»» Building hierarchies of classes
through inheritance

310 BOOK 2 Understanding Objects and Classes

Recognizing Objects
Think of an object as anything that a computer can describe. Just as physical things
have characteristics, such as size, weight, and color, objects in an application can
have properties — say, a particular number of accounts, an engine, or even other
objects that it contains., A car, for example, contains engines, doors, and other
objects.

Further, just as you can use real-world objects in certain ways because they have
particular capabilities, an object in an application can use methods. For example,
it might be able to withdraw money or send a message or connect to the Internet.

Here’s an example of modeling an object by thinking about how it’s put together
and how you use it. Outside, in front of your house, you might see a mailbox.
That mailbox is an object. A mailbox is a useful device. You can receive mail, and
depending on the style (kind) of mail, you can send mail. (The style of mail is
important — you can send a letter because you know how much postage to attach,
but you can’t send a package because the amount of postage is unknown.) Those
are the mailbox’s methods. And what about its characteristics? Different mailboxes
come in different shapes, sizes, colors, and styles. So those are four properties.
Now, some mailboxes, such as the kind often found at apartment buildings, are
great big metal boxes with several little boxes inside, one for each apartment. The
front has doors for each individual box, and the back has a large door for the mail
carrier to fill the boxes with all those wonderful ads addressed to your alternative
name: Resident.

In this case, you could think of the apartment mailbox as one big mailbox with lots
of little boxes, or you could think of it as a big container for smaller mailboxes. In
a sense, each of the little boxes has a front door that a resident uses, and the back
of each one has an entry that the mail carrier uses. The back opens when the big
container door opens.

So think about this: The mail carrier interacts with the container, which holds
mailboxes. The container has a big door, and when that door opens, it exposes
the insides of the small mailboxes inside, which open, too. Meanwhile, when a
resident interacts with the system, he or she interacts with only his or her own
particular box.

Take a look at Figures 3-1 and 3-2. Figure 3-1 shows the general look of the back
of the mailbox container, where the mail carrier can open the container and put
mail in all the different boxes. Figure 3-2 shows the front of the container, with
the boxes open so that residents can take out the mail.

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 311

So far, there are two kinds of objects here: the container box and the mailboxes.
But wait! There are multiple mailboxes. So, really, you have one container box
and multiple mailboxes. But each mailbox is pretty much the same, except for a
different lock and a different apartment number, right? In Figure 3-2, each box
that’s open is an example of a single mailbox. The others are also examples of the
type of object called mailbox. In Figure 3-2, you can see 16 examples of the objects
classified as mailbox. In other words, Figure 3-2 shows 16 instances of the class
called Mailbox. All those mailboxes are inside an instance of the class that you
would probably call Mailboxes.

There is no hard-and-fast rule about naming your classes. However, most devel-
opers use a singular name for objects and a plural name for collections. A single
Mailbox object would appear as part of a Mailboxes collection. Using this nam-
ing convention makes it easier for other developers to understand how your code
works. Of course, the most important issue is consistency. After you decide on a
naming convention, use the same convention all the time.

FIGURE 3-1:
The outer object

in this picture
is a mailbox

container.

FIGURE 3-2:
The smaller inner

objects in this
picture are the

mailboxes.

312 BOOK 2 Understanding Objects and Classes

Observing the Mailboxes class
What can you say about the Mailboxes collection object?

»» The Mailboxes collection contains 16 mailbox instances.

»» The Mailboxes collection object is 24 inches by 24 inches in front and back,
and it is 18 inches deep.

»» When the carrier unlocks the mailboxes and pulls, its big door opens.

OTHER MODELING METHODS
Computer scientists use a variety of modeling methods to create programs that reflect
what the code is supposed to do. Object-oriented programming (OOP) techniques work
best when modeling real-world objects. The object need not be something you would
necessarily touch, such as a bank account, but it does exist in the real world, and using
objects makes modeling the item easier. That’s why this chapter focuses so much on
real-world objects.

However, other sorts of modeling exist, and you experience one of these other models
in Book 3 in the form of functional programming. Unlike OOP, functional programming
excels at modeling abstractions. Trying to model an abstraction, such as statistical anal-
ysis, using OOP can prove difficult. Functional programming also has other advantages
when performing certain kinds of tasks that require a lot of memory and high-speed
processors.

You have also experienced procedural programming in the early examples of this book
in which the code follows a set of steps to accomplish a task. In fact, most of the exam-
ples in Book 1 fall into this category.

Even though this book doesn’t cover them, C++ can also adapt to several other models.
Event-driven programming allows you to react to user interactions with the application,
and you can perform whatever task the user needs no matter how the user makes the
request (see the article at http://www.husseinsspace.com/teaching/udw/1996/
cnotes/chapsix.htm). Reactive programming is especially adept at processing data
streams (see the library at http://reactivex.io/RxCpp/). Automata program-
ming is used for various kinds of automation, including robots and factory automation
(see the article at https://www.tutorialspoint.com/cplusplus-program-to-
perform-finite-state-automaton-based-search). The point is that you may find
developers who use just one modeling method, but it’s often better to know multiple
techniques so that you can use an approach that works best for your particular need.

http://www.husseinsspace.com/teaching/udw/1996/cnotes/chapsix.htm
http://www.husseinsspace.com/teaching/udw/1996/cnotes/chapsix.htm
http://reactivex.io/RxCpp/
https://www.tutorialspoint.com/cplusplus-program-to-perform-finite-state-automaton-based-search
https://www.tutorialspoint.com/cplusplus-program-to-perform-finite-state-automaton-based-search

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 313

»» When the mailboxes’ big door opens, it exposes the insides of each contained
mailbox.

»» When the mail carrier pushes on the door, the door shuts and relocks.

By using this list, you can discover some of the properties and methods of the
Mailboxes collection. The following list shows its properties:

»» Width: 24 inches

»» Height: 24 inches

»» Depth: 18 inches

»» Mailboxes: 16 Mailbox objects inside

And here’s a list of some of the Mailboxes collection methods:

»» Open its door.

»» Give the mail carrier access to the mailboxes.

»» Close its door.

Think about the process of the carrier opening or closing the door. Here we seem
to have a bizarre thing: The mail carrier asks the Mailboxes collection to close its
door, and the door closes. That’s the way you need to look at modeling objects:
Nobody does anything to an object. Rather, someone asks the object to do some-
thing, and the object does it itself.

For example, when you reach up to shove a slice of pizza into your mouth, your
brain sends signals to the muscles in your arm. Your brain sends out the signals,
and your arms move up, and so does the pizza. The point is that you make the
command; then the arms carry it out, even though you feel like you’re causing
your arms to do it.

Objects are the same way: They have their methods, and you tell them to do their
job. You don’t do it for them. At least, that’s the way computer scientists view it.
The more you think in this manner, the better you understand object-oriented
programming.

The Mailboxes collection contains 16 Mailbox objects. In C++, that means the
Mailboxes collection has as properties 16 different Mailbox instances. These
Mailbox instances could contain an array or some other collection, and most likely
the array holds pointers to Mail instances within the Mailbox object.

314 BOOK 2 Understanding Objects and Classes

Observing the Mailbox class
Consider the characteristics and capabilities of the Mailbox class. Each Mailbox
has these properties:

»» Width: 6 inches

»» Height: 6 inches

»» Depth: 18 inches

»» Address: A unique integer

And each Mailbox has these methods:

»» Open its door.

»» Close its door.

Notice that the methods are from the perspective of the Mailbox, not the person
opening the Mailbox.

Now think about the question regarding the address printed on the Mailbox.
There are 16 different Mailbox objects, and each one gets a different number. So
it’s possible to say this: The Mailbox class includes an address, which is an inte-
ger. Each instance of the Mailbox class gets its own number. The first may get 1,
the second may get 2, and so on. So you have two concepts here for representing
the mailboxes in code:

»» Mailbox class: This is the general description of a mailbox. It includes no
specifics, such as the actual address. It simply states that each mailbox has
an address.

»» Mailbox instance: This is the actual object. The Mailbox instance belongs to
the class Mailbox. There can be any number of instances of the Mailbox
class.

Think of the Mailbox class as a cookie cutter — or, in C++ terminology, the type.
The Mailbox instance is an actual example of the class. In C++, you can create a
variable of class Mailbox and set its Address integer to 1. Then you can create
another variable of class Mailbox and set its Address integer to 2. Thus, you’ve
created two distinct Mailbox objects, each of class Mailbox.

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 315

But all these Mailbox instances have a width of 6, a height of 6, and a depth of
18 inches. These properties are the same throughout the Mailboxes collection.
Thus, you would probably not set those manually; instead, you would probably set
them in the constructor for the class Mailbox. Nevertheless, the values of width,
height, and depth go with each instance, not with the class; and the instances
could, conceivably, each have their own width, height, and depth. However, when
you design the class, you would put a stipulation in the class that these properties
can’t be changed.

Finding other objects
If you are dealing with a Mailboxes instance and an instance of Mailbox, you can
probably come up with some other classes. When you start considering the parts
involved, you can think of the following objects:

»» Lock: Each Mailbox instance would have a Lock, and so would the
Mailboxes instance.

»» Key: Each Lock instance would require one or more Key instances.

»» Mail: Each Mailbox instance can hold several Mail instances. The carrier puts
these in the Mailbox instances, and the residents take them out.

»» LetterOpener: Some residents would use these to open the Mail.

So you now have four more types of objects (Lock, Key, Mail, and LetterOpener).
But are these classes necessary? Their need depends on the application you’re
building. In this case, you’re modeling the mailbox system simply as an exercise.
Therefore, it’s possible to choose the desired classes. But if this were an actual
application for a post office, for example, you would have to determine whether
the classes are necessary for the people using the software. If the application is a
training exercise for people learning to be mail carriers, the application may need
more detail, such as the Key objects. If the application were a video game, it may
need all the classes mentioned and even more.

In deciding whether you need certain classes, you can follow some general
rules. First, some classes are so trivial or simple that it doesn’t make sense to
include them. For example, a letter opener serves little purpose beyond open-
ing mail. If you’re designing a Mail class, you would probably have the method
OpenEnvelope. Because some people would use a letter opener and others would-
n’t, you have little reason to pass into that method a LetterOpener instance.
Therefore, you would probably not include a class as trivial as LetterOpener. But
then again, when writing a game that involves a Mail instance, you may allow use
of a LetterOpener instance, but not a Scissors instance, to open the letter.

316 BOOK 2 Understanding Objects and Classes

Encapsulating Objects
People have come up with various definitions for what exactly object-oriented
means. The phrase various definitions in the preceding sentence means that there
aren’t simple discussions around a table at a coffeehouse about what the term
means. Rather, there are outright arguments! One of the central points of con-
tention is whether C++ is object-oriented. In such discussions, one of the words
that usually pops up is encapsulation, which hides data values within the class and
prevents unauthorized access to them. People who defend C++ as being object-
oriented point out that it supports encapsulation.

Considering the Application
Programming Interface
Encapsulation is an important concept because it helps you create easier-to-use,
safer, and more reliable applications. In the world of computer programming,
encapsulation refers to the process of creating a stand-alone object that can take
care of itself and do what it must do while holding on to information. For exam-
ple, to model a cash register, an application would encapsulate the cash register
by putting everything about the register (its methods and properties) into a single
class.

To keep data within the class safe, you would make some methods and properties
public (accessible through an Application Programming Interface, API) and others
private (accessible only through the class). Some methods and properties can be
protected, so derived classes could access them, but they still wouldn’t be public.
The combination of public methods and properties used by other developers to
access the class is the class’s API.

Understanding properties
In Chapter 1 of this minibook, you see how to build classes and instantiate objects
from them. The examples in that chapter are straightforward, and all you really
deal with are properties and methods. A property in Chapter 1 is essentially a vari-
able, such as Color InkColor;. However, real-world classes work a little differ-
ently. You create a class member, which is actually the property from Chapter 1,
and access it through methods that consist of the following:

»» Setter: A special method used to set (modify) the value of a property.

»» Getter: A special method used to get (read) the value of a property.

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 317

When viewed in this way, a property can consist of a setter (write-only), getter
(read-only), or both (read/write). The property is never actually touched as part
of the API. Here are the reasons you want to use this approach:

»» Using a getter, it’s possible to ensure that the value supplied by the caller is
the right type, the correct length, and is in a specific range. You can also verify
that the data doesn’t contain viruses and other nasty stuff.

»» Using a getter or a setter (depending on access), you can change the format
of data from its internal representation to its external representation. For
example, you could represent money as strings externally and floating-point
values internally.

»» Employing properties can allow you to perform security checks and other
measures to keep data safe.

»» Using getters and setters also makes it easier to set a breakpoint for debug-
ging (discussed in Book 4 Chapter 2).

»» Increasing property functionality can make it possible to manage resources in
various ways, such as allowing access only at given times (configurable by an
administrator).

Methods also access properties, but in a different manner than properties do.
When designing a cash register class, you’d probably have a property represent-
ing the total dollar amount that the register contains—the methods that use the
class wouldn’t directly modify that value. Instead, they’d call various methods
to perform transactions. One transaction might be Sale(). Another transaction
might be Refund(); another might be Void(). These would be the capabilities of
the register in the form of public methods, and they would modify the cash value
inside the register, making sure that it balances with the sales and returns. If a
method could just modify the cash value directly, the balance would get out of
whack. Encapsulation, then, is this:

»» You combine the use of methods and properties to access class members,
hiding some of them and making some accessible.

»» Some methods perform specific tasks that may access more than one
property.

»» The accessible methods and properties together make up the API of the
object.

»» When you create an object, you create one that can perform on its own. In
other words, the users of the class tell it what to do (such as perform a sales
transaction) by calling its methods or properties and supplying parameters,
and the object does the work.

318 BOOK 2 Understanding Objects and Classes

Choosing between private and protected
The cash amount would be a private or protected property. It would be hidden
from the caller. As for which it would be, private or protected, that depends on
whether you expect to derive new classes from the cash register class and whether
you want these new classes to have access to the members.

In the situation of a cash register, you probably wouldn’t want other parts of the
application to access the cash register total if you’re worried about security, so you
might choose private. On the other hand, if you think that you’ll create derived
classes that have added features involving the cash (such as automatically sending
the money to a bank via an electronic transaction), you’d want the members to
be protected. In general, developers often choose protected, rather than private,
because they’ve been bitten too many times by using classes that have too many
private members. In those cases, you’re unable to derive useful classes because
everything is private!

Defining a process
The encapsulation process matters more than simply enclosing code in an easily
accessed form. When you design objects and classes, you encapsulate your infor-
mation into individual objects. If you keep the process in mind, you’ll be better off.
Here are the things you need to do every time you design a class:

»» Encapsulate the information. Combine the information into a single entity
that becomes the class. This single entity has properties representing its
characteristics and methods representing its capabilities.

»» Clearly define the public interface of the class. Provide a set of properties
and methods that are public, and make the class members either protected
or private.

»» Write the class so that it knows how to do its own work. The class’s users
should need only to call the methods in the public interface, and these public
methods should be simple to use.

»» Think of your class as a black box. The object has an interface that provides
a means so that others can use it. The class includes details of how it does its
thing; users only care that it does it. In other words, the users don’t see into
the class.

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 319

»» Never change the class interface after you publish the class. Many
application errors occur when a developer changes how methods, properties,
events, or access methods in the class work after publishing the class. If
application developers rely on one behavior and the class developer intro-
duces a new behavior, all applications that rely on the original behavior will
break. You can always add to a class interface but never subtract from it or
modify it. If you find that you must introduce a new behavior to Sale(), add
the new behavior to a new method, Sale2().

Implementing properties
A common saying in object-oriented programming is that you should never make
your properties public. The idea is that if users of the object can easily make
changes to the object’s properties, a big mess could result. Previous sections
mention properties and then talk about special methods as well. There are
two methods of accessing property values in C++, and most developers today
implement both when possible:

»» Getter/setter as a method: You can use separate getter and setter methods,
such as setValue() and getValue(). This is the approach that you can easily
use with all versions of C++ and is the only officially supported technique.

»» Property approach: Developers who have a background in other languages,
such as C#, prefer the property approach, in which you have the object name,
a dot, and then the property you want to change, such as MyObject.Value.
The selection of getter or setter is automatic, based on context. To implement
this approach, you must either use the correct C++ language product, such as
Microsoft C++, or create a specialized class.

The article at https://www.codeproject.com/Articles/118921/C-Properties
tells you about the Microsoft approach to creating properties, which involves
creating a standard getter, setter, or both and then relying on __declspec()
to define the property. The discussion at https://stackoverflow.com/
questions/8368512/does-c11-have-c-style-properties describes a number
of methods you can use with standards-based C++, including the creation of a
template. The point is that you can use the property approach with C++, but it
requires some additional work.

The ImplementProperties example, shown in Listing 3-1, demonstrates the pro-
cess for working with read-only, read/write, and write-only properties for a class.

https://www.codeproject.com/Articles/118921/C-Properties
https://stackoverflow.com/questions/8368512/does-c11-have-c-style-properties
https://stackoverflow.com/questions/8368512/does-c11-have-c-style-properties

320 BOOK 2 Understanding Objects and Classes

LISTING 3-1:	 Working with Properties

#include <iostream>

using namespace std;

class MyDog {
protected:
 string _Name;
 int _Weight = 300;
 bool _IsHealthy = false;

public:
 // Properties
 string getName() {
 return _Name;
 }

 int getWeight() {
 return _Weight;
 }
 void setWeight(int Weight) {
 if (Weight > 0)
 _Weight = Weight;
 }

 void setIsHealthy(bool IsHealthy) {
 if (_Weight > 200)
 _IsHealthy = false;
 else
 _IsHealthy = IsHealthy;
 }

 // Methods
 MyDog(string Name);
 void DoDogRun();
};

MyDog::MyDog(string Name) {
 if (Name.length() == 0)
 throw "Error: Couldn't create MyDog!";

 MyDog::_Name = Name;
}

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 321

void MyDog::DoDogRun() {
 if (MyDog::_IsHealthy)
 cout << MyDog::_Name << " is running!" << endl;
 else if (MyDog::_Weight > 200)
 cout << MyDog::_Name << " is too fat to run!" << endl;
 else
 cout << MyDog::_Name
 << " is unhealthy; see vet first!" << endl;
}

int main() {
 MyDog *ThisDog;

 try {
 // Uncomment to generate an error.
 //ThisDog = new MyDog("");

 ThisDog = new MyDog("Fred");
 } catch (const char *msg) {
 cerr << msg << endl;
 return -1;
 }

 cout << ThisDog->getName() << " needs exercise."
 << endl;
 ThisDog->DoDogRun();

 ThisDog->setWeight(100);
 ThisDog->DoDogRun();

 ThisDog->setIsHealthy(true);
 ThisDog->DoDogRun();

 delete ThisDog;
 ThisDog = 0;

 return 0;
}

The code begins by creating protected properties. The default dog doesn’t have a
name, but it does weigh 300 pounds and is definitely unhealthy. The properties pro-
vide setter and getter code as needed. For example, you don’t want to change the
dog’s name after you create it, but you do want to change its weight as needed. Keep-
ing the dog’s health state a secret provides personal protections for the dog, so you

322 BOOK 2 Understanding Objects and Classes

can set it, but you can’t get it. Notice how you use the getters and setters to interact
with the data. For example, you can’t set the dog’s weight to a negative amount.

Because you can’t change the dog’s name after you create the dog, the constructor
has to accept a name. Notice how this constructor code includes exception han-
dling. If someone tries to create the object without supplying a name, the con-
structor will throw an exception and not create a new MyDog object. Consequently,
when you create ThisDog, you must enclose it within a try...catch block, as
shown in Listing 3-1. The error message shows the problem onscreen:

Error: Couldn't create MyDog!

At this point, you can interact with ThisDog in the same way that you interact
with any other object. The example discovers that the poor dog needs exercise, but
you can’t exercise the dog at first because he’s too fat. Even after losing weight,
Fred needs to become healthy before going out for a good run. However, look
at the setIsHealthy() code. If Fred weighs more than 200 pounds, the code
ignores that the input value indicates that Fred still isn’t healthy. Here is the
output from this example:

Fred needs exercise.
Fred is too fat to run!
Fred is unhealthy; see vet first!
Fred is running!

Building Hierarchies
One of the great powers in C++ is the capability to take a class and build new
classes from it. When you use any of the available C++ libraries, such as the Stan-
dard C++ Library, you will probably encounter many classes — sometimes dozens
of classes — that are all related to each other. Some classes are derived from other
classes, although some classes are stand-alone. This gives programmers great
flexibility. It’s good for a class library to be flexible because when you’re using a
flexible library, you have many choices in the different classes you want to use.

Establishing a hierarchy
When you design a class, you have the option of deriving the class you’re creat-
ing from an original base class — creating a child/parent relationship. The new
class inherits the capabilities and characteristics of the base class. Normally, the

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 323

members that are public in the base class will remain public in the derived class.
The members that are protected in the base class will remain protected in the
derived class; thus, if you derive even further, those final classes will also inherit
the protected members. Private members, however, live only in the base class.

Suppose you have a base class called FrozenFood, and from there you derive a
class called FrozenPizza. From FrozenPizza, you then derive a class called
DeepDishPizza. FrozenFood is at the top of the hierarchy. It includes various
members common to all classes. Now suppose that the FrozenFood class has the
following properties:

»» int Price (private): This is a private variable that represents the price of
the product.

»» int Weight (protected): This is a protected variable that represents the
weight of the product.

The FrozenFood class also has these methods:

»» constructor: The constructor is public and takes a price and a weight as
parameters. It saves them in the Price and Weight properties, respectively.

»» GetPrice(): This is a public access method that returns the value in the
private Price property.

»» GetWeight(): This is a public access method that returns the value in the
protected Weight property.

To make this concept clearer, it helps to list these items in a box, putting the name
of the class (FrozenFood) at the top of the box. Then the box has a horizontal line
through it, and under that you list the properties. Under the properties, you have
another line, and then a list of methods, as shown in Figure 3-3.

FIGURE 3-3:
You can draw a
class by using a

box divided into
three horizontal

sections.

324 BOOK 2 Understanding Objects and Classes

Note that in this figure, you can describe the visibility of each property and method:

»» +: Public

»» –: Private

»» #: Protected

Even though Figure 3-3 is helpful in assisting anyone in visualizing a class
and ultimately class relationships, it’s part of a technique called the Unified
Modeling Language (UML) — a topic associated with software engineering and not
discussed further in this book. If you’re interesting in learning more about UML,
you can find tutorials at https://www.tutorialspoint.com/uml/index.htm and
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/
uml-class-diagram-tutorial/. You can write great code without using UML
and, today, most developers rely on it only when working on large projects that
would be hard to manage otherwise.

Protecting members when inheriting
In C++, you have options for how you derive a class. To understand this, remem-
ber that when you derive a class, the derived class inherits the members from the
base class. With the different ways to derive a class, you can specify whether those
inherited members will be public, protected, or private in the derived class. Here
are the options:

»» Public: When you derive a new class as public, all members that were public
in the base class will remain public in this derived class.

»» Protected: When you derive a new class as protected, all members that were
public in the base class will now be protected in this new class. This means the
members that were public in the base class will not be accessible by users of
this new class.

»» Private: When you derive a new class as private, all members in the base
class that this new class can access will be private. This means that these
members will not be accessible by any classes that you later derive from this
new class or by users of the class.

Think of it as an order of diminishing accessibility: The highest access is public.
When a member is public, users can access the member. The middle access is

https://www.tutorialspoint.com/uml/index.htm
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 325

protected. Users cannot access protected members, but derived classes will have
access to the protected members. The lowest access is private. Users cannot access
private members, and derived classes can’t, either.

To put protection during inheritance in perspective, consider the FrozenFood
class and its children. When working with the FrozenPizza derived class, you see
a combination of the members in FrozenFood and additional FrozenPizza mem-
bers. However, only the methods in the FrozenFood portion of FrozenPizza can
access the private members of the FrozenFood portion. Nevertheless, the methods
in the FrozenFood portion of FrozenPizza and the private members of Frozen-
Food are part of the derived class.

When you derive a class as public, the base class portion of the derived class
remains unchanged: Those items that were private remain in the base class por-
tion; therefore, the derived class does not have access to them. Those that were
protected are still protected, and those that were public are still public.

But when you derive a class as protected, the base class portion is different from
the original base class: Its public members are now protected members of this
derived class. The actual base class itself did not change; only the base class por-
tion of the derived class becomes protected. Thus, the members that were public
in the base class but are now protected in the derived class are not accessible to
other methods and classes.

And finally, if you derive a class as private, the base class portion is again dif-
ferent from the original base class: All its members are now private. Because its
members are private, any classes you derive from this newly derived class can’t
access these members: They’re private. However, as before, the original base class
itself didn’t change.

In C++, you specify the type of inheritance you want in the header line for the
derived class. Look at the InheritedMembers example, shown in Listing 3-2.
Notice the three classes at the top of the listing: FrozenFood, FrozenPizza, and
DeepDishPizza. FrozenFood is the base class of FrozenPizza, and FrozenPizza is
the base class of DeepDishPizza. Figure 3-4 shows this relationship using arrows
to point toward the base class.

326 BOOK 2 Understanding Objects and Classes

LISTING 3-2:	 Specifying the Access Levels of the Inherited Members

#include <iostream>

using namespace std;

class FrozenFood {
private:
 int Price;
protected:
 int Weight;
public:
 FrozenFood(int APrice, int AWeight);
 int GetPrice();
 int GetWeight();
};

class FrozenPizza : public FrozenFood {
protected:
 int Diameter;
public:
 FrozenPizza(int APrice, int AWeight, int ADiameter);
 void DumpInfo();
};

class DeepDishPizza : public FrozenPizza {
private:
 int Height;
public:
 DeepDishPizza(int APrice, int AWeight, int ADiameter,
 int AHeight);

FIGURE 3-4:
The arrows in

this UML diagram
point toward the

base class.

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 327

 void DumpDensity();
};

FrozenFood::FrozenFood(int APrice, int AWeight) {
 Price = APrice;
 Weight = AWeight;
}

int FrozenFood::GetPrice() {
 return Price;
}

int FrozenFood::GetWeight() {
 return Weight;
}

FrozenPizza::FrozenPizza(int APrice, int AWeight,
 int ADiameter) :
 FrozenFood(APrice, AWeight) {
 Diameter = ADiameter;
}

void FrozenPizza::DumpInfo() {
 cout << "\tFrozen pizza info:" << endl;
 cout << "\t\tWeight: " << Weight << " ounces" << endl;
 cout << "\t\tDiameter: " << Diameter << " inches"
 << endl;
}

DeepDishPizza::DeepDishPizza(int APrice, int AWeight,
 int ADiameter, int AHeight) :
 FrozenPizza(APrice, AWeight,
 ADiameter) {
 Height = AHeight;
}

void DeepDishPizza::DumpDensity() {
 // Calculate pounds per cubic foot of deep-dish pizza
 cout << "\tDensity: ";
 cout << Weight * 12 * 12 * 12 * 14 /
 (Height * Diameter * 22 * 16);
 cout << " pounds per cubic foot" << endl;
}

(continued)

328 BOOK 2 Understanding Objects and Classes

int main() {
 cout << "Thin crust pepperoni" << endl;
 FrozenPizza pepperoni(450, 12, 14);
 pepperoni.DumpInfo();
 cout << "\tPrice: " << pepperoni.GetPrice()
 << " cents" << endl;

 cout << "Deep dish extra-cheese" << endl;
 DeepDishPizza extracheese(650, 21592, 14, 3);
 extracheese.DumpInfo();
 extracheese.DumpDensity();
 cout << "\tPrice: " << extracheese.GetPrice()
 << " cents" << endl;
 return 0;
}

When you run Listing 3-2, you see the following output:

Thin crust pepperoni
 Frozen pizza info:
 Weight: 12 ounces
 Diameter: 14 inches
 Price: 450 cents
Deep dish extra-cheese
 Frozen pizza info:
 Weight: 21592 ounces
 Diameter: 14 inches
 Density: 35332 pounds per cubic foot
 Price: 650 cents

The first five lines show information about the object of class FrozenPizza.
The remaining lines show information about the object of class DeepDish
Pizza, including the fact that it weighs 21,592 ounces (which happens to be
1349.5 pounds), It has a density of 35,332 pounds per cubic foot.

The derivations are all public. Thus, the items that were public in FrozenFood are
still public in FrozenPizza and DeepDishPizza. Note where the different infor-
mation in the output comes from. The line Frozen pizza info: and the two lines
that follow (Weight: and Diameter:) come from the public method DumpInfo(),
which is a member of FrozenPizza. DumpInfo() is public in the FrozenPizza
class. Since DeepDishPizza derives from FrozenPizza as public, DumpInfo() is
also a public member of DeepDishPizza.

LISTING 3-2:	 (continued)

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 329

Try changing the header for DeepDishPizza from

class DeepDishPizza : public FrozenPizza

to

class DeepDishPizza : protected FrozenPizza

You’re changing the word public to protected. Make sure that you change the
correct line. Compile and run the application. You see an error that looks similar
to this one:

In function 'int main()':
error: 'void FrozenPizza::DumpInfo()' is inaccessible
error: within this context
error: 'FrozenPizza' is not an accessible base of

'DeepDishPizza'
error: 'int FrozenFood::GetPrice()' is inaccessible
error: within this context
error: 'FrozenFood' is not an accessible base of 'DeepDishPizza'

This message refers to the extracheese.DumpInfo(); line in main(). DumpInfo()
is now a protected member of DeepDishPizza, thanks to the word protected in
the class header. By putting the word protected in the class definition, you’re
saying the inherited members that are currently public will instead be protected.
Because the DumpInfo() member is protected, you can’t call it from main(). How-
ever, DumpInfo() is still public in the FrozenPizza class, so this call is fine:

pepperoni.DumpInfo();

Note that you can double-click the error: within this context line to jump
directly to the code that is trying to access the hidden member, rather than look at
the initial error. Using this technique saves you time looking for the errant code.

Change the line back to a public inheritance, as it was in Listing 3-2: class
DeepDishPizza : public FrozenPizza.

And now change the header of FrozenPizza so that it looks like this:

class FrozenPizza : private FrozenFood

330 BOOK 2 Understanding Objects and Classes

Again, make sure to change the correct lines. Compile and run the application to
see the following error:

In function 'int main()':|
error: 'void FrozenPizza::DumpInfo()' is inaccessible|
error: within this context|
error: 'FrozenPizza' is not an accessible base of

'DeepDishPizza'|
error: 'int FrozenFood::GetPrice()' is inaccessible|
error: within this context|
error: 'FrozenFood' is not an accessible base of 'DeepDishPizza'|

This error refers to the line inside DeepDishPizza::DumpDensity() where the
code is trying to access the Weight member. The compiler doesn’t allow access
now because the member, which was public in the original FrozenFood class,
became private when it became a part of FrozenPizza. And because it’s private in
FrozenPizza, the derived class DeepDishPizza can’t access it from within its own
methods. Make sure to change back the header of FrozenPizza so that it looks like
this: class FrozenPizza : public FrozenFood.

Overriding methods
One of the cool things about classes is that you can declare a method in one class,
and then when you derive a new class, you can give that class a different version
of the same method. This is called overriding the method. For example, if you have
a class FrozenFood and a derived class FrozenPizza, you may want to include a
method in FrozenFood called BakeChemistry(), which modifies the food when
it’s baked. Because all foods are different, the BakeChemistry() method would be
different for each class derived from FrozenFood.

In C++, you can provide a different version of the method for the different derived
classes by adding the word virtual before the method name in the base class
declaration, as in this line of code:

virtual void BakeChemistry();

This line is the prototype inside the class definition. Later, you would provide the
code for this method. In the class for your derived class, you would then just put
the method prototype, without the word virtual:

void BakeChemistry();

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 331

And as before, you would include the code for the method later on. For example,
you might have something like the following example. First, here are the classes:

class FrozenFood {
private:
 int Price;
protected:
 int Weight;
public:
 FrozenFood(int APrice, int AWeight);
 int GetPrice();
 int GetWeight();
 virtual void BakeChemistry();
};

class FrozenPizza : public FrozenFood {
protected:
 int Diameter;
public:
 FrozenPizza(int APrice, int AWeight, int ADiameter);
 void DumpInfo();
 void BakeChemistry();
};

You can see the word virtual in the FrozenFood class, and then you see the
method declaration again in the FrozenPizza class. Now, here are the
BakeChemistry() methods:

void FrozenFood::BakeChemistry() {
 cout << "Baking, baking, baking!" << endl;
}

void FrozenPizza::BakeChemistry() {
 cout << "I'm getting crispy!" << endl;
}

Note that the word virtual doesn’t appear in front of the methods; it appears
only in the class declaration. Now, whenever you make an instance of each class
and call BakeChemistry() for each instance, you call the one for the given class.
Consider the following two lines of code:

FrozenPizza pepperoni(450, 12, 14);
pepperoni.BakeChemistry();

332 BOOK 2 Understanding Objects and Classes

Because pepperoni is an instance of FrozenPizza, this code calls the BakeChem-
istry() for the FrozenPizza class, not for the FrozenFood class. You may not
want any code in your base class for the BakeChemistry() method. If so, you can
do this:

virtual void BakeChemistry() {}

The reason to take this approach is that you don’t need code in the base class, but
you do want code in the derived classes, and you want them to be different ver-
sions of the same code. The idea, then, is to provide a basic, default set of code that
the classes inherit if they don’t override the method. And sometimes, that basic,
default set of code is simply nothing. So you would put only an open brace and a
closing brace, and you can do that inside the class itself:

class FrozenFood
{
private:
 int Price;
protected:
 int Weight;
public:
 FrozenFood(int APrice, int AWeight);
 int GetPrice();
 int GetWeight();
 virtual void BakeChemistry() {}
};

Specializing with polymorphism
Suppose you have a method called Bake() and you want it to take as a parame-
ter a FrozenFood instance. If you derive FrozenPizza from FrozenFood and then
derive DeepDishPizza from FrozenPizza, by the “is a” rule, objects of the class
FrozenPizza and DeepDishPizza are both examples of FrozenFood objects. This
is true in general: If you have a class called Base and you derive from that a class
called Derived, instances of class Derived are also instances of class Base. There-
fore, if you have a method called Bake() and you declare it as follows, you are free
to pass to this method a FrozenFood instance or to pass an instance of any class
derived from FrozenFood, such as FrozenPizza or DeepDishPizza:

void Bake(FrozenFood *)
{
 cout << "Baking" << endl;
}

Pl
an

ni
ng

 a
nd

 B
ui

ld
in

g
O

bj
ec

ts

CHAPTER 3 Planning and Building Objects 333

Suppose that in this Bake() method, you set the oven temperature to a fixed
amount, turn on the oven, and then cook the food. Every food behaves differently
in the oven. For example, a deep-dish frozen pizza might rise and become thicker,
but a regular frozen pizza will become crispier but not get any thicker.

You don’t really want to put all the different food types inside the Bake() method,
with if statements for each food type. Instead, you can put the actual baking
chemistry in the class for the food itself. The FrozenPizza would have its own
BakeChemistry() method, and the DeepDishPizza would also have its own Bake-
Chemistry() method. Then the Bake() method would call BakeChemistry() for
whatever object it receives as a parameter. C++ knows how to do this because of
the virtual methods. The Bake() method doesn’t even know or care what type
of FrozenFood it receives. It just calls BakeChemistry() for whatever object it
receives. And when you modify the application by writing a new class derived
from FrozenFood and give it its own BakeChemistry() method, you can pass
an instance of this class to Bake(), without even having to modify Bake(). This
whole process is called polymorphism.

Polymorphism is one of the most powerful aspects of object-oriented program-
ming. The idea is that you can expand and enhance your application by adding
new classes derived from a common base class. Then you have to make very few
(if any) modifications to the rest of your application. Because you used virtual
methods and polymorphism, the rest of your application automatically under-
stands the new class you created. In essence, you are able to snap in the new class,
and the application will run just fine.

Getting abstract about things
When you create a base class with a virtual method and then derive other classes,
you may want to override the virtual method in all the derived classes. Further-
more, you may want to make sure that nobody ever creates an instance of the
base class. You do this because the base class might contain basic things that are
common to all the other classes, but the class itself doesn’t make much sense as
an instance. For example, no one would want you to go to the store and pick up
a frozen food without specifying the sort of frozen food to get. Consequently, it
doesn’t make much sense to have an instance of a class called FrozenFood.

Philosophers have a word to describe such things: abstract. The class FrozenFood
is abstract; it doesn’t make sense to create an instance of it. In C++, you can make
a class abstract, but when you do, the compiler won’t allow you to make any
instances of the class.

In C++, you don’t actually specify that the class is abstract. The word abstract
doesn’t appear in the language. To specify that the class is abstract, you add at
least one virtual method that has no code. But instead of just putting an empty

334 BOOK 2 Understanding Objects and Classes

code block, as in {}, you follow the method prototype in the class definition with
= 0 (called the pure specifier, which makes the method a pure virtual method or an
abstract virtual method, depending on which you prefer), as in

class FrozenFood
{
private:
 int Price;
protected:
 int Weight;
public:
 FrozenFood(int APrice, int AWeight);
 int GetPrice();
 int GetWeight();
 virtual void BakeChemistry() = 0;
};

In this class definition, the method BakeChemistry() has = 0 after it (but before
the semicolon). The = 0 transforms the virtual method into an abstract virtual
method, which transforms the class into an abstract class.

After you create an abstract class, you must also modify the derived classes by
overriding the abstract virtual method. Otherwise, the derived classes will also be
abstract. When your class is abstract, you can’t create instances of it. To override
the abstract virtual method, you override as you would with any virtual method.
This class includes a method that overrides the BakeChemistry() method:

class FrozenPizza : public FrozenFood
{
protected:
 int Diameter;
public:
 FrozenPizza(int APrice, int AWeight, int ADiameter);
 void DumpInfo();
 void BakeChemistry();
};

Then you provide the code for the BakeChemistry() method, as in

void FrozenPizza::BakeChemistry()
{
 cout << "I'm getting crispy under this heat!" << endl;
}

There’s nothing magical about defining the override method, but you are required
to override it if you want to create an instance of this class.

CHAPTER 4 Building with Design Patterns 335

Building with Design
Patterns

When you work as a developer, eventually you start to notice that you do
certain things repeatedly. For example, when you need to keep track
of how many instances of a certain class you create, you define a static

property called something like int InstanceCount;, include a line that incre-
ments InstanceCount in the constructor, and include a line that decrements
InstanceCount in the destructor. You make InstanceCount private and include a
static method that retrieves the value, such as getInstanceCount().

Because you use it so often, it becomes a pattern. The first time you used it, you
had to think about it — how to design and implement it. Now, you barely have to
think about it; you just do it. Thus, it’s a design pattern that you use.

This chapter takes a practical look at design patterns that you use when creating
applications. It helps you understand why using design patterns reduces devel-
opment time, makes code less error prone, and improves application efficiency.
The chapter delves just a bit into history and usage, with the usage considerations
relying on the singleton pattern as a starting point.

You also see how to create and use two common design patterns: observer and
mediator. You may or may not actually use these patterns in your applications, but
by seeing how they’re put together, you can find or create other patterns that will
make your development process easier.

Chapter 4

IN THIS CHAPTER

»» Understanding what design patterns
are and how you can use them

»» Implementing an observer pattern

»» Building a mediator pattern

336 BOOK 2 Understanding Objects and Classes

Delving Into Pattern History
Way back in 1995, a book became an instant bestseller in the computer program-
ming world: Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides. The four authors of
this groundbreaking book would become known in the field of programming as
The Gang of Four.

The Gang of Four drew on a body of knowledge in the field of architecture — not
software architecture, but rather the field of those people who build tall buildings,
brick-and-mortar style. That kind of architecture has been around for at least
two-and-a-half centuries, so the field is more mature than the field of software
development. And, in the field of building design, people have come up with com-
mon ways to design and build buildings and towns, without having to start over
from scratch every time with a new set of designs. Christopher Alexander wrote a
book in 1977 called A Pattern Language (see http://www.patternlanguage.com/
ca/ca.html for details), which teaches the major concepts of building architec-
ture by using patterns. The Gang of Four drew on this knowledge and applied it to
software development principles.

In their book, The Gang of Four point out something that seems obvious in hind-
sight (but then again, great discoveries are often deceptively simple): The best
software developers reuse techniques in the sense of patterns. The description of
the class that keeps an instance count is an example of a technique that can be
used over and over.

Now, if you heavily explore the field of object-oriented programming (and com-
puter science in general, really), you often see the term reusable. One of the goals
of object-oriented programming is to make code reusable by putting it in classes.
You then derive your own classes from these classes, thereby reusing the code in
the base classes.

You could probably put an instance-counting class in a base class and always derive
from it. But for some other designs, using a base class doesn’t always work. Instead,
software developers apply the same design to a new set of classes. The design is
reused, but not the code. That’s the idea behind design patterns. You don’t just
write up your design patterns and stuff them into a bunch of base classes. Instead,
you know the patterns. Or you keep a list or catalog of them. You can find a list of
the seven most important design patterns at https://medium.com/educative/
the-7-most-important-software-design-patterns-d60e546afb0e.

http://www.patternlanguage.com/ca/ca.html
http://www.patternlanguage.com/ca/ca.html
https://medium.com/educative/the-7-most-important-software-design-patterns-d60e546afb0e
https://medium.com/educative/the-7-most-important-software-design-patterns-d60e546afb0e

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 337

Introducing a Simple Pattern:
the Singleton

In this section, you discover how to create a design pattern so that you can see
what it is and, more important, how you can use it. You look at a situation in
which you need a class that allows only one instance to exist at any given time.
You’ve come across this need many times. For example, you may have a class that
represents the computer itself. You want only one instance of it. You also may
have a class that represents the planet Earth. Again, you need only one instance.
If people try to create a second instance of the class in their code, they will receive
a compiler error. The following sections discuss how to perform this task in C++
using the singleton pattern (which ensures that only one instance exists at a time).

Using an existing pattern
You could spend a couple hours coming up with an approach to the problem of
creating only a single instance. Or you could look at a pattern that already exists
somewhere, such as what this section shows you.

To understand how to create the singleton pattern, you need to first understand
an unusual concept that many C++ programmers don’t usually consider: You can
make a constructor of a class private or protected, which prevents someone from
directly creating an instance of a class. To make this process work, you include
a static method that creates the instance for you. Static methods don’t have an
instance associated with them. You call them directly by giving the class name,
two colons, and the method name. Fortunately, the static method is a member of
the class, so it can call the constructor and create an instance for you.

Here’s how you make a singleton class: First, make the constructor private. Next,
add a public static method that does the following:

1.	 Checks to see whether a single instance of the class already exists. If so, it
returns the instance’s pointer.

2.	 Creates a new instance and returns its pointer if an instance doesn’t already
exist.

Finally, where do you store this single instance? You store its pointer in a static
property of the class. Because it’s static, only one property is shared throughout
the class, rather than a separate variable for each class instance. Also, make the
variable private so that users can’t just modify it at will.

338 BOOK 2 Understanding Objects and Classes

And, voilà — you have a singleton class! Here’s how it works: Whenever you need
the single instance of the class, you don’t try to create it. (You’ll get a compile error!
Yes, the compiler itself won’t let you do it.) Instead, you call the static method.

The singleton pattern won’t prevent different programs on the same machine
from creating multiple instances of the class (one for each application). This pat-
tern works only within a single application. Consequently, if you need to ensure
that a class isn’t instantiated more than once on a machine as a whole, you need to
use some form of globally unique identifier at the operating system level, a topic
that’s outside the scope of this book.

Creating a singleton pattern class
It’s time to see the singleton pattern at work. Listing 4-1 from the Singleton
example shows how to create such a class:

LISTING 4-1:	 Creating a Singleton Class

class Planet {
private:
 static Planet *inst;
 Planet() {}
 ~Planet() {}
public:
 static Planet *GetInstance();
};

Planet *Planet::inst = 0;

Planet *Planet::GetInstance() {
 if (inst == 0) {
 inst = new Planet();
 }
 return inst;
}

int main() {
 Planet *MyPlanet = Planet::GetInstance();
 cout << "MyPlanet address: " << MyPlanet << endl;

 Planet *MyPlanet2 = Planet::GetInstance();
 cout << "MyPlanet2 address: " << MyPlanet2 << endl;
 return 0;
}

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 339

To use this class, you can’t create an instance directly. Instead, you call the Get-
Instance() method:

Planet *MyPlanet = Planet::GetInstance();

You call this any time you want to get a copy of the single instance, which may
include creating an instance when one doesn’t exist. Every time you call GetIn-
stance(), you always get a pointer to the same instance. When you run this code,
you see output like this, which confirms that MyPlanet and MyPlanet2 both point
to the same instance:

MyPlanet address: 0x3faf08
MyPlanet2 address: 0x3faf08

Look at the constructor: It’s private. Therefore, if you attempt something like this
somewhere outside the class (such as in main()):

Planet MyPlanet;

you get a compiler error. In Code::Blocks, you get this error:

error: 'Planet::Planet()' is private
error: within this context

Or if you try to create a pointer, you get the same error when you call new:

Planet *MyPlanet = new Planet();

The singleton pattern is about creating and destroying a single instance as needed,
so you don’t want anything deleting the instance that the application creates. Just
as you would make the constructor private, you would also make the destructor
private, as shown in Listing 4-1. If you try to delete an instance after you obtain
it, as in

Planet *MyPlanet = Planet::GetInstance();
delete MyPlanet;

then once again you receive an error message — this time, for the destructor:

error: 'Planet::~Planet()' is private
error: within this context

340 BOOK 2 Understanding Objects and Classes

You may be tempted to make a constructor that takes a parameter. You could
pass parameters into the GetInstance() method, which would in turn pass
them to the constructor. This would work the first time, but there’s a catch:
Remember that after the GetInstance() method creates the instance, it never
does so again. That means it won’t call the constructor again. Therefore, if you
have a class that looks like this:

class Planet
{
private:
 static Planet *inst;
 Planet(string name)
 {
 cout << "Welcome to " << name << endl;
 }
 ~Planet() {}
public:
 static Planet *GetInstance(string name);
};

and your GetInstance() method has this code in it:

Planet *Planet::GetInstance(string name)
{
 if (inst == 0)
 {
 inst = new Planet(name);
 }
 return inst;
}

and you make two calls like this:

Planet *MyPlanet = Planet::GetInstance("Earth");
Planet *MyPlanet2 = Planet::GetInstance("Venus");

the results may not be as you expect. You end up with only one instance, which
gets created with the first line — the one with "Earth" passed in. In your second
call to the GetInstance() method, GetInstance() sees that an instance already
exists and does not even use the "Venus" parameter. So be careful if you’re using
parameters in constructors.

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 341

Watching an Instance with an Observer
A common task in computer programming is when one or more instances of a
class (or different classes) need to keep an eye on a certain object and perform
various actions when that object changes. In other words, the class that keeps an
eye on the others is an observer, hence the name of the pattern. The following
sections tell you about the observer pattern and describe its use.

Understanding the observer pattern
You may write an application that monitors various activities around your house
when you’re away. Your application could be configurable; you could set it up so
that the user can choose various actions to take if something goes awry. You might
have the following options:

»» The application saves a note in a file so that you can later review it.

»» The application sends an email (or text for that matter) to you.

»» If the computer is linked to a telephone security system, it can notify the
police.

»» The robotic dog can receive a signal to go on high alert.

Each of these actions can exist in a different class, each with its own code for han-
dling the situation. The one about saving a note to a file is easy: You would open
a file, write to it, and close the file. The email example might involve obtaining a
Simple Mail Transfer Protocol (SMTP) library, using it to create a message object,
and then sending the message. To notify the police, your computer would have
to be hooked up to an online security system that’s accessible via the phone lines
or perhaps via the Internet, and the police would need a similar system at their
end. The class for this would send a signal over the lines to the police, much like
the way a secret button that notifies the police of a robbery at a gas station works.
Finally, you might have a similar contraption hooked up to the brain of your little
robotic watchdog, Fido; after receiving a high-voltage jolt, Fido can go on high
alert and ward off the intruders. These situations use Observer classes (each class
derives from a base class called Observer).

Now, you would also have a class whose object detects the problem in the house.
This object might be hooked up to an elaborate security system, and when the

342 BOOK 2 Understanding Objects and Classes

change takes place, the computer calls a method inside this object. We call this
class the Subject class. So think about what is happening here:

1.	 When a security issue happens, the computer calls a method inside the single
Subject instance.

2.	 The Observer classes have objects that watch the Subject instance. The
method in the Subject class then calls methods in each of the Observer
objects. These methods take the appropriate action, whether it’s write to a file,
notify the police, zap the robotic dog, or whatever.

Here’s the catch: The people using your computer application can determine which
Observer classes they want to respond to the event (possibly, via an Options dia-
log box). The ability of the user to determine which Observer classes to use means
that the design must be flexible. In order to obtain this flexibility, you need to add
the following requirement: You might add new Observer classes as they come up,
so the Subject class must accommodate them all. One Observer might signal a
helicopter to fly in and chase a robber who’s making a getaway. But you can’t be
sure what you’ll come up with next. All you know is that you may add Observer
subclasses and instances of these subclasses. Here are the issues that come up
when designing such a set of classes:

»» You could keep a long list of instances inside the Subject class, and whenever
an event takes place, the event handler calls a routine in all the Observer
instances. The Observer instances then decide whether they want to use the
information. The problem with this situation is that you have to call a method
within the Observer classes (call into the class), even if the individual
instances don’t want the information.

»» You could have each Observer instance constantly check the Subject
instance, looking for an event. (This process is called polling.) The problem
here is that this process can push the computer to its limits, believe it or not: If
every single Observer instance is constantly calling into the Subject class,
you’ll have a lot of activity going on for possibly hours on end, keeping the
CPU nice and toasty. That’s not a good idea, either.

»» You can perform polling using the observer pattern, which won’t overextend
the CPU. In this pattern, the Observer class contains a method called
Respond(). Meanwhile, the Subject class includes a list of Observer
instances. Further, the Subject class includes a method called Event, which
the computer calls whenever something happens, such as a break-in. The
application adds and removes Observer instances to and from the Subject’s
list of Observer instances, based on the options the people choose when
using your application.

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 343

As you can imagine, this is a recurring pattern that a lot of applications use.
Although zapping a robotic dog might not be commonplace, other applications
use this general model. For example, in some C++ editors, you can open the same
document in multiple windows, all under one instance of the editor application.
When you change the code in one window, you immediately see the change in
the other windows. Each class probably has a window, and these windows are the
Observer classes. The Subject represents the underlying document.

Defining an observer pattern class
This section discusses how to create an Observer class. The Observer class con-
tains a method called Respond(), which is a purely abstract function in the class
declaration — meaning that the derived classes must create their own version
of the Respond() function. It’s up to the derived classes to respond to the event
in their own ways. The following lines from the AddRemoveItems example (see
Listing 4-2, later in the chapter) show how to create the Observer class:

class Observer {
public:
 virtual void Respond() = 0;
};

As you can see, there’s not much here, so the example adds some derived classes.
Here are a couple:

class Dog : public Observer {
public:
 void Respond();
};

class Police : public Observer {
protected:
 string name;
public:
 Police(string myname) { name = myname; }
 void Respond();
};

And here are the Respond() methods for these two classes. For now, to keep it
simple, they just write something to the console:

void Dog::Respond() {
 cout << "Bark bark" << endl;
}

344 BOOK 2 Understanding Objects and Classes

void Police::Respond() {
 cout << name << ": 'Drop the weapon! Now!'" << endl;
}

Again, so far, there’s nothing particularly interesting about this. These lines of
code represent just a couple methods that do their thing, really. When the next
step rolls around, though, things get exciting. Here’s the Subject class:

class Subject {
protected:
 int Count;
 Observer *List[100];
public:
 Subject() { Count = 0; }
 void AddObserver(Observer *Item);
 void RemoveObserver(Observer *Item);
 void Event();
};

This class has a list of Observer instances in its List member. The Count mem-
ber is the number of items in the list. Two methods for adding and removing
Observer instances are available: AddObserver() and RemoveObserver(). A con-
structor initializes the list by just setting its count to 0, and there’s the Event()
method. Here’s the code for the AddObserver() and RemoveObserver() methods.
These functions simply manipulate the arrays:

void Subject::AddObserver(Observer *Item) {
 List[Count] = Item;
 Count++;
}

void Subject::RemoveObserver(Observer *Item) {
 int i;
 bool found = false;
 for (i=0; i < Count; i++) {
 if (!found && List[i] == Item) {
 found = true;
 List[i] = List[i+1];
 }
 }
 if (found) {
 Count--;
 }
}

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 345

The RemoveObserver() function uses some little tricks (again, a pattern!) to
remove the item. It searches through the list until it finds the item; after that, it
continues through the list, pulling items back one slot in the array. And finally,
if it finds the item, it decreases Count by 1. The Event() method looks like this:

void Subject::Event() {
 int i;
 for (i=0; i < Count; i++) {
 List[i]->Respond();
 }
}

This code climbs through the list, calling Respond() for each item in the list.
When you put this all together, you can have a main() that sets up these items.
Here’s one possibility:

Dog Fido;
Police TJHooker("TJ");
Police JoeFriday("Joe");
Subject Alarm;
Alarm.AddObserver(&Fido);
Alarm.AddObserver(&TJHooker);
Alarm.AddObserver(&JoeFriday);
Alarm.RemoveObserver(&TJHooker);
Alarm.Event();

The code creates three Observer instances (one dog and two cops) and a Sub-
ject instance called Alarm. It then adds all three instances to the list; but then TJ
Hooker backs out, so the code removes him from the list.

To test the additions, the code calls Event(). (Normally you call Event() when an
actual break-in event occurs.) And when you run this code, you get the responses
of each of the registered observers:

Bark bark
Joe: 'Drop the weapon! Now!'

Notice that the TJHooker Observer didn’t respond, because it isn’t in the list and
didn’t receive a notification. It’s still an instance.

In this example, the three observers (Fido, TJ Hooker, and Joe Friday) are watch-
ing the alarm, ready to respond to it. They are observers, ready for action. The
alarm is their subject of observation. That’s why the code uses the Observer and
Subject pattern.

346 BOOK 2 Understanding Objects and Classes

Observers and the Standard C++ Library
If you’re interested in using templates and the Standard C++ Library, you can make
the Subject class a bit more sophisticated by using a list rather than an array.
(A list allows you to easily add and remove items without constantly rebuilding
the list, as you would need to do with an array.) You can do this by using the stan-
dard list class. The only catch is that the list class doesn’t seem to do well with
abstract classes. So you need to “de-abstractify” your Observer class, which you
do by setting it up like this:

class Observer {
public:
 virtual void Respond() {}
};

Then you can modify the Subject class and its methods, like so:

class Subject {
protected:
 list<Observer *> OList;
public:
 void AddObserver(Observer *Item);
 void RemoveObserver(Observer *Item);
 void Event();
};

void Subject::AddObserver(Observer *Item) {
 OList.push_back(Item);
}

void Subject::RemoveObserver(Observer *Item) {
 OList.remove(Item);
}

void Subject::Event() {
 list<Observer *>::iterator iter;
 for (iter=OList.begin(); iter!=OList.end(); iter++) {
 Observer *item = (*iter);
 item->Respond();
 }
}

Note that the list saves pointers to Observer; not the Observer instances them-
selves. That’s because, by default, the list class makes a copy of whatever you
put in the array. If you put in an actual instance, the list class will make a copy
(which creates problems with derived classes because the list copies only the

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 347

object being stored as an Observer instance, not a class derived from Observer).
With pointers, a copy of a pointer still points to the original object, and therefore
the items in the list are the originals (at least their addresses are in the list). The
list can also add and remove items without needing the program to loop through
all the items, as occurs when using an array.

Automatically adding an observer
When you have an application that lets its users configure various observers, you
may want to create and delete observers based on the configurations. In that case,
it’s possible to add an Observer to a Subject’s list automatically when you cre-
ate the Observer, and to remove the Observer from the list when you delete the
Observer. To do this, you can call the AddObserver() method from within the
constructor and call the RemoveObserver() method from within the destructor.

To make this technique work, you need to tell the object who the Subject is by
passing the name as a parameter to the constructor. The following code does
this. Note that you have to move the Subject class above the Observer class
because the Observer’s constructor and destructor call into Subject. Also, note
the AddObserver() and RemoveObserver() functions are protected. However, to
allow the Observer class to use these functions, you need to add the word friend
followed by the word Observer in the Subject class. The code for the complete
AddRemoveItems application is in Listing 4-2.

LISTING 4-2:	 Adding and Removing Items in the Constructor and Destructor

#include <iostream>

using namespace std;

class Observer;

class Subject {
 friend class Observer;
protected:
 int Count;
 Observer *List[100];
 void AddObserver(Observer *Item);
 void RemoveObserver(Observer *Item);
public:
 Subject() { Count = 0; }
 void Event();
};

(continued)

348 BOOK 2 Understanding Objects and Classes

class Observer {
protected:
 Subject *subj;
public:
 virtual void Respond() = 0;
 Observer(Subject *asubj) {
 subj = asubj;
 subj->AddObserver(this);
 }
 virtual ~Observer() { subj->RemoveObserver(this); }
};

class Dog : public Observer {
public:
 void Respond();
 Dog(Subject *asubj) : Observer(asubj) {}
};

class Police : public Observer {
protected:
 string name;
public:
 Police(Subject *asubj, string myname) :
 Observer(asubj) {
 name = myname; }
 void Respond();
};

void Dog::Respond() {
 cout << "Bark bark" << endl;
}

void Police::Respond() {
 cout << name << ": 'Drop the weapon! Now!'" << endl;
}
void Subject::AddObserver(Observer *Item) {
 List[Count] = Item;
 Count++;
}
void Subject::RemoveObserver(Observer *Item) {
 int i;
 bool found = false;

LISTING 4-2:	 (continued)

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 349

 for (i=0; i < Count; i++) {
 if (!found && List[i] == Item) {
 found = true;
 List[i] = List[i+1];
 }
 }
 if (found) {
 Count--;
 }
}

void Subject::Event() {
 int i;
 for (i=0; i < Count; i++) {
 List[i]->Respond();
 }
}

int main() {
 Subject Alarm;
 Police *TJHooker = new Police(&Alarm, "TJ");
 cout << "TJ on the beat" << endl;
 Alarm.Event();
 cout << endl;
 cout << "TJ off for the day" << endl;
 delete TJHooker;
 Alarm.Event();
 return 0;
}

Notice the Dog(Subject *asubj) : Observer(asubj) {} line of code in the list-
ing. This line tells the application to call the base class constructor first with the
subject. This action ensures that the base object, Observer, is correctly instantiated
before Dog is instantiated. If you don’t do this, then the instantiation of Dog will
fail because Dog won’t have access to the resources in the base class that it needs.

Mediating with a Pattern
The idea behind the mediator pattern is that it performs the work of organizing
class communication when you have classes that interact in a complex way. That
way, only the underlying mediator class needs to know about all the instances.

350 BOOK 2 Understanding Objects and Classes

The instances themselves communicate only with the mediator. The following
sections describe the basis for this pattern and demonstrate how it works.

Defining the mediator pattern scenario
Suppose that you’re designing a sophisticated, complex model of a car. You’re
going to include the following parts, each of which will have its own class:

»» The engine

»» The electrical supply (for technically minded folks, the battery and alternator
combined)

»» The radio

»» The wheels

»» The brakes

»» The headlights

»» The air conditioner

»» The road

Part of your task is to model the behaviors that these classes provide:

»» When the amount of electricity produced changes, the headlights get brighter
or dimmer.

»» When the amount of electricity produced increases or decreases, the radio
volume increases or decreases.

»» When the engine speed increases or decreases, the amount of electricity
produced increases or decreases.

»» When the engine speeds up, the wheels accelerate.

»» When the air conditioner turns on, the amount of electricity available
decreases.

»» When the air conditioner turns off, the amount of electricity available
increases.

»» When the road angle increases due to going uphill, the speed of the wheels
decreases.

»» When the road angle decreases because the car is going downhill, the speed
of the wheels increases.

»» When the brakes come on, the speed of the wheels decreases.

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 351

This list represents nine objects interacting with each other in different ways.
You could try to make all the objects communicate directly with each other. In
the code, making them communicate would mean that most of the classes would
have to contain references to objects of the other classes. That technique could get
pretty confusing.

Figure 4-1 shows a hierarchy of the interactions between classes that demon-
strates that you don’t have to have every class communication directly with every
other class.

Outlining the car example
In the example, when there’s a hill, the road angle either increases or decreases,
depending on the side of the hill you’re on (uphill or downhill). The road does not
need to know about all the other car parts. Instead, it just informs the mediator of
the change. The mediator then informs the necessary car parts.

FIGURE 4-1:
A model of

the hierarchy
between classes.

352 BOOK 2 Understanding Objects and Classes

This may seem like overkill because the car parts should be able to talk with each
other directly. The idea is that if you enhance this application later, you may want
to add more car parts. Rather than connecting the new car part to all the necessary
existing car parts, you just make a connection with the mediator object. Suppose
that you add a new part called an automatic transmission. When the car begins
to climb a hill, the automatic transmission might detect the change in grade and
automatically shift to a lower gear, resulting in an increase to the engine speed. To
add this class, you only need to define its behavior and specify how it responds to
various events, and then hook it up to the mediator. You also modify the media-
tor so it knows something about the automatic transmission’s behavior. Thus,
you don’t need to hook it up to all the other instances. Figure 4-2 shows how the
application classes look with the mediator in place.

One thing not shown in Figure 4-2 (for the purpose of avoiding clutter) is that all
the various car parts (including the road!) derive from a base class called CarPart.
This class will have a single member: a pointer to a Mediator instance. Each of the
car parts, then, will inherit a pointer to the Mediator instance.

FIGURE 4-2:
A mediator

certainly cleans
things up!

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 353

The Mediator class has a PartChanged() method. This is the key function: Any-
time any of the car parts experiences a change, it calls PartChanged(). Remem-
ber that a car part can experience a change in only one of two ways: through an
outside force unrelated to the existing classes (such as the driver pushing the
gas pedal or turning the steering wheel) or through the Mediator instance. If the
change comes from the Mediator instance, it was triggered through one of the
other objects. Consider the following steps:

1.	 The driver pushes the gas pedal by calling a method in the Engine instance.

2.	 The Engine instance changes its speed and then tells the Mediator of the
change.

3.	 The Mediator instance knows which objects to notify of the change. For this
change, it notifies the wheels to spin faster and the amount of electricity
produced to increase.

Here’s another possible sequence:

1.	 The road has a hill. To tell the car about the hill, the main routine calls a
method in the Road instance. The hill has a 10 degree incline.

2.	 The Road instance notifies Mediator of the change.

3.	 The Mediator instance handles this by figuring out how much to decelerate; it
then notifies the wheels to slow down.

So you can see that most of the application smarts are in the Mediator class.

PUTTING UP A FAÇADE (PATTERN)
In the CarParts example, it would be cumbersome to have to manipulate the car sys-
tem by paying separate attention to all the different parts, such as the engine and the
wheels, simultaneously. Imagine what life would be like if you had to drive a car while
constantly worrying about every little thing. Instead, the example uses a CarControls
class through which you can interact with the system. The CarControls class is a pat-
tern itself, called a Façade pattern. (A façade is the front of something — it’s a French
word.) This pattern is also a front: It’s the interface into the system through which you
interact. That way, you don’t have to keep track of the individual classes. When you
add a class through which users can interact with the system, you are using a Façade
pattern.

354 BOOK 2 Understanding Objects and Classes

Using the mediator pattern may seem to break the rules for using OOP techniques.
The example puts the smarts in the Mediator class. Elsewhere, you may hear that
objects must be able to do their own work. But that’s not really a contradiction.
In fact, the Mediator class is handling all the smarts dealing with collaborations
between objects. After the Mediator instance figures out, for example, that the
wheels must spin faster, it notifies the wheels and tells them to spin faster. That’s
when the wheels take over and do their thing. At that point, they know how to
spin faster without outside help from other classes and objects. So it’s not a con-
tradiction, after all.

Creating the car example
It’s time to put everything you’ve discovered into coded form. The following sec-
tions break the car example into manageable pieces, but you need all the pieces
before running the example.

Working with the car parts header
The CarParts example begins in Listing 4-3. This is a header file that contains the
class declarations for the car parts. Each class provides behaviors appropriate for
that part, such as starting and stopping the engine.

LISTING 4-3:	 Using the carparts.h File

#ifndef CARPARTS_H_INCLUDED
#define CARPARTS_H_INCLUDED

#include "mediator.h"

class CarControls; // forward reference

class CarPart {
protected:
 Mediator *mediator;
 CarPart(Mediator *med) : mediator(med) {}
 void Changed();
};

class Engine : public CarPart {
protected:
 friend class Mediator; friend class CarControls;
 int RPM;
 int Revamount;

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 355

public:
 Engine(Mediator *med) : CarPart(med),
 RPM(0), Revamount(0) {}
 void Start();
 void PushGasPedal(int amount);
 void ReleaseGasPedal(int amount);
 void Stop();
};

class Electric : public CarPart {
protected:
 friend class Mediator; friend class CarControls;
 int Output;
 int ChangedBy;
public:
 Electric(Mediator *med) : CarPart(med),
 Output(0), ChangedBy(0) {}
 void ChangeOutputBy(int amount);
};

class Radio : public CarPart {
protected:
 friend class Mediator; friend class CarControls;
 int Volume;
public:
 Radio(Mediator *med) : CarPart(med), Volume(0) {}
 void AdjustVolume(int amount) { Volume += amount; }
 void SetVolume(int amount) { Volume = amount; }
 int GetVolume() { return Volume; }
};

class Wheels : public CarPart {
protected:
 friend class Mediator; friend class CarControls;
 int Speed;
public:
 Wheels(Mediator *med) : CarPart(med), Speed(0) {}
 int GetSpeed() { return Speed; }
 void Accelerate(int amount);
 void Decelerate(int amount);
};

(continued)

356 BOOK 2 Understanding Objects and Classes

class Brakes : public CarPart {
protected:
 friend class Mediator; friend class CarControls;
 int Pressure;
public:
 Brakes(Mediator *med) : CarPart(med), Pressure(0) {}
 void Apply(int amount);
};

class Headlights : public CarPart {
protected:
 friend class Mediator; friend class CarControls;
 int Brightness;
public:
 Headlights(Mediator *med):CarPart(med), Brightness(0) {}
 void TurnOn() { Brightness = 100; }
 void TurnOff() { Brightness = 0; }
 void Adjust(int Amount);
 int GetBrightness() { return Brightness; }
};

class AirConditioner : public CarPart {
protected:
 friend class Mediator; friend class CarControls;
 int Level;
 int ChangedBy;
public:
 AirConditioner(Mediator *med) : CarPart(med),
 Level(0), ChangedBy(0) {}
 void TurnOn();
 void TurnOff();
 bool GetLevel() { return Level; }
 void SetLevel(int level);
};

class Road : public CarPart {
protected:
 friend class Mediator; friend class CarControls;
 int ClimbAngle;
 int BumpHeight;
 int BumpWhichTire;

LISTING 4-3:	 (continued)

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 357

public:
 Road(Mediator *med) : CarPart(med) {}
 void ClimbDescend(int angle);
 void Bump(int height, int which);
};

#endif // CARPARTS_H_INCLUDED

These classes know little of each other. That’s a good thing. However, they do
know all about the mediator, which is fine. This example uses an important small
feature of the American National Standards Institute (ANSI) version of C++. Notice
the constructor line in the Engine class definition:

Engine(Mediator *med) : CarPart(med),
 RPM(0), Revamount(0) {}

After the constructor definition, you see a colon and the name of the base class,
CarPart. This calls the base class constructor. Then there’s a comma and the
name of a property (RPM) and a value in parentheses, which together form an ini-
tializer. When you create an instance of Engine, the RPM variable will get set to 0.
Further, the Revamount variable will also get set to 0. Using the constructor with
an initializer causes the constructor to behave just like this code:

Engine(Mediator *med) {
 RPM = 0;
 Revamount = 0;
}

Working with the mediator and
car controls header
In Listing 4-4 you see the header file for the mediator along with a special class
called CarControls, which provides a central place through which you can control
the car. You may have noticed the CarControls friend class accesses the car parts
in carparts.h. This file includes several forward declarations and it knows about
the various CarParts classes. This file also includes a Mediator derived class that
provides a general interface to the whole system.

358 BOOK 2 Understanding Objects and Classes

LISTING 4-4:	 Using the mediator.h File

#ifndef MEDIATOR_H_INCLUDED
#define MEDIATOR_H_INCLUDED

// Define all of the required forward references.
class CarPart;
class Engine;
class Electric;
class Radio;
class SteeringWheel;
class Wheels;
class Brakes;
class Headlights;
class AirConditioner;
class Road;

class Mediator {
public:
 Engine *MyEngine;
 Electric *MyElectric;
 Radio *MyRadio;
 SteeringWheel *MySteeringWheel;
 Wheels *MyWheels;
 Brakes *MyBrakes;
 Headlights *MyHeadlights;
 AirConditioner *MyAirConditioner;
 Road *MyRoad;
 Mediator();
 void PartChanged(CarPart *part);
};

class CarControls : public Mediator {
public:
 void StartCar();
 void StopCar();
 void PushGasPedal(int amount);
 void ReleaseGasPedal(int amount);
 void PressBrake(int amount);
 void Turn(int amount);
 void TurnOnRadio();
 void TurnOffRadio();
 void AdjustRadioVolume(int amount);
 void TurnOnHeadlights();
 void TurnOffHeadlights();

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 359

 void ClimbHill(int angle);
 void DescendHill(int angle);
 void TurnOnAC();
 void TurnOffAC();
 void AdjustAC(int amount);
 int GetSpeed();
 CarControls() : Mediator() {}
};

#endif // MEDIATOR_H_INCLUDED

Creating the car parts methods
The methods for all the car parts appear in Listing 4-5. Note that these functions
never call the functions in other car parts.

LISTING 4-5:	 Presenting the carparts.cpp File

#include <iostream>
#include "carparts.h"

using namespace std;

void CarPart::Changed() {
 mediator->PartChanged(this);
}

void Engine::Start() {
 RPM = 1000;
 Changed();
}

void Engine::PushGasPedal(int amount) {
 Revamount = amount;
 RPM += Revamount;
 Changed();
}

void Engine::ReleaseGasPedal(int amount) {
 Revamount = amount;
 RPM -= Revamount;
 Changed();
}

(continued)

360 BOOK 2 Understanding Objects and Classes

void Engine::Stop() {
 RPM = 0;
 Revamount = 0;
 Changed();
}

void Electric::ChangeOutputBy(int amount) {
 Output += amount;
 ChangedBy = amount;
 Changed();
}

void Wheels::Accelerate(int amount) {
 Speed += amount;
 Changed();
}

void Wheels::Decelerate(int amount) {
 Speed -= amount;
 Changed();
}

void Brakes::Apply(int amount) {
 Pressure = amount;
 Changed();
}

void Headlights::Adjust(int Amount) {
 Brightness += Amount;
}

void AirConditioner::TurnOn() {
 ChangedBy = 100 - Level;
 Level = 100;
 Changed();
}

void AirConditioner::TurnOff() {
 ChangedBy = 0 - Level;
 Level = 0;
 Changed();
}

LISTING 4-5:	 (continued)

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 361

void AirConditioner::SetLevel(int newlevel) {
 Level = newlevel;
 ChangedBy = newlevel - Level;
 Changed();
}

void Road::ClimbDescend(int angle) {
 ClimbAngle = angle;
 Changed();
}

void Road::Bump(int height, int which) {
 BumpHeight = height;
 BumpWhichTire = which;
 Changed();
}

You can see that each method calls Changed() after each change. This function is
in the base class, and it calls into the Mediator’s PartChanged() method, which
does all the hard work. Also note that in some of the car parts classes, the Media-
tor doesn’t respond to their changes (such as the Wheel class), but the methods
still call Change(). The reason is that you may add features whereby the Mediator
would respond to these changes. Then you won’t have to check to see whether you
included a Change() call; it’s already there. This approach helps avoid the prob-
lem of wondering why Mediator isn’t doing what it’s supposed to do when the
code forgets to call Change().

Creating the mediator and car control methods
Listing 4-6 contains the mediator source code and the source code for the Car-
Controls class. This code appears in mediator.cpp.

LISTING 4-6:	 Presenting the mediator.cpp File

#include <iostream>
#include "carparts.h"
#include "mediator.h"

using namespace std;

(continued)

362 BOOK 2 Understanding Objects and Classes

Mediator::Mediator() {
 MyEngine = new Engine(this);
 MyElectric = new Electric(this);
 MyRadio = new Radio(this);
 MyWheels = new Wheels(this);
 MyBrakes = new Brakes(this);
 MyHeadlights = new Headlights(this);
 MyAirConditioner = new AirConditioner(this);
 MyRoad = new Road(this);
}

void Mediator::PartChanged(CarPart *part) {
 if (part == MyEngine) {
 if (MyEngine->RPM == 0) {
 MyWheels->Speed = 0;
 return;
 }
 if (MyEngine->Revamount == 0) {
 return;
 }
 // If engine increases, increase the electric output
 MyElectric->ChangeOutputBy(MyEngine->Revamount / 10);
 if (MyEngine->Revamount > 0)
 MyWheels->Accelerate(MyEngine->Revamount / 50);
 }
 else if (part == MyElectric) {
 // Dim or brighten the headlights
 if (MyHeadlights->Brightness > 0)
 MyHeadlights->Adjust(MyElectric->ChangedBy / 20);
 if (MyRadio->Volume > 0)
 MyRadio->AdjustVolume(MyElectric->ChangedBy / 30);
 }
 else if (part == MyBrakes)
 MyWheels->Decelerate(MyBrakes->Pressure / 5);
 else if (part == MyAirConditioner)
 MyElectric->ChangeOutputBy(
 0 - MyAirConditioner->ChangedBy * 2);
 else if (part == MyRoad) {
 if (MyRoad->ClimbAngle > 0) {
 MyWheels->Decelerate(MyRoad->ClimbAngle * 2);
 MyRoad->ClimbAngle = 0;
 }

LISTING 4-6:	 (continued)

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 363

 else if (MyRoad->ClimbAngle < 0) {
 MyWheels->Accelerate(MyRoad->ClimbAngle * -4);
 MyRoad->ClimbAngle = 0;
 }
 }
}

void CarControls::StartCar() {
 MyEngine->Start();
}

void CarControls::StopCar() {
 MyEngine->Stop();
}

void CarControls::PushGasPedal(int amount) {
 MyEngine->PushGasPedal(amount);
}

void CarControls::ReleaseGasPedal(int amount) {
 MyEngine->ReleaseGasPedal(amount);
}

void CarControls::PressBrake(int amount) {
 MyBrakes->Apply(amount);
}

void CarControls::TurnOnRadio() {
 MyRadio->SetVolume(100);
}

void CarControls::TurnOffRadio() {
 MyRadio->SetVolume(0);
}

void CarControls::AdjustRadioVolume(int amount) {
 MyRadio->AdjustVolume(amount);
}

void CarControls::TurnOnHeadlights() {
 MyHeadlights->TurnOn();
}

(continued)

364 BOOK 2 Understanding Objects and Classes

void CarControls::TurnOffHeadlights() {
 MyHeadlights->TurnOff();
}

void CarControls::ClimbHill(int angle) {
 MyRoad->ClimbDescend(angle);
}

void CarControls::DescendHill(int angle) {
 MyRoad->ClimbDescend(0 - angle);
}

int CarControls::GetSpeed() {
 return MyWheels->Speed;
}

void CarControls::TurnOnAC() {
 MyAirConditioner->TurnOn();
}

void CarControls::TurnOffAC() {
 MyAirConditioner->TurnOff();
}

void CarControls::AdjustAC(int amount) {
 MyAirConditioner->SetLevel(amount);
}

The CarControls part runs a bit long, but it’s handy because it provides a central
interface through which you can operate the car.

The workhorse of the pattern, however, is in the Mediator class. This code con-
sists of a bunch of if statements that look at the change that took place and then
call into other classes to modify the objects of the other classes. That’s the whole
goal with the mediator pattern: It has a Mediator class containing a general func-
tion that looks for changes and then changes other classes.

Driving the car
Now it’s finally time to try the mediator pattern by running the car through its
paces. Listing 4-7 shows the various classes in action.

LISTING 4-6:	 (continued)

Bu
ild

in
g

w
it

h
D

es
ig

n
Pa

tt
er

ns

CHAPTER 4 Building with Design Patterns 365

LISTING 4-7:	 Running the Car through Its Paces

#include <iostream>
#include "mediator.h"
#include "carparts.h"

using namespace std;

int main() {
 // Create a new car.
 Mediator *MyCar = new Mediator();

 // Start the engine.
 MyCar->MyEngine->Start();
 cout << "Engine Started!" << endl;

 // Accelerate.
 MyCar->MyWheels->Accelerate(20);
 cout << "The car is going: " <<
 MyCar->MyWheels->GetSpeed() << endl;

 // Apply the brakes.
 MyCar->MyBrakes->Apply(20);
 cout << "Applying the brakes." << endl;
 cout << "The car is going: " <<
 MyCar->MyWheels->GetSpeed() << endl;

 // Stop the car.
 MyCar->MyBrakes->Apply(80);
 cout << "Applying the brakes." << endl;
 cout << "The car is going: " <<
 MyCar->MyWheels->GetSpeed() << endl;

 // Shut off the engine.
 MyCar->MyEngine->Stop();
 cout << "Engine Stopped" << endl;
 return 0;
}

366 BOOK 2 Understanding Objects and Classes

The example code performs a few simple tasks using the various classes. You
could always add more to your test code. The thing to notice is that everything
goes through the Mediator class, MyCar. Here’s the output from this example:

Engine Started!
The car is going: 20
Applying the brakes.
The car is going: 16
Applying the brakes.
The car is going: 0
Engine Stopped

3Understanding
Functional
Programming

Contents at a Glance
CHAPTER 1:	 Considering Functional Programming. 369

Understanding How Functional Programming Differs 370
Defining an Impure Language. . 373
Seeing Data as Immutable. . 375
Considering the Effects of State . . 381
Eliminating Side Effects. 382
Understanding the Role of auto . . 388
Passing Functions to Functions. . 390
Using Lambda Expressions for Implementation 394

CHAPTER 2:	 Working with Lambda Expressions. 397
Creating More Readable and Concise C++ Code. 398
Defining the Essential Lambda Expression. 399
Developing with Lambda Expressions. . 406

CHAPTER 3:	 Advanced Lambda Expressions. 415
Considering the C++ 20 Lambda Extensions 416
Working in Unevaluated Contexts . . 418
Using Assignable Stateless Lambda Expressions. 420
Dealing with Pack Expansions. . 422

CHAPTER 1 Considering Functional Programming 369

Considering Functional
Programming

This minibook describes a different sort of C++ programming in the form
of the functional programming paradigm. A paradigm is a framework
that expresses a particular set of assumptions, relies on particular ways

of thinking through problems, and uses particular methodologies to solve those
problems. You’ll still use C++, but you use it in a manner that differs from the
object-oriented programming (OOP) paradigms used in the previous minibook.
Because many people are only now becoming aware of functional programming
techniques, this chapter discusses how the functional and OOP paradigms differ.

The chapter also looks at some of the ways in which you change your program-
ming style to use the functional programming paradigm. These style changes
have some significant benefits when applied to certain kinds of development that
rely heavily on math, perform various kinds of analysis, or work with technolo-
gies such as machine learning. You may not know it, but C++ is recommended
as a language for both machine learning and deep learning in articles like the
one at https://towardsdatascience.com/top-10-in-demand-programming-
languages-to-learn-in-2020-4462eb7d8d3e. However, making it work in these
environments requires use of functional programming techniques.

And finally in this chapter, you discover how to implement functional program-
ming strategies using lambda expressions. This is one of the simplest ways to

Chapter 1

IN THIS CHAPTER

»» Understanding how functional
programming works

»» Defining how functional
programming differs

»» Implementing functional
programming using lambda
expressions

https://towardsdatascience.com/top-10-in-demand-programming-languages-to-learn-in-2020-4462eb7d8d3e
https://towardsdatascience.com/top-10-in-demand-programming-languages-to-learn-in-2020-4462eb7d8d3e

370 BOOK 3 Understanding Functional Programming

achieve what you want with a minimum of disruption to your standard program-
ming practices if you’re heavily involved in OOP. Later chapters delve more deeply
into lambda expressions. This chapter just helps you get your feet wet.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookIII\Chapter01 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Understanding How Functional
Programming Differs

Functional programming has somewhat different goals and approaches than other
paradigms use. Goals define what the functional programming paradigm is trying
to do in forging the approaches used by languages that support it. However, the
goals don’t specify a particular implementation; doing that is within the purview
of the individual languages.

The main difference between the functional programming paradigm and other
paradigms is that functional programs use math functions rather than statements
to express ideas. This difference means that rather than write a precise set of
steps to solve a problem, you use math functions, and you don’t worry about how
the language performs the task. In some respects, this makes languages that sup-
port the functional programming paradigm similar to applications such as MAT-
LAB. Of course, with MATLAB, you get a user interface, which reduces the learning
curve. However, you pay for the convenience of the user interface with a loss of
power and flexibility, which functional languages do offer. Using this approach to
defining a problem relies on the declarative programming style, which you see used
with other paradigms and languages, such as Structured Query Language (SQL)
for database management.

In contrast to other paradigms, the functional programming paradigm does-
n’t maintain state. The use of state enables you to track values between function
calls. Other paradigms use state to produce variant results based on environment,
such as determining the number of existing objects and doing something differ-
ent when the number of objects is zero. As a result, calling a functional program
function always produces the same result given a particular set of inputs, thereby
making functional programs more predictable than those that support state.

Because functional programs don’t maintain state, the data they work with is also
immutable, which means that you can’t change it. To change a variable’s value,

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 371

you must create a new variable. Again, this makes functional programs more pre-
dictable than other approaches and makes functional programs easier to run on
multiple processors.

The capability to work on multiple processors is one area in which C++ excels.
Most, possibly all, machines today have more than one core in their CPU, which
allows for multiprocessing. Each core is essentially a single processor. Unlike
many languages, C++ is uniquely positioned to make full use of the hardware,
whether that hardware exists as a Graphics Processing Unit (GPU), Tensor Pro-
cessing Unit (TPU), container, cloud, mobile device, or microcontroller. It’s this
low-level affinity for the hardware and significant speed advantage that makes
C++ the top choice for the Java Virtual Machine (JVM) and the Chrome V8 Engine.

Imperative programming, the kind of programming that most developers have done
until now, is akin to an assembly line, where data moves through a series of steps
in a specific order to produce a particular result. The process is fixed and rigid, and
the person implementing the process must build a new assembly line every time
an application requires a new result. Object-oriented programming (OOP) simply
modularizes and hides the steps, but the underlying paradigm is the same. Even
with modularization, OOP often doesn’t allow rearrangement of the object code
in unanticipated ways because of the underlying interdependencies of the code.

Functional programming gets rid of the interdependencies by replacing proce-
dures with pure functions, which requires the use of immutable state. Conse-
quently, the assembly line no longer exists; an application can manipulate data
using the same methodologies used in pure math. The seeming restriction of
immutable state provides the means to allow anyone who understands the math
of a situation to also create an application to perform the math.

Using pure functions creates a flexible environment in which code order depends
on the underlying math. That math models a real-world environment, and as our
understanding of that environment changes and evolves, the math model and
functional code can change with it — without the usual problems of brittleness
that cause imperative code to fail. Modifying functional code is faster and less
error prone than other programming paradigms because the person implement-
ing the change must understand only the math and doesn’t need to know how the
underlying code works. In addition, learning how to create functional code can be
faster as long as the person understands the math model and its relationship to
the real world.

Functional programming also embraces a number of unique coding approaches,
such as the capability to pass a function to another function as input. This capa-
bility enables you to change application behavior in a predictable manner that
isn’t possible using other programming paradigms.

372 BOOK 3 Understanding Functional Programming

CONSIDERING OTHER PROGRAMMING
PARADIGMS
You might think that only a few programming paradigms exist besides the functional
programming paradigm explored in this minibook, but the world of development is lit-
erally packed with them. That’s because no two people truly think completely alike.

The reason for so many paradigms is that each one represents a different approach to
the puzzle of conveying a solution to problems by using a particular methodology, all
while making assumptions about things like developer expertise and execution envi-
ronment. In fact, you can find entire sites that discuss the issue, such as the one at
https://cs.lmu.edu/~ray/notes/paradigms/. Oddly enough, some languages
(such as C++) mix and match compatible paradigms to create an entirely new way to
perform tasks based on what has happened in the past. Here are just four of these
other paradigms. Many languages in the world today use just these four paradigms, so
your chances of encountering them are quite high.

•	 Imperative: Imperative programming takes a step-by-step approach to performing
a task. The developer provides commands that describe precisely how to perform
the task from beginning to end. During the process of executing the commands,
the code also modifies application state, which includes the application data. The
code runs from beginning to end. An imperative application closely mimics the
computer hardware, which executes machine code. Machine code is the lowest set
of instructions that you can create and is mimicked in early languages, such as
assembler.

•	Procedural: Procedural programming implements imperative programming, but
adds functionality such as code blocks and procedures for breaking up the code.
The compiler or interpreter still ends up producing machine code that runs step by
step, but the use of procedures makes it easier for a developer to follow the code
and understand how it works. Many procedural languages provide a disassembly
mode in which you can see the correspondence between the higher-level language
and the underlying assembler. Examples of languages that implement the proce-
dural paradigm are C and Pascal.

•	Object-oriented: The procedural paradigm does make reading code easier.
However, the relationship between the code and the underlying hardware still
makes it hard to relate what the code is doing to the real world. The object-oriented
paradigm uses the concept of objects to hide the code, but more important, to
make modeling the real world easier. A developer creates code objects that mimic
the real-world objects they emulate. These objects include properties, methods,
and events to allow the object to behave in a particular manner. Examples of lan-
guages that implement the object-oriented paradigm are C++ and Java. (The OOP
paradigm is discussed in Book 2.)

https://cs.lmu.edu/~ray/notes/paradigms/

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 373

Defining an Impure Language
Many developers have come to see the benefits of functional programming.
However, they also don’t want to give up the benefits of their existing language,
so they use a language that mixes functional features with one of the other
programming paradigms (as described in the “Considering Other Programming
Paradigms” sidebar). For example, you can find functional programming features
in languages such as C++, C#, and Java. When working with an impure language,
you need to exercise care because your code won’t work in a purely functional
manner, and the features that you might think will work in one way actually work
in another. For example, you can’t pass a function to another function in some
languages. The following sections help you understand why C++ is an impure
functional language.

Considering the requirements
The basis of functional programming is lambda calculus (https://brilliant.
org/wiki/lambda-calculus/), which is actually a math abstraction. Every time
you create and use a lambda function, you’re likely using functional programming
techniques (in an impure way, at least). C++ supports lambda functions through
the lambda expressions that later sections of this chapter explore.

In addition to using lambda functions, languages that implement the functional
programming paradigm have some other features in common. Here is a quick
overview of these features:

»» First-class and higher-order functions: First-class and higher-order func-
tions both allow you to provide a function as an input, as you would when
using a higher-order function in calculus.

•	Declarative: Functional programming actually implements the declarative pro-
gramming paradigm, but the two paradigms are separate. Other paradigms, such
as logic programming, implemented by the Prolog language, also support the
declarative programming paradigm. The short view of declarative programming is
that it does the following: describes what the code should do, rather than how to
do it; defines functions that are referentially transparent (without side effects); and
provides a clear correspondence to mathematical logic.

https://brilliant.org/wiki/lambda-calculus/
https://brilliant.org/wiki/lambda-calculus/

374 BOOK 3 Understanding Functional Programming

»» Pure functions: A pure function has no side effects. When working with a
pure function, you can

•	 Remove the function if no other functions rely on its output

•	 Obtain the same results every time you call the function with a given set of
inputs

•	 Reverse the order of calls to different functions without any change to
application functionality

•	 Process the function calls in parallel without any consequence

•	 Evaluate the function calls in any order, assuming that the entire language
doesn’t allow side effects

»» Recursion: Functional language implementations rely on recursion to
implement looping. In general, recursion works differently in functional
languages because no change in application state occurs.

»» Referential transparency: The value of a variable (a bit of a misnomer
because you can’t change the value) never changes in a functional language
implementation because functional languages lack an assignment operator.

Understanding the C++ functional
limitations
C++ is actually an extension of C. The original name of C++ was C with classes.
So, theoretically, pure C++ is an OOP language. However, with the introduction
of the Standard Library (see Book 5, Chapter 6 as well as Book 7 for more on the
Standard Library), it becomes possible to add functionality to the language and
make it more generic. The use of Standard Library enables you to use the func-
tional programming paradigm in C++. However, even with Standard Library, you
can’t turn what started out as a procedural language and became an OOP language
into a functional programming language. The best you can hope to achieve is a
language that supports a number of paradigms — some of them in a general way.

What occurs in C++ for the most part is that you rely on the Standard Library to hide
the nonfunctional programming components. For example, you can use constants
in your C++ code to create an immutable environment. You use templates to create
functions that don’t rely on variables and therefore have no state. Using constants
with methods can also help eliminate the problems with side effects. You see all
these principles demonstrated as the chapter progresses. However, unlike a pure
language, such as Haskell, these conventions aren’t enforced in C++, and humans
will routinely find ways around them when programming needs dictate.

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 375

Passing a function to a C++ function can also prove difficult unless you rely on the
Standard Library. For example, you can use a transform to interact with a range
of values by passing the transform a function. As part of the strategy of passing
functions to other functions, you can rely on lambda expressions for simple needs.
However, passing complex functions is possible as well. When working with com-
plex functions, however, many developers encase them in a typedef to make the
code easier to read.

To create a pure function in C++, you must eliminate both state and side effects,
which can be quite difficult. The process becomes especially difficult when work-
ing with external data, such as a file or a data stream. Obviously, a function that
works with external data won’t produce the same output every time you call it, but
you can still reduce the problems of both state and side effects.

Even the use of recursion in place of the usual for or other looping mechanism
can prove difficult in C++. In many cases, recursion relies on the use of mutable
variables to track when the recursion should end. Careful use of various recursion
strategies can make the use of mutable variables unnecessary, but doing so can be
error prone and difficult (sometimes making the code hard to read).

The takeaway from this section is that you can use C++ in a functional manner,
but it requires additional work to do so. The benefits of this approach are that
multiprocessing applications are easier to create, the code is more concise, and
the code is often easier to understand as well. In some cases, you can’t use a func-
tional programming style, especially when interacting with third-party libraries.
However, if you work through coding issues using the Standard Library and some
built-in C++ features, you can find yourself creating mostly functional code and
obtaining the desired benefits from doing so.

Seeing Data as Immutable
Being able to change the content of a variable is problematic in C++. The memory
location used by the variable is important. If the data in a particular memory loca-
tion changes, the value of the variable pointing to that memory location changes
as well. The concept of immutable data requires that specific memory locations
remain untainted. To create immutable data in C++, you must use constant vari-
ables, as in

const double pi = 3.1415926;

The reason you need an immutable variable is that in a multiprocessing scenario,
the value of the variable must be the same no matter which processor works with

376 BOOK 3 Understanding Functional Programming

it. If x = 5 for one processor, it must equal 5 for all processors, and that value can
never change. More important, the ability to change the value of a variable infers
order, and functional programming techniques can’t rely on a specific order to
accomplish their goals. Finally, immutable variables are reliable. You don’t have
to worry about some bit of code, especially that from a hacker, modifying the
values in your code because it seems like it might be a good idea. The following
sections describe various forms of immutability in C++.

Working with immutable variables
The Immutable example, shown in Listing 1-1, demonstrates three techniques for
creating immutable variables. In all three cases, you can rely on the variable’s
value to remain consistent and also rely on the compiler to complain about any
changes.

LISTING 1-1:	 Working with Constant Data

#include <iostream>

using namespace std;

struct Immutable{
 int val{7};
};

int main() {
 const int *test1 = new int(5);
 *test1 = 10;

 const int test2{6};
 test2 = 11;

 const Immutable test3;
 test3.val = 12;

 cout << *test1 << test2 << test3.val << endl;
 return 0;
}

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 377

When you run this example, you see the following output in the Build Messages
tab of the Code::Blocks compiler:

error: assignment of read-only location '* test1'
error: assignment of read-only variable 'test2'
error: assignment of member 'Immutable::val' in read-only
 object

You can extend what you see here in other ways to make variables and their asso-
ciated data immutable. Of course, now you have another problem — that of per-
forming basic tasks, such as adding two numbers. To perform these tasks, you
must begin using additional variables as containers like this:

const int sum = *test1 + test2;

Working with immutability in
classes and structures
It’s essential to understand that immutability comes in several levels when work-
ing with C++ classes and structures. The Immutable2 example, shown in Listing 1-2,
shows two levels of immutability. The first occurs in the Immutable structure, while
the second occurs in main() when attempting to make a change.

LISTING 1-2:	 Creating Immutable Structure Members

#include <iostream>

using namespace std;

struct Immutable {
 int val{1};

 void SayHi(string Name) const {
 Name = "Smith";
 val = 2;
 cout << Name << val << endl;
 }

 void ChangeVal() {
 val = 3;
 cout << val << endl;
 }
};

(continued)

378 BOOK 3 Understanding Functional Programming

int main() {
 const Immutable Test;
 Test.ChangeVal();
 Test.SayHi("Sam");
 return 0;
}

Figure 1-1 shows the error messages you receive when you attempt to compile
this application. The first error occurs because the SayHi() method attempts to
change val internally. Notice that ChangeVal() makes a similar change with-
out error because it’s not a const method (as created by adding const after the
method name and arguments to SayHi()). The second error occurs because the
ChangeVal() call in main() attempts to change val through an external call.

However, say that you want to allow internal changes to val, yet continue to deny
external changes to enforce functional programming. Adding mutable to the val
declaration: mutable int val{1}; allows internal changes. Consequently, a new
build will generate only the ChangeVal() call error in main(). If you comment
out this call, you can see that the example will build and generate the following
output: Smith2. (The downloadable source provides these commented changes.)

Now the question is why it’s possible to change the Name value in SayHi(), if
there aren’t supposed to be any changes. To make Name unchangeable, you must
declare it as const, like this: void SayHi(const string Name) const. So, now
you know how to add immutability at various levels within structures and classes
(which work the same as structures, in this case).

Creating constant expressions
A constant expression, or constexpr, is a special kind of function that you can
compute at compile time rather than runtime. You create the code, just as you
would any code, but the compiler converts the code into an output before the

FIGURE 1-1:
Seeing errors
generated as
the result of

immutability in a
structure.

LISTING 1-2:	 (continued)

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 379

application even runs, which means that this is one form of immutability that
also lacks state. Listing 1-3 shows the ConstantExpression example that demon-
strates how to create this kind of code. (This example won’t run with any version
of C++ less than 11; the “Configuring Code::Blocks for smart pointers” sidebar in
Book 1, Chapter 8 tells you how to perform this setup.)

LISTING 1-3:	 Creating Constant Expression Functions

#include <iostream>

using namespace std;

constexpr int factorial(int n) {
 return n <= 1 ? 1 : (n * factorial(n - 1));
}

template<int n>
struct FactOut {
 FactOut() {
 cout << n << endl;
 }
};

int main() {
 // You can use a number if desired.
 FactOut<15> Nothing1;

 // Computed at compile time.
 FactOut<factorial(4)> Nothing2;

 // Computed at runtime.
 cout << factorial(5) << endl;
 return 0;
}

This example adds some new features to the functional programming toolbox.
For example, the factorial() function relies on recursion (where a function calls
itself to perform a task) to perform its task. When n is something greater than 1,
the function calls itself with a value of n – 1. Otherwise, it returns a value of 1 and
the recursion unrolls itself by popping previous iterations from the stack.

380 BOOK 3 Understanding Functional Programming

The FactOut structure uses a template parameter of template<int n> (the first
place you see a template used in the book is the “Observers and the Standard
C++ Library” section of Book 2 Chapter 4, but they’re explained in more detail
in Book 5 Chapter 5). So, whatever you provide for n, it must evaluate to an int.
Fortunately, the factorial() function does evaluate to an int, so you can use it
as input to the template. Of course, the compiler wouldn’t know whether facto-
rial() did provide an int output unless it computed it at compile time. This is
one of the secrets of creating functional programs in C++: You need to think about
templates. The FactOut structure contains nothing more than a constructor, and
the constructor outputs the value provided as input to the template.

Here’s how all this works; main() begins by providing an int value of 15 to Fac-
tOut. The next line supplies factorial(4) as input to FactOut, but FactOut
needs an int value, so the compiler computes the value during compile time. At
runtime, FactOut still sees an int value, but this time it’s a computed int value.
You can also use factorial() as a standard function, but in this case, the appli-
cation computes the value at runtime.

The variables Nothing1 and Nothing2 really do contain nothing. They satisfy the
requirements of the compiler and nothing more. The compiler will raise an excep-
tion if you try to use them in your code. This isn’t to say that you can’t create other
coded template forms that do offer some other level of functionality, but this form
doesn’t allow that functionality. Here is another form of FactOut in which you can
use the resulting variables:

template<int n>
struct FactOut {
 int val;
 FactOut() {
 cout << n << endl;
 val = n;
 }
};

In this case, val contains the computed value of n. Consequently, you could use
the variables you create like this: cout << Nothing1.val << endl;. However,
now you’re introducing a mutable variable again. To avoid problems, you’d need
to declare Nothing1 as const FactOut<15> Nothing1;.

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 381

Considering the Effects of State
Application state is a condition that occurs when the application performs tasks
that modify global data. An application doesn’t have state when using functional
programming. The lack of state has the positive effect of ensuring that any call to
a function will produce the same results for a given input every time, regardless of
when the application calls the function. However, the lack of state has a negative
effect as well: The application now has no memory. When you think about state,
think about the capability to remember what occurred in the past, which, in the
case of an application, is stored as global data.

Avoiding state in any C++ application is nearly impossible. A problem area is any
sort of file or stream data, which by nature changes. The FileLineCount example,
shown in Listing 1-4, demonstrates two techniques for determining the num-
ber of lines in a file named Temp.txt. The first method, LineCount1(), relies on
state to track the current number of lines and the current character. The second
method, LineCount2(), doesn’t directly contain any sort of tracking; theoreti-
cally, it has no state.

LISTING 1-4:	 Avoiding the Use of State Directly

#include <iostream>
#include <fstream>
#include <algorithm>

using namespace std;

int LineCount1(string filename) {
 int lineCount = 0;
 char c = ' ';

 ifstream thisFile(filename);

 while (thisFile.get(c)) {
 if (c == '\n')
 lineCount++;
 }

 thisFile.close();

 return lineCount;
}

(continued)

382 BOOK 3 Understanding Functional Programming

int LineCount2(string filename) {
 ifstream thisFile(filename);

 return count(
 istreambuf_iterator<char>(thisFile),
 istreambuf_iterator<char>(), '\n');
}

int main() {
 const string filename = "Temp.txt";

 cout << LineCount1(filename) << endl;
 cout << LineCount2(filename) << endl;
}

When you call the two functions in main(), you get the same output. Line-
Count2() actually does appear to have no state. However, unlike the constant
expression example in Listing 1-3, count() doesn’t perform the calculation dur-
ing compile time. Doing so would be impossible because the number of times a
newline in Temp.txt could change before the application runs. Consequently, the
method shown in LineCount2() hides the use of state, but state information still
resides at lower levels in the application. Unfortunately, this is about the best
you’re going to get from C++ in the way of state elimination.

Note that istreambuf_iterator<char>() is an iterator, a kind of function that
moves through a series of entries in some sort of data structure. In this case, you
ask istreambuf_iterator<char>() to look through the characters in thisFile
one character at a time. Every time count() sees a newline character, '\n', it
adds one to the count. Normally, you must supply a beginning point and an end-
ing point to count(). The second call to istreambuf_iterator<char>() says to
continue checking characters until count() reaches the end of the file.

Eliminating Side Effects
The term declaration has a number of meanings in computer science, and different
people use the term in different ways at different times. For example, in the con-
text of a language such as C++, a declaration is a language construct that defines
the properties associated with an identifier. You see declarations used for defining
all sorts of language constructs, such as types and enumerations. However, that’s
not how you use the term declaration in a functional programming sense. The

LISTING 1-4:	 (continued)

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 383

following sections describe side effects in terms of declarations and functions in
the functional programming sense of the term declaration.

Contrasting declarations and functions
When making a declaration in functional programming, you’re telling the under-
lying language to do something. For example, consider the following statement:

1.	 Make me a cup of tea!

The statement tells simply what to do, not how to do it. The declaration leaves the
execution of the task to the party receiving it and infers that the party knows how
to complete the task without additional aid. Most important, a declaration enables
someone to perform the required task in multiple ways without ever changing the
declaration. However, when using a function (or method) named MakeMeTea (the
identifier associated with the function), you might use the following sequence
instead:

1.	 Go to the kitchen.

2.	 Get out the teapot.

3.	 Add water to the teapot.

4.	 Bring the pot to a boil.

5.	 Get out a teacup.

6.	 Place a teabag in the teacup.

7.	 Pour hot water over the teabag and let steep for five minutes.

8.	 Remove the teabag from the cup.

9.	 Bring me the tea.

A function details what to do, when to do it, and how to do it. Nothing is left to
chance and no knowledge is assumed on the part of the recipient. The steps appear
in a specific order, and performing a step out of order will cause problems. For
example, imagine pouring the hot water over the teabag before placing the teabag
in the cup. Functions are often error prone and inflexible, but they do allow for
precise control over the execution of a task, and you use them far more often in
C++ than you use declarations.

Declarations do suffer from another sort of inflexibility, however, in that they
don’t allow for interpretation. When making a declarative statement (“Make me
a cup of tea!”), you can be sure that the recipient will bring a cup of tea and not
a cup of coffee instead. However, when creating a function, you can add condi-
tions that rely on state to affect output. For example, you might add a step to the

384 BOOK 3 Understanding Functional Programming

function that checks the time of day. If it’s evening, the recipient might return
coffee instead of tea, knowing that the requestor always drinks coffee in the eve-
ning based on the steps in the function. A function therefore offers flexibility in its
capability to interpret conditions based on state and provide an alternative output.

Declarations are quite strict with regard to input. The example declaration says
that a cup of tea is needed, not a pot or a mug of tea. The MakeMeTea function,
however, can adapt to allow variable inputs, which further changes its behavior.
You can allow two inputs, one called size and the other beverage. The size input
can default to cup and the beverage input can default to tea, but you can still
change the procedure’s behavior by providing either or both inputs. The identifier,
MakeMeTea, doesn’t indicate anything other than the procedure’s name. You can
just as easily call it MyBeverageMaker.

One of the hardest issues in moving from imperative languages to functional
languages is the concept of declaration. For a given input, a functional language
will produce the same output and won’t modify or use application state in any
way. A declaration always serves a specific purpose and only that purpose.

The second hardest issue is the loss of control. The language, not the developer,
decides how to perform tasks. Yet, you sometimes see functional code where the
developer tries to write it as a function, usually producing a less-than-desirable
result (when the code runs at all).

Associating functions with side effects
An essential difference between functions and declarations is that functions don’t
return a value in the same manner as declarations do. The previous paragraphs
present a function that seems to provide the same result as the associated decla-
ration, but the two aren’t the same. The declaration “Make me a cup of tea!” has
only one output: the cup of tea. The function has a side effect instead of a value.
After making a cup of tea, the function indicates that the recipient of the request
should take the cup of tea to the requestor. However, the function must success-
fully conclude for this event to occur. The function isn’t returning the tea; the
recipient of the request is performing that task. Consequently, the function isn’t
returning a value.

Side effects also occur in data. When you pass a variable to a function, the
expectation in functional programming is that the variable’s data will remain
untouched — immutable. A side effect occurs when the function modifies the
variable data so that upon return from the function call, the variable changes in
some manner.

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 385

Removing side effects
Because of the nature of the language, you have no magic bullet to use to kill
side effects in C++. However, through disciplined coding, you can remove the side
effects by observing some basic rules:

»» Never modify the incoming data.

»» Never rely on external data or modify any data outside the function.

»» Ensure that the function produces precisely the same result every time you
provide a specific input.

»» Target the function so that it does one thing well, rather than multiple things
adequately.

»» Make the function small.

»» Never repeat code or use boilerplate code.

»» Use the switch statement rather than if...then statements.

»» Use only immutable data.

The NoSideEffects example, shown in Listing 1-5, demonstrates these prin-
ciples. No matter what you do outside the function, nothing changes the result
given a particular input.

LISTING 1-5:	 Producing Code without Side Effects

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int AddIt(const vector<int> Input,
 const int Start, const int End) {

 int Accumulate = 0;

 // Copy the full vector to a vector of the
 // correct size.
 vector<int> Process(End - Start);
 copy(&Input[Start], &Input[End], Process.begin());

(continued)

386 BOOK 3 Understanding Functional Programming

 // Create a sum using a foreach loop.
 for (int Element : Process)
 Accumulate += Element;
 return Accumulate;
}

int main() {
 const vector<int> ThisVector = {12, 2, 4, 18, 7, 2};

 cout << "Sum of All Elements: " <<
 AddIt(ThisVector, 0, ThisVector.size()) << endl;
 cout << "Sum of Elements 1 through 4: " <<
 AddIt(ThisVector, 1, 5) << endl;
 return 0;
}

Everything in this example is handled as a constant except the Accumulate and
Process variables inside the AddIt() function. Consequently, there are no side
effects. Any changes occur only within AddIt(), and AddIt() will always produce
the same output for a given input.

To process just the ThisVector elements that are needed for the summation,
AddIt() creates a copy of the Input vector using the copy() function. (Don’t
worry about the use of a vector right now; you see them explained in detail in
Book 5, Chapter 6.) Notice that by using Standard Library functionality, you can
avoid the appearance of state for the most part in this function. Even the foreach
loop (implemented as a special case of the for loop):

 for (int Element : Process)
 Accumulate += Element;

avoids the usual state information needed to power the loop. Theoretically, you
could create a recursive solution to this problem that wouldn’t use state at all.
Here’s the output from the example:

Sum of All Elements: 45
Sum of Elements 1 through 4: 31

You might wonder why this example doesn’t use an array instead of a vector.
The problem with std::array is that you must provide an array size, such as
array<int, 6> ThisVector = {12, 2, 4, 18, 7, 2}; so that the array size is
known at compile time. However, you don’t know the size of the Process array
at compile time because the call to AddIt() provides for a variable starting and

LISTING 1-5:	 (continued)

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 387

ending point. One way around this issue would be to use a constexpr setup, as
shown earlier in Listing 1-3.

Creating a declarative C++ example
Even though Listing 1-5 goes a long way toward making the C++ code easy to
understand and considerably more bulletproof than you might otherwise expect,
you can go one step further in that effort without resorting to anything odd in the
way of coding. The Declarative example shown in Listing 1-6 relies on the Stan-
dard Library even further to eliminate the need for a separate function.

LISTING 1-6:	 Using Declarative Programming Techniques

#include <iostream>
#include <array>
#include <numeric>

using namespace std;

int main() {
 array<int, 6> ThisArray = {12, 2, 4, 18, 7, 2};
 cout << "Sum of All Elements: " <<
 accumulate(ThisArray.begin(), ThisArray.end(), 0)
 << endl;
 cout << "Sum of Elements 1 through 4: " <<
 accumulate(&ThisArray[1], &ThisArray[5], 0) << endl;
 return 0;
}

This example uses the std::accumulate() function to perform the required work.
There are a number of interesting functions of this sort in the numeric header,
which you can see at https://en.cppreference.com/w/cpp/header/numeric.
Notice that the majority of these functions require C++ 11, C++ 17, or even C++ 20
to use, so they’re more appropriate for new development. The output from this
example is precisely the same as the output from Listing 1-5; only the technique
changes.

One of the more interesting aspects of this example is that you work with an
array and allow the underlying code to handle the how of creating the sum. This
code doesn’t worry about any sort of procedure at all; it simply tells the Standard
Library to accumulate (sum) the values together.

https://en.cppreference.com/w/cpp/header/numeric

388 BOOK 3 Understanding Functional Programming

Notice also the two methods used to provide the starting and ending points for
the calculation. What you need is an address. The first call uses the begin() and
end() functions to supply the address, and the second call relies on the address
provided by the [] operator.

Understanding the Role of auto
Starting with C++ 11, you can use the auto keyword in place of a specific type dec-
laration. The use of the auto keyword comes in handy when you don’t know what
data type to expect in advance. When you run the application, the runtime deduces
the type of the variable so that you can work with it correctly. Using this tech-
nique helps you create flexible code, even if it does reduce the clarity of your code
a little. The Auto example, shown in Listing 1-7, shows how to use this keyword
to perform various tasks.

LISTING 1-7:	 Using the auto Keyword

#include <iostream>
#include <typeinfo>

using namespace std;

void DisplayIt(auto Value) {
 cout << Value << " is of the " <<
 typeid(Value).name() << " type." << endl;
}

int main() {
 auto Hello1 = "Hello There!";
 string Hello2 = "Hello Again!";
 auto Number1 = 1234;
 int Number2 = 5678;
 auto Float1 = 12.34;
 float Float2 = 56.78;
 auto Boolean1 = true;
 bool Boolean2 = false;

 DisplayIt(Hello1);
 DisplayIt(Hello2);
 DisplayIt(Number1);
 DisplayIt(Number2);

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 389

 DisplayIt(Float1);
 DisplayIt(Float2);
 DisplayIt(Boolean1);
 DisplayIt(Boolean2);

 return 0;
}

The code begins by creating a number of variables — with half using standard
declarations and half using the auto keyword. It then calls DisplayIt() to display
the variable value and type. By using the auto keyword, DisplayIt() can accept
all these inputs and interact with them appropriately.

Even though this code works, it has a problem. The typeid() function often
returns a mangled result depending on the compiler you use. Here’s an example:

Hello There! is of the PKc type.
Hello Again! is of the NSt7__cxx1112basic_stringIcSt11char
 _traitsIcESaIcEEE type.
1234 is of the i type.
5678 is of the i type.
12.34 is of the d type.
56.78 is of the f type.
1 is of the b type.
0 is of the b type.

Although you can probably figure the i, d, f, and b entries out, the PKc entry is a
mystery, and forget trying to determine the type of the next line that begins with
NSt7. You’ll likely want the output in human-readable form, which requires a few
additional steps, starting with the addition of two new #include entries.

#include <memory>
#include <cxxabi.h>

The DemangleIt() function takes the mangled input from DisplayIt() and forms
it into a human-readable string, as shown here:

string DemangleIt(const char* Mangled) {
 int Status;
 unique_ptr<char[], void(*)(void*)> Result(
 abi::__cxa_demangle(Mangled, 0, 0, &Status), free);
 return Result.get() ? string(Result.get()) : "Error";
}

390 BOOK 3 Understanding Functional Programming

The call to abi::__cxa_demangle() performs the actual result. What you receive
is a unique_ptr, Result, that contains a pointer to the human-readable form of
the type. If the abi::__cxa_demangle() call isn’t successful, Result will contain
a null pointer, and you can return a result of "Error" in place of the actual type
string. To make this code functional, you need to modify DisplayIt(), as shown
here:

void DisplayIt(auto Value) {
 cout << Value << " is of the " <<
 DemangleIt(typeid(Value).name()) << " type." << endl;
}

Now when you run the example, you see the output in human-readable form,
which makes working with it a lot easier.

Hello There! is of the char const* type.
Hello Again! is of the std::__cxx11::basic_string<char,
 std::char_traits<char>, std::allocator<char> > type.
1234 is of the int type.
5678 is of the int type.
12.34 is of the double type.
56.78 is of the float type.
1 is of the bool type.
0 is of the bool type.

At this point, you should notice something about using auto: You may not always
get the expected type. In this case, the string declared using auto is of a differ-
ent type than the string declared using string. The deduction process often relies
on default types as well. For example, if you mean to use a float, but declare the
variable as auto, the result will be a double instead because that’s the default type.

Passing Functions to Functions
Sometimes you need to apply a process to a group of numbers, or you need to
apply more than one process to a single number. In fact, sometimes you need
to do both. When you encounter situations like this, the easiest method of deal-
ing with them is to pass a function, the process you want to perform, to another
function that handles the situation. In the sections that follow, you begin by see-
ing a simple example of performing this task on a single number using multiple
processes. You also see how to apply a single process to a group of numbers in a
technique called a transform, because you’re transforming one series of numbers
into another series of numbers.

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 391

Seeing a simple example of function input
At times, a single number represents a base value, but you must manipulate it in
various ways to achieve a result. For example, you might need to find the correct
process to use to optimize a particular set of values using a base value as a starting
point. The FunctionFunction example, shown in Listing 1-8, demonstrates how
to use this technique.

LISTING 1-8:	 Passing a Function to a Function

#include <iostream>
#include <vector>

using namespace std;

int AddSome(int Value) {
 return Value + 10;
}

int DelSome(int Value) {
 return Value - 10;
}

int MulSome(int Value) {
 return Value * 10;
}

int DivSome(int Value) {
 return Value / 10;
}

typedef int(*FuncPtr)(int);

void ModIt(int Value, vector<FuncPtr> FuncArray) {
 int NumFunc = FuncArray.size();
 cout << "Processing " << NumFunc << " functions."
 << endl;

 for(int i = 0; i < NumFunc; i++)
 cout << FuncArray[i](Value) << endl;
}

(continued)

392 BOOK 3 Understanding Functional Programming

int main() {
 vector<FuncPtr> FuncArray =
 {*AddSome, *DelSome, *MulSome, *DivSome};
 ModIt(10, FuncArray);
 return 0;
}

In most cases when you use this technique, you create an array or vector of func-
tion pointers. Using a vector is more flexible because you don’t have to predeter-
mine the number of functions to pass — it can be any number up to the maximum
size of the vector. To make this technique work, however, you must begin by
creating a typedef that defines the form of each function pointer entry consisting
of the

»» Return value, which is int

»» Pointer to the function in parentheses, which is (*FuncPtr)

»» Input parameters in parentheses, which is (int)

The typedef, the creation of a new name for a type of object, appears in quite a few
places in the book. For example, in Book 4, Chapter 1 you see it used to work with
a vector to process strings. Book 5, Chapter 1 demonstrates how to use a typedef
with a multidimensional array. In fact, Book 5 is the place to go if you want to gain
a full appreciation of all the uses for a typedef.

You define the vector as vector<FuncPtr> with a vector name, such as
FuncArray. Creating the vector then becomes a matter of providing pointers to the
four functions used for testing in this case: AddSome(), DelSome(), MulSome(),
and DivSome(). These four functions don’t do much, but they do help in testing.

The code calls ModIt() with the value you want to work with, which is 10, and the
vector of function pointers, FuncArray. Inside ModIt(), the code calls each of the
functions in turn with the supplied value and outputs the result onscreen. Here is
the output from this example:

Processing 4 functions.
20
0
100
1

LISTING 1-8:	 (continued)

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 393

Using transforms
A transform allows you to process a series of values using a single function. Com-
bining a series of transforms enables you to process a series of values using a
series of functions in a particular order. You see transforms used in all sorts of
ways, including to condition data and process video. The Transform example,
shown in Listing 1-9, gives you an overview of how this technique works using
the C++ range functionality.

LISTING 1-9:	 Using a Transform on a Series of Data Points

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct EvenPair {
 int Value;
 bool Even;
};

EvenPair IsEven(int Value){
 if (Value % 2 == 0)
 return EvenPair{Value, true};

 return EvenPair{Value, false};
}

int main(){
 vector<int> Values{1, 2, 3, 4};
 vector<EvenPair> Evens(Values.size());

 transform(Values.begin(), Values.end(),
 Evens.begin(), IsEven);

 for(auto isEven : Evens)
 if (isEven.Even)
 cout << isEven.Value << " is even." << endl;
 else
 cout << isEven.Value << " is odd." << endl;

 return 0;
}

394 BOOK 3 Understanding Functional Programming

This example uses the EvenPair structure to hold two variables that contain the
original value you want to check and show whether that value is even. In main(),
you begin by creating two vectors: one input, Values, and one output, Evens.
The Evens vector will contain a list of the original values and a Boolean showing
whether each value is even.

The call to Transform() takes pointers to the beginning and ending of Values, the
beginning of Evens, and the name of a function to use for the transformation. In
this case, IsEven() receives an individual Value, determines whether it’s even
using the mod operator Value % 2, and then outputs a Value and Even pair.

After the transformation completes, a foreach loop checks each value in Evens and
outputs an appropriate string. Here are the results:

1 is odd.
2 is even.
3 is odd.
4 is even.

Using Lambda Expressions
for Implementation

A lambda expression is an unnamed function that you can use in place of a regular
function reference. Using a lambda expression can make your code more readable
by placing the function inline. Chapters 2 and 3 of this minibook cover lambda
expressions in detail, but the Lambda example, shown in Listing 1-10, shows an
alternative way to create the code displayed in Listing 1-9 in a shorter way.

LISTING 1-10:	 Performing a Transform Using a Lambda Expression

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct EvenPair {
 int Value;
 bool Even;
};

Co
ns

id
er

in
g

Fu
nc

ti
on

al

Pr
og

ra
m

m
in

g

CHAPTER 1 Considering Functional Programming 395

int main(){
 vector<int> Values{1, 2, 3, 4};
 vector<EvenPair> Evens(Values.size());

 transform(Values.begin(), Values.end(),
 Evens.begin(), [](int Value) {
 return (Value % 2 == 0)
 ? EvenPair{Value, true}
 : EvenPair{Value, false};});

 for(auto isEven : Evens)
 if (isEven.Even)
 cout << isEven.Value << " is even." << endl;
 else
 cout << isEven.Value << " is odd." << endl;

 return 0;
}

The basic idea of this example is the same as the example in the “Using trans-
forms” section, earlier in this chapter, except that it uses a lambda expression in
place of the call to IsEven(). The lambda expression begins with a capture clause,
[], which defines how to capture any required external variables. An empty cap-
ture clause says that the lambda expression can work only with variables that are
local to it, which is Value in this case.

As with IsEven(), the lambda expression requires an int input, Value. The com-
piler deduces the output type based on the lambda expression code. However, you
can specify the output type directly when needed using -> output_type. In this
case, you’d use [](int Value) -> EvenPair in place of the code shown.

The output is one of two values, as determined by a ternary operator. When
(Value % 2 == 0) is true, the output is EvenPair{Value, true}; otherwise, the
output is EvenPair{Value, false}. The point is that this version is shorter than
the version in Listing 1-9, so lambda expressions can make your code shorter and
easier to understand when the function you want to use is small.

CHAPTER 2 Working with Lambda Expressions 397

Working with Lambda
Expressions

The “Using Lambda Expressions for Implementation” section of Chapter 1 of
this minibook offers a brief overview of lambda expressions as they apply
to transforms. However, lambda expressions can do considerably more than

you discover in that section’s example. Using lambda expressions isn’t required to
write good C++ code, but they can make your C++ code better and allow for certain
optimizations in some cases. This chapter discusses in more detail how and when
you use lambda expressions.

This chapter also describes the parts of a lambda expression. You may not ever
use everything that a lambda expression has to offer, but it’s good to know what’s
available. You might find that you can make your code even shorter and easier to
understand by creating just the right type of lambda expression.

Finally, the chapter shows some examples of how to use lambda expressions for
practical purposes such as sorting data. It also helps you understand some devel-
opment nuances, such as throwing an exception when necessary. Even though
this section isn’t comprehensive, it provides enough basics for you to know how
to use lambda expressions effectively. Chapter 3 of this minibook addresses some
additional advanced examples.

Chapter 2

IN THIS CHAPTER

»» Defining why you need lambda
expressions

»» Understanding the parts of a lambda
expression

»» Performing practical tasks with
lambda expressions

398 BOOK 3 Understanding Functional Programming

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookIII\Chapter02 folder of the downloadable source. See the
Introduction for details on how to find this book’s source files.

Creating More Readable and
Concise C++ Code

The lambda expression begins with the anonymous function, which actually
existed before electronic computers. Alonzo Church (https://history-computer.
com/ModernComputer/thinkers/Church.html) created the idea of an anony-
mous function in 1936, which is part of lambda calculus. One of the first computer
languages to use anonymous functions was LISP, in 1958. Here are the kinds of
anonymous functions you commonly run across in computer science:

»» Function literal

»» Lambda abstraction

»» Lambda expression

Of course, the target of this chapter is the lambda expression, but it pays to know
about the other forms of anonymous function as well. All forms of anonymous
function share one trait: They aren’t associated with any sort of identifier. In
other words, you typically use them for short, concise calculations that an appli-
cation may need to perform only once. From a human perspective, using a lambda
expression makes code simpler to understand by placing the function inline rather
than in a separate block of code. This technique could lead to spaghetti code of the
worst sort when used inappropriately, so some restraint is required on the part of
the developer.

From a computer language perspective, anonymous functions often enable you
to clear the code of a plethora of one- or two-line function declarations. Some
languages even require the use of anonymous functions for tasks such as binding
events to callbacks or instantiating a function for particular values. However, this
isn’t the case in C++; everything you can do with a lambda expression, you can
also do with a named function. When considering lambda expressions in C++, you
gain these advantages:

»» Greater efficiency: The compiler doesn’t have to create a stack frame for
lambda expressions, so less underlying machine code is generated.

https://history-computer.com/ModernComputer/thinkers/Church.html
https://history-computer.com/ModernComputer/thinkers/Church.html

W
or

ki
ng

 w
it

h
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 2 Working with Lambda Expressions 399

»» Better readability: Locating a one- or two-line named function consumes
developer time and makes the code less readable because you don’t see it in
context.

»» Fewer errors: By making a function concise and targeted, it’s possible to
reduce coding errors because the function is also more understandable.

»» Reducing frankenfunctions: Using lambda expressions can help rid your
code of those named functions that try to do too much using too many
different styles and not accomplishing a great deal except confusing the
developers who look at it. When thinking about frankenfunctions, think about
those named functions that are put together from bits and pieces of one- or
two-line functions and whose actions are differentiated using if...then or
switch statements.

The most important concept to take away from this section is that lambda expres-
sions don’t replace named functions; they simply provide an alternative style that
you can use to make your code better. Given that they represent a style and not a
coding mandate, you need to work with them for a while to define a comfort level
that makes sense in the applications you write.

Defining the Essential Lambda Expression
Because lambda expressions rely on math, rather than on coding technique, they
have a form that is common across computer languages. You can’t make a direct
replacement of a lambda expression written in one language into another, but
understanding the lambda expressions in both languages is easier because they
have a similar form. The following sections discuss the C++ specific form of a
lambda expression.

Defining the parts of a lambda expression
A lambda expression can take a number of forms. You saw one of those forms
in the “Using Lambda Expressions for Implementation” section of Chapter 1
of this minibook. However, it’s time to look at the full definition of the lambda
expression:

[captures] <tparams> (params) specifiers exception
 attr -> ret requires { body }

400 BOOK 3 Understanding Functional Programming

Not all of these elements are needed in every case, and some are available only
in some versions of C++. With these limitations in mind, Table 2-1 provides a
description of each of the elements (with a blank version column indicating that
the element is available in all current versions).

TABLE 2-1	 Elements of a Lambda Expression
Element Minimum

C++ Version
Description

captures Various Specifies how external variables are captured for use by the lambda
expression. The default is to capture variables by reference. However, you
can also create a copy of the variable. You can define a single policy for all
variables or provide policies for individual variables. Starting with C++ 14,
you can also provide a variable initializer in case the variable hasn’t been
initialized. The reference at https://en.cppreference.com/w/cpp/
language/lambda#Lambda_capture offers additional details.

tparams 20 Provides a templated method of defining variable types. You use it to
provide type names to the parameters of a generic lambda. This entry
works much like the templates described at https://en.cppreference.
com/w/cpp/language/templates. You may supply an optional
requires clause to place constraints on the templated functionality.

params Various Defines the parameters passed into the lambda expression for processing.
Starting with C++ 14, you can use default arguments and the auto keyword.

specifiers Various Modifies the manner in which the code interacts with captured external
variables. The following keywords are available:

mutable: Allows modification of the variables and objects, and the calling
of object non-const members.

constexpr (C++ 17 and above): Specifies that the function call operator is a
constexpr (see the “Creating constant expressions” section of Chapter 1 of
this minibook for details).

consteval (C++20 and above): Specifies that the function call operator is
an immediate function (see the “Defining an immediate function” section of
Chapter 3 of this minibook for details).

exception Various Creates a dynamic exception specification (see the “Specifying that the
lambda expression throws exceptions” section, later in this chapter) or
defines a noexcept specifier (C++ 11 and above).

attr 11 Adds attributes to the function for implementation specifics, such as
working on the GNU or IBM platforms. The discussion at https://
en.cppreference.com/w/cpp/language/attributes provides
additional details on using attributes.

ret Indicates the return type of the lambda expression. If you don’t include
this element, the compiler will deduce the return type based on the code
you provide.

https://en.cppreference.com/w/cpp/language/lambda#Lambda_capture
https://en.cppreference.com/w/cpp/language/lambda#Lambda_capture
https://en.cppreference.com/w/cpp/language/templates
https://en.cppreference.com/w/cpp/language/templates
https://en.cppreference.com/w/cpp/language/attributes
https://en.cppreference.com/w/cpp/language/attributes

W
or

ki
ng

 w
it

h
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 2 Working with Lambda Expressions 401

Some common patterns are used to create lambda expressions so that you don’t
have to rely on the full version shown earlier in this section. Here are the most
common forms:

»» [captures] (params) -> ret { body }: Defines a const lambda,
which is the most common form. All the captured variables are const in this
case, and you can’t modify them.

»» [captures] (params) { body }: Specifies a const lambda in which
the return type is deduced by the compiler. The compiler uses the function’s
return statement as a basis for making the deduction.

»» [captures] { body }: Creates a lambda expression that requires no
inputs. You can’t use this form if the lambda expression makes use of the
constexpr, mutable, exception specification, attributes, or trailing return type
features.

Relying on computer detection
of return type
The automatic detection feature of lambda expressions works much like the auto
keyword for other types of declarations. In most cases, the automatic detection
feature works fine because it relies on the most common or default type for the
output.

Unfortunately, as described in the “Understanding the Role of auto” section of
Chapter 1 of this minibook, the automatic detection (deduction) on the part of
the compiler doesn’t always work precisely as planned. In addition, depending
on how you define the function input to a function, you can get some strange
results. Consequently, you always need to exercise care in the use of this feature.
The ReturnDeduction example, shown in Listing 2-1, demonstrates how you can
obtain different results based on whether you specify a return type or allow the

Element Minimum
C++ Version

Description

requires 20 Defines requirements for template arguments that make it easier to
choose the correct function overloads and template arguments. You
use this element as an optional addition to tparams. The discussion at
https://en.cppreference.com/w/cpp/language/constraints
provides additional details.

body Contains the function body — that is, the code that will actually execute.

https://en.cppreference.com/w/cpp/language/constraints

402 BOOK 3 Understanding Functional Programming

computer to deduce it for you. (This example uses the same DemangleIt() func-
tion described in the “Understanding the Role of auto” section of Chapter 1 of this
minibook.)

LISTING 2-1:	 Deciding Between a Deduced or Specific Return Type

#include <iostream>
#include <typeinfo>
#include <memory>
#include <cxxabi.h>

using namespace std;

string DemangleIt(const char* Mangled) {
 int Status;
 unique_ptr<char[], void(*)(void*)> Result(
 abi::__cxa_demangle(Mangled, 0, 0, &Status), free);
 return Result.get() ? string(Result.get()) : "Error";
}

void ShowType(function<float(double)> lambda) {
 cout << "Input has a value of: " << lambda(2.6) << endl;
 cout << "Input has type of: " <<
 DemangleIt(typeid(lambda(2.6)).name()) << endl;
}

void ShowChar(function<char(int)> lambda){
 cout << "Input has a value of: " << lambda(7) << endl;
}

int main() {
 ShowType([](int x) -> int {return int(x * x);});
 ShowType([](double x) -> int {return int(x * x);});
 ShowType([](double x) -> double {return x * x;});
 ShowType([](double x) {return float(x * x);});
 ShowType([](double x) {return x > 2 ? true : false;});
 ShowType([](int x) -> char {return char(x * 10);});
 ShowChar([](int x) -> char {return char(x * 10);});
 return 0;
}

W
or

ki
ng

 w
it

h
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 2 Working with Lambda Expressions 403

The input argument for the functions in this example is function<>. When using
function<>, you specify a return type, even if the return type is void, and any
input types, or empty parentheses, (), when the function doesn’t need one. Part
of the problem with both ShowType() and ShowChar() is that the function<>
declaration doesn’t allow use of auto, so you get whatever type you define, as you
see later in the example.

The ShowType() and ShowChar() functions both show the value of lambda() when
you provide a specific input value to the lambda expression. The ShowType()
function also outputs the type of the value output by the function, and you’ll see
the importance of this output in a moment.

The lambda functions are of the two const types described in the “Defining the
parts of a lambda expression” section, earlier in this chapter. Some specify a
return type; others don’t. Note that the first two lambda expressions both pro-
vide an int output, but one takes an int as input and the other takes a double.
Playing with input and output types like this can help you understand the effects
of decisions that you make when using lambda expressions. Note that the last
three lambda expressions don’t actually return a numeric type. The first of these
returns a bool and the last two return char.

You probably think that one or more of these lambda expressions will fail, espe-
cially given the input values used in ShowType() and ShowChar(). However, they
all do work, as shown in the somewhat surprising output here:

Input has a value of: 4
Input has type of: float
Input has a value of: 6
Input has type of: float
Input has a value of: 6.76
Input has type of: float
Input has a value of: 6.76
Input has type of: float
Input has a value of: 1
Input has type of: float
Input has a value of: 20
Input has type of: float
Input has a value of: F

The compiler seems adept at making the lambda expressions work even when
they really shouldn’t. For example, the first lambda expression accepts an int as
input and produces an int as output, so the input is truncated, which results in
an output of 4. The second lambda expression truncates the output as an int, so
now you see 6 from what should be the same calculation, which should actually

404 BOOK 3 Understanding Functional Programming

produce a value of 6.76, as shown in the next two outputs. The bool output is a
value of 1 and the char output is a value 20, neither of which reflects their true
types. However, the really odd thing is that the type of all these outputs is float
(the default as explained in the next section); it doesn’t matter what the lambda
expression actually provided as output. The point is that you need to exercise care
in the construction of both the lambda expression and the function that receives
it to obtain the desired result.

Using the auto keyword with
lambda expressions
The auto keyword can save you a great deal of pain when working with lambda
expressions, plus it can help you avoid some common problems with getting the
result you want. The UseAuto example, shown in Listing 2-2, is a reworking of the
example in Listing 2-1, shown earlier. However, even though the example works
in a similar manner, the output is different because of the use of auto.

LISTING 2-2:	 Performing Tasks Using auto

#include <iostream>
#include <typeinfo>
#include <memory>
#include <cxxabi.h>

using namespace std;

string DemangleIt(const char* Mangled) {
 int Status;
 unique_ptr<char[], void(*)(void*)> Result(
 abi::__cxa_demangle(Mangled, 0, 0, &Status), free);
 return Result.get() ? string(Result.get()) : "Error";
}

void ShowData(auto lambda){
 cout << "Input has a value of: " << lambda(3.6) << endl;
 cout << "Input has type of: " <<
 DemangleIt(typeid(lambda(3.6)).name()) << endl;
}

int main() {
 ShowData([](int x) -> int {return int(x * x);});
 ShowData([](double x) -> int {return int(x * x);});
 ShowData([](double x) -> double {return x * x;});

W
or

ki
ng

 w
it

h
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 2 Working with Lambda Expressions 405

 ShowData([](double x) {return float(x * x);});
 ShowData([](double x) {return x > 2 ? true : false;});
 ShowData([](double x) -> char {return char(x * 10);});

 return 0;
}

When you run this example, you see that the auto keyword enables you to obtain
results specific to the input. Here is what you see in this case (which you can com-
pare to the output in the previous section):

Input has a value of: 9
Input has type of: int
Input has a value of: 12
Input has type of: int
Input has a value of: 12.96
Input has type of: double
Input has a value of: 12.96
Input has type of: float
Input has a value of: 1
Input has type of: bool
Input has a value of: $
Input has type of: char

By giving up control over the form of the input to ShowData(), you also preserve
the types of the various inputs. Each of the outputs is now of the correct type, and
the char output (last) actually appears as a character rather than a number. How-
ever, there isn’t a best solution — only the solution that works to meet your spe-
cific requirements. You therefore need to keep the function<> method described
in the previous section in mind.

Lest you think that someone could pass anything to ShowData(), you can try,
but you won’t be successful. If you were to pass something like ShowData(14),
the compiler would output an error message of 'lambda' cannot be used as a
function. Even though you’re using auto, the auto is still expecting a function
as input.

Using lambda expressions as macros
You can assign a lambda expression to a variable and then use the variable as a
kind of macro. This technique can make it a lot easier to perform some repeti-
tive tasks that seem to appear everywhere, but take little code. The CreateMacro
example, shown in Listing 2-3, demonstrates this approach.

406 BOOK 3 Understanding Functional Programming

LISTING 2-3:	 Creating a Macro

#include <iostream>

using namespace std;

int main(){
 auto f = [](auto Input) {cout << Input << endl;};

 f("Hello");
 f(221);
 f(true);
 f(99 / 3);
 f(char(65));
 f(int(15/4));
 return 0;
}

The code in this example creates a simple lambda expression that outputs the
input expression, whatever it might be, to the screen. To make the macro work,
you use auto in two contexts, both as the type of the variable holding the macro
and as the input. Here’s the output you see:

Hello
221
1
33
A
3

Developing with Lambda Expressions
The previous sections of the chapter give you an idea of how lambda expressions
work. In the following sections of the chapter, you see how to implement certain
lambda expression techniques in a more advanced manner that you might use
within application code.

W
or

ki
ng

 w
it

h
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 2 Working with Lambda Expressions 407

Using lambda expressions with
classes and structures
You can use lambda expressions for a wide variety of tasks with both classes and
structures. In most cases, the tasks have something to do with data manipulation,
such as finding data elements or sorting items, but lambda expressions can also
see use for various kinds of analysis. The LambdaForClass example, shown in
Listing 2-4, stores a list of AnimalEntry entries in the Animals list found in the
StoreAnimals class. The lambda expression that defines FindAnimals() helps
locate a particular animal type and display the exhibits holding those animals in
the zoo.

LISTING 2-4:	 Interacting with Classes and Structures

#include <iostream>
#include <list>
#include <algorithm>

using namespace std;

struct AnimalEntry {
 string Name;
 int CageLocation;
};

class StoreAnimals {
public:
 void FindAnimals(string Name);
 list<AnimalEntry> Animals;
};

void StoreAnimals::FindAnimals(string FindName) {
 for_each(Animals.begin(), Animals.end(),
 [FindName](AnimalEntry ThisEntry) {
 if (FindName == ThisEntry.Name)
 cout << ThisEntry.CageLocation << endl;
 }
);
}

int main() {
 StoreAnimals Zoo;

(continued)

408 BOOK 3 Understanding Functional Programming

 Zoo.Animals.push_back (AnimalEntry{"Hippo", 300});
 Zoo.Animals.push_back (AnimalEntry{"Tiger", 301});
 Zoo.Animals.push_back (AnimalEntry{"Tiger", 302});
 Zoo.Animals.push_back (AnimalEntry{"Zebra", 303});

 cout << "Finding hippo cages." << endl;
 Zoo.FindAnimals("Hippo");

 cout << "Finding tiger cages." << endl;
 Zoo.FindAnimals("Tiger");
 return 0;
}

An interesting part of this example is the use of a for_each() to iterate the entries
in the Animals list. Even though this example iterates the entire list, you can also
limit the search scope to specific records by providing a different beginning and
ending point within the list.

This example also uses a simple capture, FindName, to obtain the name of the
animal to locate. The next section of the chapter provides additional details on
how captures work, but it uses a different approach than this example does.
The lambda expression must also accept an individual entry, ThisEntry, of type
AnimalEntry, from the for_each().

The main() code consists of creating a StoreAnimals object, Zoo, and populating
the Animals list it contains with AnimalEntry objects. The code can then call Zoo.
FindAnimals() to locate specific animals in the list. Here’s the output from this
example:

Finding hippo cages.
300
Finding tiger cages.
301
302

Working with the capture clause
You have many ways to use the capture clause, but one of the more interesting
is to make your lambda expression a little more flexible. You can use the capture
clause to help implement multiple behaviors by using a single lambda expression,
as shown in the MultiTask example in Listing 2-5.

LISTING 2-4:	 (continued)

W
or

ki
ng

 w
it

h
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 2 Working with Lambda Expressions 409

LISTING 2-5:	 Performing Multiple Tasks by Using a Capture Clause

#include <iostream>
#include <typeinfo>

using namespace std;

struct AddVal_t {};
typedef AddVal_t AddVal;

struct SubVal_t {};
typedef SubVal_t SubVal;

int main() {
 int Total = 0;

 auto ChangeNum = [Total](auto Type, int Value) mutable {
 if (is_same<decltype(Type), AddVal>::value) {
 Total += Value;
 return Total;
 } else if (is_same<decltype(Type), SubVal>::value) {
 Total -= Value;
 return Total;
 } else {
 throw -1;
 }
 };

 AddVal DoAdd;
 SubVal DoSub;

 cout << ChangeNum(DoAdd, 5) << endl;
 cout << ChangeNum(DoAdd, 6) << endl;
 cout << ChangeNum(DoSub, 4) << endl;
 try {
 cout << ChangeNum(5, 5) << endl;
 } catch (int e) {
 cout << "Error in Input!" << endl;
 }
 cout << Total << endl;
 return 0;
}

410 BOOK 3 Understanding Functional Programming

This example is actually capable of doing a number of things, and you should
experiment with it. For one thing, you begin with two structures, AddVal_t
and SubVal_t, that are now empty but could be expanded to provide additional
functionality. The code defines two types: AddVal and SubVal, based on these
structures.

The lambda expression depends on an external variable, Total, which is initial-
ized to 0. The ChangeNum() declaration uses Total as a capture, and you’ll see
later in this section why that’s important. The two input arguments, Type (defines
what operation to perform) and Value (defines the amount of change), work just
like any other set of arguments. The mutable element specifies that the code can
change Total.

You could use phrases, numbers, or other methods of determining an action for
this example, but the example uses types instead. If ChangeNum() receives an
input of the appropriate type, it will perform the appropriate action. Because of
the way that this code is structured, the action can be type specific. The call to
is_same() determines whether the input type, Type, is the same as a base type,
such as AddVal or SubVal. After the types are verified, the code performs type-
specific tasks. If the type isn’t present, ChangeNum() throws an exception.

To use the lambda expression, the code must create variables of the correct type.
Normally, you’d initialize the variables, DoAdd and DoSub, but because the exam-
ple uses an empty structure, you don’t need to in this case. The code then calls
ChangeNum() using various operations and values, including one incorrect call.
Note that the code also checks the value of Total at the end. Here’s the output
you should see:

5
11
7
Error in Input!
0

Even though the lambda expression has tracked Total internally, it hasn’t
changed the external value at all. So, you see the expected outputs for each call,
but the actual value of Total doesn’t change. Of course, you also see the error out-
put for incorrect inputs.

The method of capture is important. For example, you can initialize the capture
should you want to do so. Change [Total] to read [Total = 5] and then rerun the
code. The outputs now look like this:

W
or

ki
ng

 w
it

h
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 2 Working with Lambda Expressions 411

10
16
12
Error in Input!
0

The internal values of Total have changed, but the external value of Total remains
0. You can also change this behavior by changing [Total = 5] to read [&Total].
Note that you can’t initialize Total if you also plan to access it by reference, so
[&Total = 5] won’t work. Here’s the new output:

5
11
7
Error in Input!
7

Now the external value of Total reflects the manipulations of the lambda expres-
sion. Although writing even more complex lambda expressions than the one
shown here is possible, you need to consider when you’ve reached the point where
you should be using a standard function, rather than a lambda expression. Ideally,
this example demonstrates the upper end of lambda expression complexity.

Sorting data using a lambda expression
Although a computer can deal with data in any order, humans require order to
make sense of the data. The standard sorting functions provided with C++ work
well with data in standard format, such as a single-column list. However, after
you start adding structures or classes, the data is much harder to sort with-
out help. The SortList example, shown in Listing 2-6, shows how to perform
a single-column and a two-column sort on data formatted with a structure,
Collect, into a Collectables list (a vector, in this case).

LISTING 2-6:	 Performing Sorting Tasks

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct Collect {
 string Name;

(continued)

412 BOOK 3 Understanding Functional Programming

 int Height;
 string Location;
};

int main() {
 vector<Collect> Collectables;
 Collectables.push_back ({"Statue", 40, "Basement"});
 Collectables.push_back ({"Statue", 30, "Basement"});
 Collectables.push_back ({"Mirror", 54, "1st Floor"});
 Collectables.push_back ({"Statue", 33, "1st Floor"});
 Collectables.push_back ({"Mirror", 33, "2nd Floor"});
 Collectables.push_back ({"Chair", 44, "1st Floor"});
 Collectables.push_back ({"Chair", 36, "2nd Floor"});

 auto SortRule1 = [](Collect S1, Collect S2) {
 return S1.Location < S2.Location;
 };

 auto SortRule2 = [](Collect S1, Collect S2) {
 if (S1.Location != S2.Location)
 return S1.Location < S2.Location;
 return S1.Name < S2.Name;
 };

 sort(Collectables.begin(), Collectables.end(),
 SortRule1);

 cout << "One Column Sort" << endl;
 for (auto s: Collectables)
 cout << s.Name << "\t" << s.Height << "\t"
 << s.Location << endl;

 sort(Collectables.begin(), Collectables.end(),
 SortRule2);

 cout << endl << "Two Column Sort" << endl;
 for (auto s: Collectables)
 cout << s.Name << "\t" << s.Height << "\t"
 << s.Location << endl;

 return 0;
}

LISTING 2-6:	 (continued)

W
or

ki
ng

 w
it

h
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 2 Working with Lambda Expressions 413

The example begins by creating a vector of items to sort. It then creates two sort
rules. Both SortRule1 and SortRule2 perform comparisons and return a bool
value as to whether the comparison (the first item is less than the second item)
is true. The difference is that SortRule2 performs the task on two columns of
the list, so two levels of comparison are required. The code then calls sort() to
perform the list sorting and relies on a foreach loop to display the result, which
appears here:

One Column Sort
Mirror 54 1st Floor
Statue 33 1st Floor
Chair 44 1st Floor
Mirror 33 2nd Floor
Chair 36 2nd Floor
Statue 40 Basement
Statue 30 Basement

Two Column Sort
Chair 44 1st Floor
Mirror 54 1st Floor
Statue 33 1st Floor
Chair 36 2nd Floor
Mirror 33 2nd Floor
Statue 40 Basement
Statue 30 Basement

Specifying that the lambda expression
throws exceptions
Exceptions can be a difficult part of your code to implement properly because an
exception indicates that something unexpected has happened and the caller needs
to take action. Early versions of lambda expressions include a throw() specifi-
cation as part of the declaration, but the specification proved difficult to imple-
ment, and many programmers saw it as an awkward way to program. So, even
though throw() is still an optional part of the specification, you don’t generally
see it used. In fact, you can’t use it in C++ 20 because it has been deprecated and
removed.

The MultiTask example (refer to Listing 2-5) throws an exception when the caller
doesn’t provide an acceptable input of the correct type. Throwing an exception is
still perfectly acceptable, and when you call outside functions from your lambda
expression, these functions can throw exceptions, too. However, sometimes
you really don’t want the exception to occur because the unexpected situation

414 BOOK 3 Understanding Functional Programming

is expected. To get past this problem, you can use noexcept() to disregard the
exception, like this:

cout << noexcept(ChangeNum(5,5)) << endl;

Instead of an exception, the code outputs the captured value of Total, which is 0.
This is the operator form of noexcept(). You also have access to a specifier ver-
sion of noexcept() that isn’t guaranteed to work with older versions of C++. It
looks like this:

auto ChangeNum = [Total](auto Type, int Value) mutable
 noexcept {...}

In this case, the inability to throw an exception affects the lambda expression as
a whole, along with any functions that it calls. Of course, now you don’t know
when exceptional conditions really do happen — the code simply outputs what-
ever answer it can, which is likely incorrect, when an unforeseen condition occurs.

CHAPTER 3 Advanced Lambda Expressions 415

Advanced Lambda
Expressions

The previous chapter demonstrated tasks that you can perform using lambda
expressions with most versions of C++ 11 and above. This chapter takes the
next step by considering advanced tasks that you can perform using newer

versions of C++. In fact, the first section is C++ 20 specific. Some of the remain-
ing sections also work with C++ 17. The point is that if you’re working with an
older version of C++, most of what you see in this chapter won’t work. Remember
that you can test the examples in this chapter using Wandbox (https://wandbox.
org/) if your C++ compiler doesn’t provide the required C++ 20 functionality.

Also in this chapter, you look at new ways in which to use lambda expressions in
C++ 20. Before C++ 20, you couldn’t use a lambda expression in a context requir-
ing an unevaluated expression, including the decltype() operator, which is the
specific topic of this chapter. However, the techniques you learn can apply to other
unevaluated contexts. Don’t worry if you don’t understand these terms just now;
they’re covered later in the chapter.

Older versions of C++ won’t allow you to assign a lambda expression or make it
constructible. Consequently, you can’t do something like make two map objects
(see the “Mapping your data” section of Book 5, Chapter 6 for details about maps)
equal when the source map object contains a lambda expression. In addition, it’s

Chapter 3

IN THIS CHAPTER

»» Understanding the C++ lambda
expressions

»» Placing lambda expressions in new
places

»» Creating lambda expressions that are
assignable

»» Expanding parameter packs

https://wandbox.org/
https://wandbox.org/

416 BOOK 3 Understanding Functional Programming

difficult to make the lambda expression a constructible part of the map declara-
tion, so you end up re-creating it every time. This chapter looks at how C++ 20
fixes both of these issues.

The previous chapter explores captures of various types. However, you can sum-
marize them as being by copy, reference, or std::tuple. The ability to send an
arbitrary, packed list of data with a variable number of arguments requires the use
of a variadic template. The final section of this chapter discusses the use of packs
and demonstrates how C++ expands them to allow access. You use this sort of
feature in places where the number of arguments is unknown until runtime. For
example, you may have to deal with data that has a variable number of constraints
placed on it.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookIII\Chapter03 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Considering the C++ 20 Lambda
Extensions

C++ 20 adds a number of lambda extensions. Some of these extensions appear
as the chapter progresses. The remaining extensions appear in the following
sections.

Defining an immediate function
An immediate function is associated with consteval, which often appears like
this:

#include <iostream>

using namespace std;

consteval double sqr(float x) {
 return x * x;
}

int main()
{

A
dv

an
ce

d
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 3 Advanced Lambda Expressions 417

 constexpr double MySquare = sqr(4.2);
 cout << MySquare << endl;
 return 0;
}

The value of MySquare is computed at compile time rather than runtime. MySquare
occupies static memory space from the time the application begins to when it
ends, and its value never changes.

The consteval specifier for a lambda expression has the same effect, but is often
more flexible and concise. Here’s the lambda expression version of the same code:

#include <iostream>

using namespace std;

int main()
{
 auto sqr = [](auto x) consteval {return x*x;};
 constexpr double MySquare = sqr(4.2);
 constexpr auto MySquare2 = sqr(20);

 cout << MySquare << endl;
 cout << MySquare2 << endl;
 return 0;
}

As with the function version, the value of MySquare and MySquare2 are both com-
puted at compile time. Consequently, if you try to use a value that isn’t known at
compile time, the compiler generates an error message.

Using = and this in captures
The examples shown in the “Using lambda expressions with classes and struc-
tures” and “Working with the capture clause” section of Chapter 2 of this mini-
book demonstrate how to work with captures. Some captures aren’t currently very
readable. For example, both of these two captures imply this, which is a pointer
to the current object, but this is explicitly stated only in one:

[=]
[=, *this]

418 BOOK 3 Understanding Functional Programming

The = operator says to capture all variables by copy. The this operator also
captures the current object by copy. You use *this to capture the current object
by reference, which means you can make changes to it. In C++ 20, you can now
use [=, this] to make it clear that you are capturing both variables and the
current object by copy, rather than by reference. You can also use [&, this],
which indicates that you are capturing all variables by reference but capturing
the object by copy.

Finding other changes
Sometimes, despite having the best understanding possible of lambda expres-
sions, things just don’t work when you code them and it appears that they should.
Often, you find subtle changes to the specification that tell you why something
is no longer working. For example, you can see some of these changes in the
paper “P1091R2 Extending structured bindings to be more like variable decla-
rations” at http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
p1091r2.html.

Working in Unevaluated Contexts
An unevaluated expression is a full expression; it doesn’t require evaluation at
runtime. For example, the typeid, sizeof, noexcept, and decltype operators
aren’t evaluated. In addition, the C++ 20 requires-expressions (see https://
en.cppreference.com/w/cpp/language/constraints) aren’t evaluated. An une-
valuated context is one in which C++ is looking for an unevaluated expression of
some type. C++ 20 allows the use of lambda expressions in unevaluated expres-
sions, template arguments, alias declarations, and typedef declarations.

To see how an unevaluated context works, the PriorityQueue example, shown in
Listing 3-1, demonstrates how to add a lambda expression comparator within a
decltype() to automatically sort the priority queue.

LISTING 3-1:	 Defining a Priority Queue Comparator

#include <iostream>
#include <queue>

using namespace std;

int main() {

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1091r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1091r2.html
https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/language/constraints

A
dv

an
ce

d
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 3 Advanced Lambda Expressions 419

 priority_queue<
 int,
 vector<int>,
 decltype([](int a, int b)->bool{return a>b;})> PQ;

 PQ.push(10);
 PQ.push(5);
 PQ.push(8);
 PQ.push(1);
 PQ.push(11);

 while (!PQ.empty()) {
 cout << PQ.top() << endl;
 PQ.pop();
 }
}

A priority_queue is a container adapter (something that modified the behavior
of a standard container, such as a vector) that makes performing lookups in a
consistent manner possible. It does so at the expense of insertion and extraction
times. However, if you perform mostly lookups, using a priority_queue can sub-
stantially improve application execution times.

This example creates a priority_queue that accepts int values as input, modi-
fies the behavior of a vector, and uses a lambda expression within a decltype()
as a comparator. The lambda expression is simple in this case — it just compares
two values and returns true when the first value is greater than the second. The
purpose of this priority_queue is to create a vector where the entries remain in
sorted order at all times, making lookups faster.

After creating the priority_queue, the example pushes values in a random order.
However, the priority_queue automatically sorts them for you. The code then
uses a while loop to show the order in which the values are stored, as shown here:

1
5
8
10
11

420 BOOK 3 Understanding Functional Programming

Using Assignable Stateless
Lambda Expressions

Until C++ 20, lambda expressions aren’t constructible or assignable. A lambda
expression is constructible if you use it to replace a structure similar to this one:

struct {
 template <typename X, typename Y>
 auto operator()(X x, Y y) const { return x > y; }
} greater;

A structure like this one would be used for performing tasks such as acting as a
comparator for a map. A lambda expression is assignable if you can assign a source
lambda to a target lambda, like this:

MyMap2 = MyMap1;

The idea is to make lambda expressions interchangeable with function objects.
Using a lambda expression would be more concise and potentially easier to under-
stand. The AssignLambda example, shown in Listing 3-2, demonstrates how to
perform this task using a map.

LISTING 3-2:	 Creating a Constructible Lambda and Then Assigning It

#include <iostream>
#include <map>

using namespace std;

int main()
{
 auto greater = [](auto x, auto y) { return x > y; };
 map<string, int, decltype(greater)> MyMap1;

 MyMap1.insert(pair<string, int>("D", 12));
 MyMap1.insert(pair<string, int>("B", 4));
 MyMap1.insert(pair<string, int>("C", 8));
 MyMap1.insert(pair<string, int>("A", 1));

A
dv

an
ce

d
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 3 Advanced Lambda Expressions 421

 cout << "MyMap1 Content" << endl;
 for (auto element : MyMap1)
 cout << element.first << "\t" << element.second
 << endl;

 map<string, int, decltype(greater)> MyMap2;
 MyMap2 = MyMap1;
 MyMap1.insert(pair<string, int>("E", 23));
 MyMap2.insert(pair<string, int>("F", 35));

 cout << endl << "MyMap2 Content" << endl;
 for (auto element : MyMap2)
 cout << element.first << "\t" << element.second
 << endl;
}

Compare this example with the one in Listing 3-1 and you’ll note that the com-
parator, greater, appears as a separate element, enabling you to use the same
comparator in multiple map instances without repeating the lambda expression
code. As with the priority queue example, the use of a comparator will automati-
cally sort the key/value pairs in the map as they’re inserted.

What’s especially interesting is that you can assign MyMap1 to MyMap2. However,
MyMap2 is now copied from MyMap1. However, the content of MyMap1 and MyMap2
become separate after the copy process so that changes made to MyMap1 and
MyMap2 are different beyond that point. Here’s the output from this example:

MyMap1 Content
D 12
C 8
B 4
A 1

MyMap2 Content
F 35
D 12
C 8
B 4
A 1

422 BOOK 3 Understanding Functional Programming

Dealing with Pack Expansions
A data pack is a group of variables sent to a templated function in which the num-
ber of variables is unknown until runtime. Pack expansion is an essential part of
dealing with a variable number of arguments. The following sections describe
pack expansion using a number of examples so that you can see how the basic
concept works.

Considering the template
Starting with C++ 11, you can send a variable number of arguments using a variadic
template. To provide you with a basic idea of how this works, consider the code
found in the VariadicTemplate example, as shown in Listing 3-3.

LISTING 3-3:	 Using a Variadic Template

#include <iostream>

using namespace std;

template<typename... Types>
size_t nargs(Types... args) {
 return sizeof... (args);
}

int main()
{
 cout << nargs(1, "3.5", true) << endl;
 cout << nargs(2, 4, "Hello", 1.1) << endl;
 cout << nargs() << endl;
 return 0;
}

The ... operator says that this code is variadic — meaning that the number of
arguments and their types are unknown. The nargs() function receives a variable
number of arguments in a single packed variable, args. All this function does is
tell you the number of arguments passed, so you see the following output:

3
4
0

A
dv

an
ce

d
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 3 Advanced Lambda Expressions 423

If you were to look at the first call, nargs(1, "3.5", true), the expansion of the
function header would look like this:

template<int, const char*, bool>
size_t nargs(int param1, const char* param2, bool param3)

Using a variadic template doesn’t preclude the use of known variables. For exam-
ple, if you have a function with one known variable and a pack of unknown vari-
ables, the declaration might look like this:

template<typename T, typename... Types>
size_t nargs(T Parm, Types... args) {

Processing the variables using recursion
Variadic templates require a special kind of recursion to process. Unlike stan-
dard recursion, the function header for variadic recursion changes with each call
because the number of variables is one less each time. Consequently, you create a
base case as a separate function call. The VariadicTemplate2 example, shown in
Listing 3-4, demonstrates this approach.

LISTING 3-4:	 Processing the Variables in Variadic Templates

#include <iostream>

using namespace std;

template<typename T>
void ProcessArgs(T arg) {
 cout << arg << endl;
}

template<typename T, typename... Args>
void ProcessArgs(T ThisArg, Args... args) {
 cout << ThisArg << endl;
 ProcessArgs(args...);
}

int main()
{
 ProcessArgs(1, "Hello", true, 3.5);
 return 0;
}

424 BOOK 3 Understanding Functional Programming

In this case, each call to ProcessArgs() expands args, separating out one vari-
able for display as ThisArg until only one variable is left (the base case), with
the final variable, arg, displayed onscreen. The example will take any number of
arguments of virtually any type that cout can display. Here’s the output from this
example:

1
Hello
1
3.5

Processing the variables using
a lambda expression
Using a lambda expression with variadic templates can make certain tasks signifi-
cantly easier. For example, you might want to know whether a particular group
of numbers is all greater than 7. So, you construct a lambda expression, like this:

auto constraint = [](int x) {return x > 7;};

The lambda expression could perform any level of constraint checking, but in this
case, it simply looks for an int input greater than 7. Note that this lambda expres-
sion looks specifically for an int value, which means that providing lists of values
that don’t include int values will produce an error message from the compiler.

As with the example in the previous section, the VariadicTemplate3 example,
shown in Listing 3-5, relies on recursion. However, the recursion is a little more
complex this time.

LISTING 3-5:	 Checking on Constraints

#include <iostream>
#include <typeinfo>

using namespace std;

auto constraint = [](int x) {return x > 7;};

template<typename T>
bool ProcessArgs(T arg) {

A
dv

an
ce

d
La

m
bd

a
Ex

pr
es

si
on

s

CHAPTER 3 Advanced Lambda Expressions 425

 cout << "Value is: " << arg << endl;
 return constraint(arg);
}

template<typename T, typename... Args>
bool ProcessArgs(T arg, Args... args) {
 cout << "Value is: " << arg << endl;
 return constraint(arg) && ProcessArgs(args...);
}

int main()
{
 cout << "List contains only numbers above 7: "
 << (ProcessArgs(10, 11, 14, 8) ? "True" : "False")
 << endl << endl;

 cout << "List contains only numbers above 7: "
 << (ProcessArgs(10, 3, 6) ? "True" : "False")
 << endl;;
 return 0;
}

The example still outputs each of the values it processes. However, it also checks
the constraint and returns true when the number is greater than 7. This extra
level of processing is common in certain sciences, especially in statistical analysis,
machine learning, or deep learning tasks. An advantage of this approach is that
the code doesn’t check every value if one value is out of range. The moment the
code detects an incorrect value, it ends the recursion. Here’s the output from this
example:

Value is: 10
Value is: 11
Value is: 14
Value is: 8
List contains only numbers above 7: True

Value is: 10
Value is: 3
List contains only numbers above 7: False

4Fixing Problems

Contents at a Glance
CHAPTER 1:	 Dealing with Bugs . . 429

It’s Not a Bug. It’s a Feature!. . 430
Make Your Application Features Look Like Features. 431
Anticipating (Almost) Everything. . 432
Avoiding Mistakes, Plain and Simple . . 441

CHAPTER 2:	 Debugging an Application. . 443
Programming with Debuggers . . 444
Debugging with Different Tools. . 455
Debugging a Code::Blocks Application
with Command-Line Arguments. . 456

CHAPTER 3:	 Stopping and Inspecting Your Code. 457
Setting and Disabling Breakpoints. . 458
Watching, Inspecting, and Changing Variables. 463

CHAPTER 4:	 Traveling About the Stack. . 469
Stacking Your Data . . 470
Debugging with Advanced Features. . 475

CHAPTER 1 Dealing with Bugs 429

Dealing with Bugs

Who knows whether it’s true, but as the story goes, back when the first
computer was built over a half-century ago, it filled an entire room
with circuitry (yet was about as powerful as one of those inexpensive

calculators — the kind that perform only basic math). One day, the thing was
misbehaving, and some brave engineers climbed deep into the thing. (The ver-
sion we’re thinking of has them wearing white radiation suits, of course.) Deep
in The Bowels of the Machine (sounds like a movie title), they found none other
than . . . an insect! A bug! It was a great big bug that had gotten messed up in the
circuitry, causing the computer to malfunction. So the story goes, anyway. Today,
we use the term bug to mean something that is wrong with an application. In this
minibook, you discover how to track down bugs and fix them in your software. In
this chapter, you see exactly what a bug is (and is not!), how bugs occur, and how
you can try to avoid them.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookIV\Chapter01 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Chapter 1

IN THIS CHAPTER

»» Distinguishing bugs from features

»» Anticipating every move the user
makes

»» Avoiding mistakes the easy way

»» Dealing with errors

430 BOOK 4 Fixing Problems

It’s Not a Bug. It’s a Feature!
So you’re using a word processor and suddenly the application freaks out and
saves your file automatically. You didn’t tell it to do that. Then you use the same
copy of the word processor and try to do a copy-and-paste procedure (that’s
called a use case, by the way). Suddenly the Font dialog box pops up. And then
later, you’re sitting with your laptop at Starbucks, and it automatically begins the
shutdown procedure. You didn’t tell it to do that.

Bugs! Bugs! They’re all bugs! Or are they? Seems that these pesky little incidents
might be considered features by some programmers.

Some word processors have an optional autosave feature that causes the applica-
tion to automatically save recovery information in case the computer goes dead.
And that Font dialog box that popped up was a user mistake: You meant to press
Ctrl+V, but your fingers slipped and caught the D key instead. As it happens, by
default Ctrl+D opens the Font dialog box in some word processors. And newer
versions of most operating systems understand laptop computers: When the bat-
tery is just about to be completely drained, the operating system saves the entire
state of the machine to a giant file on the hard drive and shuts down. This is called
hibernation. So these aren’t bugs, after all. Now you can close that bug report you
just sent to the vendor.

Now consider this: Suppose that you’re using an application and in the middle
of it, you get a message box that says something like ExceptionError. Then
the application simply closes. All your work is lost. So you call tech support, and
the helpful friend on the other end says, “You must have typed something it
didn’t like. This application has a built-in protection scheme whereby if you type
something you’re not supposed to, it shuts down.” That’s when the guy says,
“It’s a feature, not a bug!” Unfortunately, sometimes situations walk the fine line
between bug and feature. No one would think that an application crashing could
be considered a feature, but consider this instead: When your browser messes up,
a message asks whether you want it to send the vendor a trouble report. That’s a
feature that handles bugs.

But the unnamed application that shut down definitely has a bug. And other
applications have bugs. For example, you may have been quickly switching
between browser windows, typing, resizing, doing things quickly as you go back
and forth between the windows, when suddenly the browser crashes and you see
the trouble-report message. That really is a bug: The application choked when
you, the user, did something that the programmers did not anticipate.

Of course, you wonder why the application choked. In addition to not having
planned for some particular input, the programmers might have simply messed
up. They didn’t include code to handle a rough situation (rapidly switching,

D
ea

lin
g

w
it

h
Bu

gs

CHAPTER 1 Dealing with Bugs 431

resizing — that sort of thing), or perhaps they wrote code that did something
wrong, such as free a pointer but then continue to use the memory address.

Here’s an example of programmers not expecting something. Suppose that you
write an application that reads a number from the console. The user types a single
character for the first choice and another character for the second choice. The code
might look like this:

char x, y;
cout << "Enter your first choice" << endl;
cin >> x;
cout << "Enter your second choice" << endl;
cout << x << endl;
cin >> y;
cout << y << endl;

It’s a simple little code, but suppose that the user responds to the first request by
typing an entire word, such as Read, rather than a single letter, such as R. The
application would then take the letters e, a, and d and use them for the subsequent
cin calls — something you might not have anticipated. The e would go into the
cin >> y; line and get put in y. That’s the bug of not anticipating something:
You, the programmer, must make sure that your application can handle all situ-
ations. All of them. Every single one. But fortunately, there are ways around such
problems, and you discover them in this chapter.

You can group these situations into the following categories:

»» Real features, not bugs at all

»» A situation that the programmers didn’t anticipate

»» A mistake, plain and simple

Make Your Application Features
Look Like Features

The last thing you want is to get calls from users complaining about a bug in
your application that was, in fact, a feature. This can happen, and it does. But
the technical-support people are embarrassed when they have to explain, “No,
sir/ma’am. That really is the way it’s supposed to work.” It’s also not fun for the
technical-support people to be subjected to name-calling after this, especially
when they didn’t write the software — you did.

432 BOOK 4 Fixing Problems

But programmers want to make everybody’s lives easier (starting with our own,
of course!), so building software so that it’s easy to use and makes sense is best.
The key, then, in creating software where the features actually look like features
is to make it all sensible. Don’t have your software start the Zapper automatically
unless the user explicitly asks for the Zapper to come on:

Smiling technical-support representative: “It’s a feature! The Zapper comes on after
the computer has been sitting idle for ten minutes.”

Angry customer: “Yes, but I would kind of like to be at least ten feet away from the
thing when the Zapper starts up!”

Smiling technical-support representative: “But why would you be sitting there for
ten minutes and not using the computer if you’re not away from it?”

Angry customer: “I was reading the manual on how to configure the Zapper!”

You know the rest: Lawsuits follow and people get fired. Not a pretty sight, and
that says nothing for the poor customer who was in the vicinity of the computer
when the Zapper kicked in at full force.

With features, the rules are simple: Let users choose which features they want to
happen and when. If they don’t want autosave, for example, let them turn it off.
Let them configure the software, and don’t let it do anything surprising.

Anticipating (Almost) Everything
When you write an application, try to anticipate the different things that users can
do to your application — much of which may not exactly be associated with the
proper use of your application. Most of this kind of protection — that is, ensur-
ing that your application doesn’t choke when the users do something you don’t
anticipate — that you build into your software centers around the user interface,
the area where the users interact with your application. The following sections
offer some details about user interface issues you might face.

Considering menus
If your application is a console-based application or if users can enter characters
into text boxes in a windowing application, you must guard against invalid input.
Take a look at this output from a hypothetical application:

What would you like to do?
 A. Add random information to the system.
 B. Boil information.

D
ea

lin
g

w
it

h
Bu

gs

CHAPTER 1 Dealing with Bugs 433

 C. Compress information.
 D. Delete the information.
 Your choice:

Now suppose that the user chooses D for Delete, and the following menu appears:

What would you like to delete?
 A. None of the data; forget it!
 B. Some of the data.
 C. Most of the data.
 D. All the data! Get rid of it all!

Now imagine that a user starts this application and sees the first menu. The user
doesn’t know whether to type A for the first choice or Add for the first choice.
The user types Add and presses Enter. Oops. The A went to the first choice,
and the system added the random information and printed the same first menu
again. The d (the second character the user typed) then went to the choice Delete
the information. That caused the second menu, the Delete menu, to appear. The
third character that the user typed, d, caused the second menu’s D selection to take
place — All the data! Get rid of it all! — all in one shot, without the user’s
realizing what happened.

Oops! What was supposed to be Add turned into Add, Delete, Delete all the
data. Not good! How can you avoid this kind of thing?

»» Restrict the user’s choices.

»» Clearly state what the user should do.

»» Support multiple options.

»» Anticipate what could go wrong.

For example, you might tell the user to type only a single character, with a mes-
sage such as this:

Please enter a single character for your choice:

But now, does the user have to press Enter afterward? This message suggests so.
But maybe not. So you must be more specific. Maybe one of these examples would
work better:

Type a single character and do not press Enter:

or

Type a single character and then press Enter:

434 BOOK 4 Fixing Problems

But even these aren’t good enough. First, you should generally allow the user to
press Enter. Doing something automatically with a single keystroke may surprise
the user. Further, you may want to support multiple options. If the user wants to
choose option A in the menu, you might support any of the following for input:

»» A

»» a

»» Add

»» ADD

»» add

This can all be wrapped up into some short code that looks like this:

string choice;
cin >> choice;
char ch = choice[0];
ch = toupper(ch);
switch (ch)
{
 case 'A':
 cout << "Adding random data..." << endl;
 break;
 case 'B':
 cout << "Boiling it down!" << endl;
 break;
 case 'C':
 cout << "Compressing!" << endl;
 break;
 case 'D':
 cout << "Deleting..." << endl;
 break;
}

Now the user can type any word, and the only thing that the application checks is
the first letter. But if you don’t like the idea that aompress can be taken as add and
not compress, you can do something like this:

string choice;
cin >> choice;
choice = MyUppercase(choice);
if (choice == "A" || choice == "ADD")
{

D
ea

lin
g

w
it

h
Bu

gs

CHAPTER 1 Dealing with Bugs 435

 cout << "Adding random data..." << endl;
}
else if (choice == "B" || choice == "BOIL")
{
 cout << "Boiling it down!" << endl;
}
else if (choice == "C" || choice == "COMPRESS")
{
 cout << "Compressing!" << endl;
}
else if (choice == "D" || choice == "DELETE")
{
 cout << "Deleting..." << endl;
}
else
{
 cout << "I don't know that word" << endl;
}

This code looks for only the first letter or the exact word, and the letter can be
in either uppercase or lowercase, while words can be in uppercase, lowercase, or
mixed case. This choice is probably the best one. However, you may notice that the
example uses a function called MyUppercase(), which relies on a lambda expres-
sion (see Book 3, Chapter 1 for details about using lambda expressions) to perform
the processing (you need C++ 20 or above to use this version, but you can also use
a simple for loop to perform the task as well).

string MyUppercase(string str) {
 for_each(str.begin(), str.end(), [](char & c) {
 c = ::toupper(c);
 });
 return str;
}

Dealing with textual input
Be careful if you’re dealing with a sophisticated application. Suppose that you are
writing an application that looks up information in a database for a particular
customer name. You could run into the following situations:

»» The names in the database are in all uppercase letters (for example, GEORGE
WASHINGTON), and the user can enter names in mixed case (for example,
George Washington).

436 BOOK 4 Fixing Problems

»» The first and last names are stored separately, so your application must look
in the database for the situation where the last name is Washington and the
first name is George. The user, who doesn’t know to enter just the last name,
may enter both names into a single text box. Or you might allow the user to
enter both names at one time, but the user doesn’t realize that the last name
was supposed to come first, or perhaps it was last name, and then a comma,
and then the first name.

»» The user can type some spaces at the beginning or end of the name. The
application then looks for an entry like “ George Washington ” and does not
find it, because it’s stored as “George Washington” (with no spaces before
or after).

»» The user might include middle initials when the name is not stored in the
database with middle initials.

All these problems are easy to avoid. Here are some tips:

»» You must know how the names are stored in the database before you look
for them. If they are stored in all caps, you shouldn’t require the user to enter
them in all caps. Instead, accept words in any case and convert them to
uppercase.

»» You must know whether the names are stored with the first name separated
from the last. Then allow any format. If the user types George Washington
(no comma), you can split the string at the space and pull out the first name
and last name. But if the user types the name with a comma between the first
and last names, you can split it at the comma and extract the last name and
then the first name.

»» Spaces should not be a problem. You can strip the spaces off a string after a
user types it in.

»» Your application should clearly tell the user whether to enter a middle name,
a middle initial, or neither. If you are using text controls, don’t even include a
middle name field if you don’t want a middle name. Or if you do, specify right
on the window whether the user should type a middle initial or an entire
middle name. If the entry is just an initial, you can remove a trailing period, or
add it, depending on what’s stored in the database.

All these steps will help make your application bulletproof. The idea is to encour-
age users to do things the way they prefer, but to prevent them from doing things
in ways that your application doesn’t like. If your application doesn’t want middle
initials, don’t give users the opportunity to enter them.

D
ea

lin
g

w
it

h
Bu

gs

CHAPTER 1 Dealing with Bugs 437

Performing string processing
The StringProcess example in Listing 1-1 shows you how you can strip spaces,
strip a possible period off the end of a middle initial, and split a string based on
either spaces or commas. This example uses a special class called vector. The
vector class is much like an array, except that the vector class is a bit more
powerful: Because vector is a class, you can add things to it and remove things
from it easily by using methods. vector is also a template, however, so when you
declare it, you must state what type of variables you want it to hold. You put the
variable types in angle brackets. The example declares it using strings, like this:
vector<string>. To make your life simpler, the code uses a typedef to make an
easier name for this type: StringList.

LISTING 1-1:	 Processing Strings to Reduce Bugs

#include <iostream>
#include <vector>
#include <string.h>
#include <algorithm>

using namespace std;

typedef vector<string> StringList;
StringList Split(string orig, string delims) {
 StringList list;
 int pos;
 while((pos = orig.find_first_of(delims)) != -1) {
 list.push_back(orig.substr(0, pos));
 orig = orig.substr(pos + 1);
 }
 list.push_back(orig);
 return list;
}

string MyUppercase(string str) {
 for_each(str.begin(), str.end(), [](char & c) {
 c = ::toupper(c);
 });
 return str;
}

string stripspaces(string orig) {
 int left;
 int right;

(continued)

438 BOOK 4 Fixing Problems

 // If string is empty, just return it.
 if (orig.length() == 0)
 return orig;

 // Strip right
 right = orig.find_last_not_of(" \t");
 if (right > -1)
 orig.resize(right + 1);

 // Strip left
 left = orig.find_first_not_of(" \t");
 if (left > -1)
 orig.erase(0, left);

 // If left still has a space, it
 // means the whole string is whitespace.
 // So just remove it all.
 if (orig[0] == ' ' || orig[0] == '\t')
 orig = "";

 return orig;
}

void ProcessName(string name) {
 StringList list;
 string first, middle, last;
 int size, commapos;

 name = stripspaces(name);
 commapos = name.find(",");
 if (commapos > 0) {
 // Name has a comma, so start with last name.
 name.erase(commapos, 1);
 list = Split(name, " ");
 size = list.size();
 if (size > 0)
 last = list[0];
 if (size > 1)
 first = list[1];
 if (size > 2)
 middle = list[2];
 } else {

LISTING 1-1:	 (continued)

D
ea

lin
g

w
it

h
Bu

gs

CHAPTER 1 Dealing with Bugs 439

 // Name has no comma, so start with first name.
 list = Split(name, " ");
 size = list.size();
 if (size > 0)
 first = list[0];
 if (size > 2) {
 middle = list[1];
 last = list[2];
 }
 if (size == 2)
 last = list[1];
 }
 // If middle name is just initial and period,
 // then remove the initial.
 if (middle.length() == 2)
 if (middle[1] == '.')
 middle.erase(1,1);

 // Convert all to uppercase
 first = MyUppercase(first);
 middle = MyUppercase(middle);
 last = MyUppercase(last);

 cout << "first: " << first << endl;
 cout << "middle: " << middle << endl;
 cout << "last: " << last << endl;
 cout << endl;
}

int main() {
 string name;
 name = " Washington, George Zeus ";
 ProcessName(name);
 name = "Washington, George Z.";
 ProcessName(name);
 name = "George Z. Washington";
 ProcessName(name);
 name = "George Zeus Washington";
 ProcessName(name);
 name = "George Washington";
 ProcessName(name);
 return 0;
}

440 BOOK 4 Fixing Problems

Listing 1-1 is almost bug-proof, but it still doesn’t handle some situations prop-
erly. For example, if somebody tries to process a string with a middle name, such
as Zeus. (notice the period after the name), the application doesn’t remove the
period. Here are some other improvements you might make to this application:

»» Eliminate improper characters: You might make sure that no improper
characters appear in the names. Do this processing after you find the first,
middle, and last names; that way, you won’t kill the attempt to find the data
based on the presence of a single comma that might be needed to specify the
name order. You can use various if statements to do this kind of thing.

»» Handle more names than three: Add a special precaution for the case of
more than three names. Some people have lots of names (like 10 or 11,
especially if they’re members of British royalty). But if this application is to be
used, for example, in an oil change operation, you probably won’t see Charles
Philip Arthur George, Prince of Wales coming through. How you handle the
names depends on your particular situation.

»» Perform initial processing: Do some initial processing. Right after the user
enters the names, make sure that the names are not empty strings — that is,
"" (one pair of quotation marks with no space between them).

THE MYTH OF THE BULLETPROOF
APPLICATION
Anyone who has spent time reviewing the trade press knows that many applications
have recurring problems with bugs. Just as soon as the vendor fixes one bug, another
bug turns up. Some developers may think that the developers at these companies are
morons and are giving us all a black eye. However, these developers, more often than
not, are just like us. Because they’re human, and humans make mistakes — at both the
developer and user ends of the application — applications will never become bug-free.
Sure, you may be able to create a simple, nearly bulletproof application, but as applica-
tion complexity increases, so do the number of interactions and the number of poten-
tial bugs. At some point, the number of interactions between application parts increases
to the point that a bug-free application becomes impossible.

The bulletproof application is a myth. If you buy into this myth, you may be tempted to
stop looking for bugs the moment the development staff can’t find any more of them.
Unfortunately, this attitude leads to headlines proclaiming your application as the next
significant security hole. Don’t buy into the myth of the bulletproof application — always
be alert for potential errors.

D
ea

lin
g

w
it

h
Bu

gs

CHAPTER 1 Dealing with Bugs 441

Avoiding Mistakes, Plain and Simple
Even though many programmers take measures to prevent bugs, they still some-
times let problems slip through. However, if you’re careful, you can avoid a lot
of these problems. When you create software, you should be in the right frame of
mind to watch for potential problems as you write the code. (Getting into the right
frame of mind includes ensuring that you have enough sleep, avoiding distrac-
tions, and doing other things that help you concentrate on your work.)

The list of potential problems could probably go on and on for thousands of pages.
However, the point is not to have a big checklist, but rather for you to review this
list and start to recognize the things you need to do to write good code. Writing
code is conscious and deliberate. It’s similar to walking down a sidewalk and
being vaguely aware of such things as whether cars are coming or whether you
need to step over any holes. These hazards are always in the back of your mind as
you carefully walk along. Writing code is the same way: Certain gotchas should
stay in the back of your mind:

»» Indexes: Strings and arrays run from index 0 to 1 less than the length. Using
a loop, such as for (i=0; i<=size; i++), is a common mistake. The
less-than-or-equal-to symbol is incorrect, yet people make this mistake a lot.
The scary thing is that sometimes the code will still function, and you end up
overwriting something else. Worse, you might not catch this coding error, so it
manifests itself as a bug in the application later.

»» For every new, there’s a delete: Whenever you allocate an object using new,
remember to free it. But forgetting the delete doesn’t usually create noticea-
ble bugs in your application (at least, not at the time they occur). Read the
next item to see what’s more likely to cause a noticeable bug.

»» Remember what you deleted: Worse than forgetting to delete an object is
forgetting that you deleted it and continuing to use it. When you delete a
pointer, make sure that you don’t pass it to some other object that stores it
away and plans to use it again.

»» Don’t forget to create an object: You may have seen this one. An error
message pops up that says:

The instruction at 0x00402119 referenced memory at

0x00000000. The memory could not be written.

This means that someone had a pointer variable and forgot to call new. You
can generate this message with the following code:

int *x = 0;

*x = 10;

442 BOOK 4 Fixing Problems

The code creates a pointer variable and initializes it to 0, meaning that it’s not
being used. But before calling new or setting the variable equal to an object’s
address, the code tries to stuff something into the memory it points to (which
is address 0, something that the operating system doesn’t like). The operating
system responds with the error message. This bug appears far more than
expected in commercial software.

These are just a few items to think about, but you can see that they deal mostly
with memory issues, such as allocating memory and using it incorrectly. Most
important, you can avoid them if you’re conscientious about your programming.
As you code, bear in mind the repercussions of what you’re doing. And as crazy
as this sounds, remember what you might be forgetting! Ask yourself whether
you’re forgetting to delete some pointers or whether someone else has a copy of
the pointer you’re about to delete. If you keep these things in mind, you should
avoid some of the most common bugs.

CHAPTER 2 Debugging an Application 443

Debugging an
Application

In this chapter, you discover how you can use a debugger to track down prob-
lems and bugs in your application. Sooner or later, things don’t work the
way you planned them. In this case, you have several plans of attack. One is

to use a debugger to try to fix the application, which is the approach taken in
this chapter. You could also use cause-and-effect analysis, probabilistic analysis,
or logging application output. You can find articles online that describe all sorts
of techniques, such as this one: https://dev.to/nikpoltoratsky/debugging-
you-re-doing-it-wrong-10-techniques-to-find-a-bug-in-your-code-4f41.
However, this chapter relies on the old standby of debugging and focuses on the
Code::Blocks debugger.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookIV\Chapter02 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Chapter 2

IN THIS CHAPTER

»» Working with debuggers

»» Tracing code flow through an
application and in and out of
functions

»» Getting seriously advanced
debuggers

»» Adding command-line arguments to
Code::Blocks debugging

https://dev.to/nikpoltoratsky/debugging-you-re-doing-it-wrong-10-techniques-to-find-a-bug-in-your-code-4f41
https://dev.to/nikpoltoratsky/debugging-you-re-doing-it-wrong-10-techniques-to-find-a-bug-in-your-code-4f41

444 BOOK 4 Fixing Problems

Programming with Debuggers
A debugger is a special tool that you use for analyzing your code in various ways,
including tracing the code line by line. (Tracing is the act of viewing the code
execution flow in an application.) Take a look at the BuggyProgram example,
shown in Listing 2-1. This is just a basic application with a main() and a couple of
functions used to demonstrate the debugger.

LISTING 2-1:	 Tracing a Simple Application

#include <iostream>
#include <cstdlib>

using namespace std;

int CountRabbits(int original) {
 int result = original * 2;
 result = result + 10;
 result = result * 4;
 cout << "Calculating " << result << endl;
 return result * 10;
}

int CountAntelopes(int original) {
 int result = original + 10;
 result = result - 2;
 cout << "Calculating " << result << endl;
 return result;
}

int main() {
 int rabbits = 5;
 int antelopes = 5;
 rabbits = CountRabbits(rabbits);
 cout << "Rabbits now at " << rabbits << endl;
 antelopes = CountAntelopes(antelopes);
 cout << "Antelopes now at " << antelopes << endl;
 //system("PAUSE"); // add this for Windows
 return 0;
}

D
eb

ug
gi

ng
 a

n
A

pp
lic

at
io

n

CHAPTER 2 Debugging an Application 445

When you run this application, you see the following output:

Calculating 80
Rabbits now at 800
Calculating 13
Antelopes now at 13

Now look closely at main() and follow it through, line by line. The first thing
main() does is declare a couple of integers. Then main() calls the CountRabbits()
function. The CountRabbits() function declares an integer and completes a few
lines of calculations. Then the CountRabbits() function prints a message. Finally,
it returns. When it’s back in main(), the application prints another message and
then calls the CountAntelopes() function. This function also declares an integer,
completes some calculations, prints a message, and then returns. Back in main(),
the application prints another message, and, finally, the application finishes.

This is a linear description of the entire process of this application. You can see
these same steps by using a debugger. With a debugger, you see the computer
moving line by line through your code. A debugger performs the first line of your
application and then waits for you to tell it to perform the next line — and then
the next, and the next, and so on, until the end of the application.

ADDING DEBUG AND SYMBOL
INFORMATION
When you compile with debug information, the compiler adds debug and symbol infor-
mation to the final executable file. This information includes data about the source code
files, including the line numbers and the variable names. This is the primary difference
between a debug version and a release version of your product: People typically don’t
include debug and symbol information in a version of the product that they release to
the general public. One reason is that including it makes it too easy for competitors and
hackers to reverse-engineer the product. (Another reason is that including the debug
and symbol information makes the application run slower and consume more system
resources.) However, the actual source code is not in the debug and symbol informa-
tion; that stays in the source code file. The debug information, instead, just contains line
numbers, which serve as references into the source code file. So hackers and competi-
tors won’t have the complete source to your application, but they will have variable
names and other information that could make their job easier (and yours harder).

446 BOOK 4 Fixing Problems

This example uses the debugger that comes with the Code::Blocks application.
Even if you prefer to use another debugger, at least try the Code::Blocks debug-
ger. It is a nice tool, and it’s helpful to know how to use more than one debugger
because they all have different feature sets. In addition, using the Code::Blocks
debugger allows you to follow through the chapter’s examples. Then you can
return to whatever other tool you’re using.

You must know one important aspect before using a debugger: For the debugger
to understand your code, you must compile it with debugging information. The
compiler adds extra information into the final executable so that the debugger can
locate your source code and variable information. Here’s how you turn on debug
information:

»» Code::Blocks: Choose Build➪  Select Target➪  Debug.

»» Dev-C++: Open the project and choose Tools➪  Compiler Options. In the
Settings tab, choose Linker in the left panel. Make sure that Generate
Debugging Information entry is set to Yes.

»» gcc under MinGW and Cygwin: Add the -g option to the compiler. You will
probably do this inside a Makefile.

After you change the compiler options to generate debug information, you must
rebuild your project because the compiler and linker must regenerate object files
and executable files with the debug information.

Running the debugger
After you have rebuilt your project, you can run the debugger. However, before you
can do anything, you need to tell the debugger where to stop. Click immediately
to the right of 22 in the source code editor, the line that reads int rabbits = 5;.
You see a red octagon appear; it looks similar to a stop sign, but without the word
stop. After you have the required configuration done, see the following sections to
find out about the initial debugging process in more detail.

Performing an initial run
To start the debugger, click Debug/Continue on the Debugger toolbar (the right-
pointing red arrow), choose Debug➪  Start / Continue, or press F8. (If you click
Run, the application runs as normal without entering debug mode.) When you
start the debugger, you should see a screen like the one shown in Figure 2-1.
(You also get a console window behind that screen. This console window contains
the output for the application you are debugging.)

D
eb

ug
gi

ng
 a

n
A

pp
lic

at
io

n

CHAPTER 2 Debugging an Application 447

Figure 2-1 shows two special features you need to successfully debug applications.
The first is the red octagon, and the second is the yellow triangle. The red octagon
is a breakpoint — a place where you want the debugger to stop. You add break-
points to the Editing window by clicking the left side next to the instruction where
you want to stop. When you click that spot again, the red octagon goes away,
showing that you have cleared the breakpoint. You can place as many breakpoints
as you want in the application, but you can place breakpoints only on instructions.

The yellow triangle is the instruction pointer, which shows the instruction that the
debugger will execute next. As you tell the debugger to execute instructions,
the yellow triangle moves. Whenever you start the application in debug mode, the
yellow pointer automatically stops at each breakpoint. Figure 2-1 shows how the
debugger looks when the yellow triangle stops at a breakpoint.

FIGURE 2-1:
The main

Code::Blocks
window shows

your source code.

448 BOOK 4 Fixing Problems

When you start the debugger again by clicking Debug/Continue, execution begins
as if the application is in normal run mode until the debugger encounters another
breakpoint. If the debugger doesn’t encounter a breakpoint, the dialog box closes
and the application returns to the source screen. The debugger doesn’t pause to
show the application output, as when you’re in run mode. The dialog box simply
closes.

If you don’t set any breakpoints and try to debug your application, it will run
without letting you trace through the code. That is, the application will run as if
you’re not running it in the debugger.

Look at the Debugger tab of the Logs and Others window, shown in Figure 2-1.
This tab contains debugging messages from your application. Whenever you
see the At message, you know that the debugger has stopped at a particular
location. The remainder of the message tells you where the debugger has stopped.
In Figure 2-1, the debugger has stopped at line 22 of this file:

At C:\CPP_AIO4\BookIV\Chapter02\BuggyProgram\main.cpp:22

When you click Debug/Continue on the Debug toolbar again, you see a
Continuing. . . message. Because this first run hasn’t set any other breakpoints,
the application continues to run until it ends, at which point you see some addi-
tional messages like those shown in Figure 2-2, that tell you things like the com-
pletion status, which is 0 in this case because of the return 0; line in the code.

Notice that the Debugger window provides you with all sorts of additional infor-
mation. If you scroll up, you can see the build process and how it differs from a
release build. When the build process completes, you see the done message, a
Setting breakpoints message, a debugger information message, and the Process
Identifier (PID) of the application process.

FIGURE 2-2:
Completing

the run shows
the application

results.

D
eb

ug
gi

ng
 a

n
A

pp
lic

at
io

n

CHAPTER 2 Debugging an Application 449

Reviewing the code line by line
Click Debug/Continue again to restart the application and debugger. The
breakpoint you set earlier stops the application at line 22 again. Click Next Line,
which is the third button on the Debugger toolbar. The button you want is the one
with an icon with two squares and an arrow pointing from the first square to
the second square. (You can also press F7.) The yellow triangle (instruction
pointer) moves past the first assignment statement on line 22, which is int
rabbits = 5;, to the second assignment statement on line 23. Notice that the
Debugger window now contains a second At entry of At C:\CPP_AIO4\BookIV\
Chapter02\BuggyProgram\main.cpp:23.

You can use options on the Debug menu in place of the buttons on the Debug
toolbar. The Debug menu also shows shortcut keys for each of the debugging
commands that support them.

Click Next Line. When you click the button, the instruction pointer advances to
the next line. The computer will perform the second line in main(), which is this:

int antelopes = 5;

Click Next Line again. Now the instruction pointer is on the third line of main(),
which looks like this:

rabbits = CountRabbits(rabbits);

This third line of main() is a function call, and now you have a choice. (Don’t click
Next Line!) You can either tell the computer to perform only what’s inside this
function without stopping on each line for you to see, or you can “step into it”
and see the individual lines.

Click the fourth button from the left, the one called Step Into, which shows two
squares and an arrow pointing between them. (Or press Shift+F7.) When you do,
the instruction pointer moves into the CountRabbits() function. The highlight
will be on the first line in that function:

int result = original * 2;

When the highlight moved into the function, the computer stepped into the func-
tion. Now think about the symbol for the icon that caused this to happen: The icon
has squares and an arrow pointing between them. The two squares represent lines
of code in the current function, and you go between them, or step into the called
function. That’s the idea behind the odd symbols. Notice also that the Debug-
ger shows an appropriate At message of At C:\CPP_AIO4\BookIV\Chapter02\
BuggyProgram\main.cpp:7.

450 BOOK 4 Fixing Problems

Now, before stepping into this function — because you were clicking lines that
were not functions but just individual lines — you used the Next Line button. But
you could have used either the Next Line button or the Step Into button, because
stepping into a function doesn’t have much meaning on statements that are not
functions.

Normally, you use the Next Line button by default and choose the Step Into but-
ton only when you specifically want to go into a function. The reason is that some
lines of code that may not appear to be functions really are. For example, cout <<
"a"; is, in fact, a function, and you might not want to step into that code, because
the source code for it might not be present or you simply might not be interested
in the details of the function.

If you ever step into a function that you really don’t want to trace, you can click
the fifth Debugger toolbar button, Step Out, to get back to the previous func-
tion. The result is the same as if you had clicked Next Line when you were in the
code that called the function. Keep the debugger running for the next section of
the chapter.

Using the basic debugger functionality
The previous section tells you how to move from line to line within a code file.
Here, you can see how the debugging features work. The following procedure
takes you through the debugging process so that you can see the Code::Blocks
debugger in action:

1.	 Click Next Line three times until the instruction pointer appears on the
cout line:

cout << "Calculating " << result << endl;

This line writes output to the console, as shown in Figure 2-3. Remember, in
addition to the main Code::Blocks window, you have a console window. That’s
where the output from this line goes.

2.	 Click Next Line.

The instruction pointer lands on the return statement.

3.	 Click Next Line again.

The instruction pointer is on the closing brace of the function. Note that
Code::Blocks highlights both the opening brace and the closing brace in blue,
as shown in Figure 2-4. This feature helps you see where a function begins and
ends in the Integrated Development Environment (IDE).

D
eb

ug
gi

ng
 a

n
A

pp
lic

at
io

n

CHAPTER 2 Debugging an Application 451

4.	 Click Next Line yet again.

The instruction pointer returns to main(), on the line following the call to the
CountRabbits() function:

cout << "Rabbits now at " << rabbits << endl;

5.	 Click Next Line again.

The instruction pointer is on the second function call:

antelopes = CountAntelopes(antelopes);

6.	 But this time, instead of stepping into the function, just press Next Line
to step over it.

The instruction pointer advances to the next line, which is this:

cout << "Antelopes now at " << antelopes << endl;

Look at the console. The CountAntelopes() function contains a call to cout.
You can see on the console that this cout line did its stuff:

Calculating 13

You saw the output from the CountAntelopes() function because, although
you stepped over the function, you didn’t actually skip it. The debugger just
didn’t go through the function line by line.

FIGURE 2-3:
Be sure to check

the output to
ensure that

it’s what you
expected.

FIGURE 2-4:
The debugger

shows the
beginning

and end of
code blocks.

452 BOOK 4 Fixing Problems

7.	Click Next Line to do the final cout line.

Your entire output now looks like this:

Calculating 80
Rabbits now at 800
Calculating 13

Antelopes now at 13

and the instruction pointer ends on the final return statement:

return 0;

8.	Click Next Line one more time, and the highlight is on the closing brace of
main().

Now things get just a little strange. There’s really more code than you can see.
When you compile and link your application, the linker includes some special
start-up code that calls your main() function.

9.	Click Next Line one more time.

The debugger moves out of your source file and into some assembly language
code. The Debugger window shows the following message:

In __mingw_CRTStartup () ()

10.	Click a new button, Next Instruction (six buttons from the left on the
Debugger toolbar), to advance to the next instruction.

The Debugger window shows the following message again:

In __mingw_CRTStartup () ()

11.	To see what all this means, click Debugging Windows (ten buttons from
the left on the Debugger toolbar) and choose Disassembly from the
drop-down list box.

Code::Blocks displays a new window called Disassembly, as shown in Figure 2-5.
The numbers in your figure may differ from the screenshot, but the code is the
same.

This is assembly, a human-readable form of the language that the computer
understands. You don’t have to know what all this means, but you can
probably figure out that the line

0x4010ff call 0x430c40 <_cexit>

is where this code exits the application.

12.	To end the application, click the first button (Debug/Continue).

Clicking Debug/Continue causes the application to run to the real end of your
application (or to the next breakpoint) and then finish.

D
eb

ug
gi

ng
 a

n
A

pp
lic

at
io

n

CHAPTER 2 Debugging an Application 453

That’s how you step through your application line by line. But you can do a lot
more with the application than you do in this section when you’re stepping
through it. You can look at the values in your variables, you can change the val-
ues of the variables, and you can get a list of all the function calls that led up to
the current position in your application. You can do plenty, as explained in the
remainder of this minibook.

Recognizing the parts of the
Code::Blocks debugger
The Code::Blocks debugger displays the Debugger toolbar whenever you debug
an application. The previous sections of this chapter discuss many of the buttons
on the Debugger toolbar: Debug/Continue, Next Line, Next Instruction, Step Into,
and Step Out. However, the toolbar contains a number of other interesting buttons
you should know about.

Sometimes you examine a piece of code in the editor and want to see what the
variables look like when you get to that point. To see what happens, place the text
cursor at the place you want to stop (hovering the mouse cursor over the place
you want to stop isn’t enough) and click Run to Cursor (the second button on the
Debugger toolbar). The debugger stops at the line where the cursor is resting. In
this case, the text cursor acts as a kind of breakpoint for the debugger.

After you debug your application for a while and locate problems you want to fix,
you may not want to run the rest of the application. When this situation occurs,

FIGURE 2-5:
The Disassembly
window displays

the assembly
language version

of your code.

454 BOOK 4 Fixing Problems

simply click Stop Debugger (the button that looks like a box with an X in the
middle). The debugger stops immediately. You can make any required changes
and restart the debugger as normal.

Code::Blocks provides access to a number of debugging windows. In fact, you can
see one of these windows previously in this chapter — the Disassembly window
(refer to Figure 2-5). You access these windows by clicking the Debugging Win-
dows button (the one that looks like a window, to the right of the Stop Debugger
button) or by choosing Debug➪  Debugging Windows. Later chapters in this mini-
book describe these windows in detail. Here is a quick summary of the windows
for now:

»» Breakpoints: Presents all the breakpoints you’ve set in your application.
Double-clicking a breakpoint entry takes you to that breakpoint in the editor.
You can use this window also to remove one or more breakpoints.

»» CPU Registers: Shows the contents of the hardware registers in the proces-
sor. You won’t normally need to view these registers unless you’re performing
low-level programming tasks (such as writing a device driver).

»» Call Stack: Displays the function calls used to get to the current point in
the code.

»» Disassembly: Lets you see the underlying assembly language code. You won’t
normally need to view this information unless you’re performing low-level
programming tasks.

»» Memory Dump: Displays the precise way that the application stores data in
memory, which may not look very much like the C++ view. This window is
useful because it helps you understand how memory works and how your
application uses memory. In some cases, knowing how a variable stores
memory can help you locate problems with your code.

»» Running Threads: Shows a list of threads, other than the main thread,
associated with the current application. You use this window for debugging
multithreaded applications.

»» Watches: Displays a list of local variables and function parameters. You can
also add other variables to monitor as a watch. In addition, you can create
new statements, such as rabbits + antelopes, so you can see the total of
the two variables. The Watches window is probably the most useful debugger
window because it illustrates the C++ view of your data and shows how the
application code manipulates that data.

The debugger also provides access to a number of information windows. You
access these windows by clicking the Various Info button (the one with an i in
italics far down on the left) or by choosing Debug➪  Information. Here is a sum-
mary of the information windows:

D
eb

ug
gi

ng
 a

n
A

pp
lic

at
io

n

CHAPTER 2 Debugging an Application 455

»» Current Stack Frame: Shows the current stack frame information. C++
creates something called a stack frame when certain events occur, such as
calling a function. This stack frame contains the data and data references for
the current function. You won’t normally need to view this information unless
you’re performing low-level programming tasks.

»» Loaded Libraries: Lists all the libraries loaded to run your application. It’s
important to know which libraries your application uses when you deploy it
on other machines. In many cases, you may not even know that C++ requires
certain libraries to run your application, so this window is exceptionally useful.

»» Targets and Files: Provides a detailed view of how the loaded libraries are
used in your application. You won’t normally need to view this information
unless you’re performing low-level programming tasks.

»» FPU Status: Displays the register information for the Floating-Point Unit (FPU)
in your processor. At one time, the FPU was a separate chip, but now it
appears as part of your main processor. The FPU is exceptionally adept at
performing real number (versus integer) math. You won’t normally need to
view this information unless you’re performing low-level programming tasks.

»» Signal Handling: Shows how Code::Blocks handles signals between the
hardware and your application, such as an arithmetic exception or a segmen-
tation fault. You won’t normally need to view this information unless you’re
performing low-level programming tasks.

Debugging with Different Tools
You can use several tools for debugging your code. However, which compiler you
usually use dictates which debugging tools you can use. For example, Microsoft
Visual C++ has a really good debugger. But getting it to debug an application com-
piled with Dev-C++, for example, is difficult because different compilers use dif-
ferent forms of debugging and symbol information. The type used by the various
breeds of gcc compilers is different from the type used by Microsoft Visual C++.
Here are some of the debuggers that are available:

»» Visual C++: This debugger works similarly to the Code::Blocks debugger. It’s
primarily for debugging applications that were built by using Visual C++.
However, if you are brave and need to debug something for which you have
no code or symbol information, its support for assembly-code debug-
ging is good.

456 BOOK 4 Fixing Problems

»» gdb: This is the standard debugger that ships with MinGW and Cygwin. It’s a
command-line tool, but you can use the Insight debugger with it so that you
can use a graphical front end. This makes life a lot easier. But if you insist on
using the command-line version, you can learn about it by typing gdb at the
command prompt and then typing help.

»» Dev-C++: Starting with Version 5, Dev-C++ has an integrated debugger that
works similarly to the Insight debugger. You may want to give this a try. (If
you’re using a version of Dev-C++ prior to 5.0, you have to use the Insight
debugger.)

Debugging a Code::Blocks Application
with Command-Line Arguments

A command-line argument is something you type along with the command for an
application at the command prompt. For example, when you type the Dir (direc-
tory listing command) at the command prompt, you can include additional infor-
mation such as *.DOC, which will list all files with a .DOC extension. (If you use Dir
*.DOC? instead, you also see any files with a .DOCX extension.) The full command
Dir *.DOC consists of a command (Dir) and a command-line argument (*.DOC).
The addition of command-line arguments allows you to extend the functionality
of an application and make it do more. To test such an application, you need to be
able to specify command-line arguments as part of the debugger environment.

Code::Blocks, like most other capable IDEs, provides the means for specify-
ing command-line arguments. The “Setting the command-line parameters in
Code::Blocks” sidebar in Book 1, Chapter 6 provides you with the basics of setting
command-line arguments. However, a number of readers of previous editions of
this book wanted more information. With this in mind, I wrote a more detailed
description of how command-line arguments work as part of the post “Debugging
a CodeBlocks Application with Command Line Arguments” for a previous edition
of this book on my blog at http://blog.johnmuellerbooks.com/2011/11/01/
debugging-a-codeblocks-application-with-command-line-arguments/.
Please be sure to check out this blog post if you want additional information about
precisely what is going on.

http://blog.johnmuellerbooks.com/2011/11/01/debugging-a-codeblocks-application-with-command-line-arguments/
http://blog.johnmuellerbooks.com/2011/11/01/debugging-a-codeblocks-application-with-command-line-arguments/

CHAPTER 3 Stopping and Inspecting Your Code 457

Stopping and Inspecting
Your Code

Sometimes, code breaks. The word break has different meanings among the
people using it in the coding world. When programmers talk about breaking
the code, it may mean that the programmer made a mistake and the code

no longer works. It could also mean that a change in a library causes the code to
malfunction despite a lack of errors caused by the programmer. But this chapter
uses a different definition for break. When you’re debugging an application, you
can have the application run until it gets to a certain line in the code. The debug-
ger then stops at that line, and you can look at the values of variables, inspect
the code, or even change the variables. When the application stops, that’s called
breaking. It stops on that particular line because you put a breakpoint on that line.

This chapter discusses setting and manipulating breakpoints in your code (if
nothing else in your code is broken). You also inspect and modify various aspects
of your code, such as variables, after your code stops at a breakpoint. You also see
how to use watches to keep track of certain variables or expressions.

The examples in this chapter rely on the debugger supplied with the Code::Blocks
IDE. If you use a different product, the debugger will probably work about the
same but not precisely the same. For example, you can do everything shown here
using Microsoft Visual C++. The keystrokes and mouse clicks may be different, but

Chapter 3

IN THIS CHAPTER

»» Setting, enabling, and disabling
breakpoints

»» Temporarily setting or disabling a
breakpoint

»» Inspecting a variable

»» Watching any or all local and global
variables

458 BOOK 4 Fixing Problems

the features are present. Make sure to check the vendor documentation for precise
details on using your debugger.

To work through the examples in this chapter, you must compile with debug
information turned on. (In Code::Blocks, you can compile with debug informa-
tion by choosing Debug in the Build Target field of the Compiler toolbar. If you
can’t see the Compiler toolbar, choose View ➪ Toolbars ➪ Compiler to place a check
mark next to the Compiler entry.) When you develop software, you should always
have debug information on. That way, you’re always ready to debug your code
and fix things. Only when you’re ready to release the product formally should you
recompile it without debug information. (You should still perform a full test of
the software again without debug information, just to make sure that it functions
correctly.)

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookIV\Chapter03 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Setting and Disabling Breakpoints
A breakpoint is a place in your code where you tell the debugger to stop. The sec-
tions that follow discuss breakpoints. You use the Breakpoints sample code,
shown in Listing 3-1, for these sections. Make sure that you compile it with debug
information on.

LISTING 3-1:	 Using an Application for Breakpoints and Inspections

#include <iostream>

using namespace std;

class BrokenMirror {
private:
 int NumberOfPieces;
public:
 int GetNumberOfPieces();
 void SetNumberOfPieces(int newamount);
 BrokenMirror() : NumberOfPieces(100) {}
};

St
op

pi
ng

 a
nd

 In
sp

ec
ti

ng

Yo
ur

 C
od

e

CHAPTER 3 Stopping and Inspecting Your Code 459

int BrokenMirror::GetNumberOfPieces() {
 return NumberOfPieces;
}

void BrokenMirror::SetNumberOfPieces(int newamount) {
 newamount = newamount * 20;
 NumberOfPieces = newamount;
}

int main() {
 BrokenMirror mirror;
 mirror.SetNumberOfPieces(10);
 cout << mirror.GetNumberOfPieces() << endl;
 return 0;
}

Setting a breakpoint in Code::Blocks
Compile the application in Listing 3-1 (with debug information turned on). Look
at the left margin of the window, to the right of the line numbers. Figure 3-1
shows a small octagon on line 14. When you view the IDE, this octagon is red.
The red octagon is a breakpoint. To set this breakpoint in your own code, click
in the area between the left margin and the code (or right-click the line of code
and choose Toggle Breakpoint from the context menu), as shown in the figure on
line 14. If you haven’t done so, click the mouse in the left margin of the int Bro
kenMirror::GetNumberOfPieces() line. You see a red octagon appear in the left
margin. You just placed a breakpoint on that line.

Click again in the left margin of the same line. The red octagon disappears. When
the octagon disappears, the breakpoint is gone.

Finally, click a third time, because for now you do want a breakpoint there.

Run the application by clicking the Debug/Continue button (the icon with the red,
right-pointing arrow on it) on the Debugger toolbar. If you don’t see the Debug-
ger toolbar, choose View ➪ Toolbars ➪ Debugger to place a check mark next to the
Debugger entry. (Don’t click the Run button, which is the green right-pointing
triangle on the Compiler toolbar, because choosing this option simply runs the
application without debugging it.) When you click Debug/Continue, the console
window may pop in front, so just click the Code::Blocks window to bring it back
to the front.

460 BOOK 4 Fixing Problems

The application runs until it gets to the breakpoint you chose for the int Broken
Mirror::GetNumberOfPieces() line, as shown in Figure 3-2. Note that execution
actually ends with the opening curly brace because this is the beginning of exe-
cution for this function. The yellow, right-pointing triangle tells you the current
instruction that the Code::Blocks debugger will execute. You can now click the
Next Line button (the button with two squares and an arrow pointing from the
upper square to the lower square) to move to the next line, or you can click Debug/
Continue to run the rest of the application.

Enabling and disabling breakpoints
You may have times when you have several breakpoints set and you want to turn
them off momentarily but don’t want to lose them because you may want to
turn them back on later. You can do this by disabling the breakpoints. Disabling
the breakpoint is faster than removing the breakpoints and then going back and
finding them again to turn them back on. Use the following steps to disable a
breakpoint:

1.	 Right-click the red octagon on the left side of the editor and choose Edit
Breakpoint from the context menu.

You see the Edit Breakpoint dialog box, as shown in Figure 3-3.

FIGURE 3-1:
Code::Blocks
displays any

breakpoints you
set using a red

octagon.

St
op

pi
ng

 a
nd

 In
sp

ec
ti

ng

Yo
ur

 C
od

e

CHAPTER 3 Stopping and Inspecting Your Code 461

2.	 Clear the Enabled option and click OK.

Code::Blocks disables the breakpoint so that it no longer stops application
execution.

Many debuggers show a disabled breakpoint using a hollow red circle (or some-
times an octagon). Code::Blocks turns the red octagon gray instead. However,
you’ll still want to see that disabling the breakpoint actually does work. Set a new
breakpoint after the line that reads return NumberOfPieces; (on the curly brace).
Click Debug/Continue and you’ll see that the debugger bypasses the first break-
point and stops at the second, as shown in Figure 3-4.

FIGURE 3-2:
Debug mode tells

Code::Blocks to
stop execution

when it reaches
the breakpoint.

FIGURE 3-3:
Use the Edit

Breakpoint dialog
box to enable

and disable
breakpoints.

462 BOOK 4 Fixing Problems

In some cases, you want to enable or disable a number of breakpoints. Use the
following steps to perform this task:

1.	 Choose Debug ➪ Debugging Windows ➪ Breakpoints.

You see the Breakpoints window, shown in Figure 3-5. The window shows the
kind of breakpoint (with a red or gray octagon to tell you whether it’s enabled
or disabled), the breakpoint location, the line in the code file where the
breakpoint appears, and the name of the debugger being used.

FIGURE 3-4:
Disabled

breakpoints
don’t stop

application
execution.

FIGURE 3-5:
Use the

Breakpoints
window to access

a number of
breakpoints
at one time.

St
op

pi
ng

 a
nd

 In
sp

ec
ti

ng

Yo
ur

 C
od

e

CHAPTER 3 Stopping and Inspecting Your Code 463

2.	 Right-click the breakpoint entry and choose one of the management
options from the context menu.

The management options help you control one or more breakpoints. You can
perform the following tasks using the management options:

•	 Open the breakpoint in the editor so that you can see where it’s located.

•	 Edit the breakpoint, which displays the Edit Breakpoint dialog box, shown
in Figure 3-3.

•	 Remove the selected breakpoint.

•	 Disable the selected breakpoint.

•	 Add a bookmark so that you can find this location in the code with greater
ease. When you choose this option, you see a right-pointing blue arrow
between the line number and the code. Use the Edit ➪ Bookmarks menu
options to work with bookmarks.

•	 Remove all the breakpoints you have set in the application.

Watching, Inspecting, and
Changing Variables

When you stop at a breakpoint in an application, you can do more than just look
at the code. You can have fun with it! You can look at the current values of the
variables, and you can change them.

The Breakpoints2 example, shown in Listing 3-2, is a sample application that
you can use to try these examples of inspecting, changing, and watching vari-
ables. Please note that this application is similar to Listing 3-1, earlier in this
chapter, but you should see some differences. Specifically, it adds a line to the
SetNumberOfPieces() method:

newamount = newamount * 20;

The example adds a new function called SpecialMath() and an i variable to
main() that is initialized to 10. The code then manipulates i and passes it into the
SetNumberOfPieces() function.

464 BOOK 4 Fixing Problems

LISTING 3-2:	 Using an Application for Breakpoints and Inspections

#include <iostream>

using namespace std;

class BrokenMirror {
private:
 int NumberOfPieces;
public:
 int GetNumberOfPieces();
 void SetNumberOfPieces(int newamount);
 BrokenMirror() : NumberOfPieces(100) {}
};

int BrokenMirror::GetNumberOfPieces() {
 return NumberOfPieces;
}

void BrokenMirror::SetNumberOfPieces(int newamount) {
 newamount = newamount * 20;
 NumberOfPieces = newamount;
}

int SpecialMath(int x)
{
 return x * 10 - 5;
}

int main() {
 int i = 10;
 BrokenMirror mirror;

 i = i + SpecialMath(i);
 mirror.SetNumberOfPieces(i);
 cout << mirror.GetNumberOfPieces() << endl;

 // Clear this comment if you want the application to
 // stop to display the results.
 // system("PAUSE");
 return 0;
}

St
op

pi
ng

 a
nd

 In
sp

ec
ti

ng

Yo
ur

 C
od

e

CHAPTER 3 Stopping and Inspecting Your Code 465

When you run this application by clicking Run, you should see an output value of
2100.

Watching the variables
To watch the variables in your application, follow these steps:

1.	 Compile this application using a debug build (Build ➪ Select Target ➪ 

Debug) rather than a release build.

2.	 Set a breakpoint at the int i = 10; line in main().

3.	 Click Debug/Continue.

4.	 When the debugger stops at the breakpoint, choose Debug ➪ Debugging
Windows ➪ Watches.

You see the Watches window, as shown in Figure 3-6. Notice that the Watches
window automatically includes i and mirror. If you click the + next to mirror,
you can drill down to see NumberOfPieces.

Notice that the values in i and NumberOfPieces are random because the code
hasn’t assigned values to them yet. The values you see will differ from those
shown in Figure 3-6. This is the reason you never want to use a variable until
after you assign a value to it. In this case, the variables are shown in red
because C++ has just created them.

Objects such as mirror contain not only variables but also other objects. When
an object contains a child object, the child object will also have a plus sign next
to it. To see the contents of this child object, simply click the plus sign next to it.
You can keep drilling down until you reach the end of the object list.

FIGURE 3-6:
The Watches

window shows
the value of

variables and
objects.

466 BOOK 4 Fixing Problems

5.	 Click the Next Line button on the Debugger toolbar so that you are one
line beyond the following line:

int i = 10;

The application changes the value of i to 10, as shown in Figure 3-7. The
variable is still shown in red because its value has just changed. However,
notice that NumberOfPieces is now shown in black because its value hasn’t
changed since the last instruction.

6.	 Click Next Line on the Debugger toolbar.

The entry for i turns black to show that it has remained stable during the
execution of this command. However, NumberOfPieces is now shown in red
and has a value of 100. The use of red for changed variables and black for
unchanged variables makes it easy to determine which variables have changed.

7.	 Click Debug/Continue.

The application ends.

8.	 Remove any breakpoints you’ve set in the example application.

Changing values
Sometimes you need to verify that the application works as intended by simulat-
ing changes that might occur in the code. In many cases, this means changing
a value from its default to the value you want to test. Fortunately, the Watches
window provides the means to perform this task. Follow these steps to see how
you can change variable values:

1.	 Set a breakpoint at the i = i + SpecialMath(i); line in main().

2.	 Click Debug/Continue.

FIGURE 3-7:
Assigning a value

to i changes
its value in the

Watches window.

St
op

pi
ng

 a
nd

 In
sp

ec
ti

ng

Yo
ur

 C
od

e

CHAPTER 3 Stopping and Inspecting Your Code 467

3.	 When the debugger stops at the breakpoint, choose Debug ➪ Debugging
Windows ➪ Watches.

You see the Watches window (refer to Figures 3-6 and 3-7). The values of i and
NumberOfPieces appear as before. However, you can’t change these values;
you can only view them.

4.	 Type i in the first column of the last row of the Watches window and
press Enter.

You see the current value of i, which is 10. Notice also that you see a variable
type, int, in the third column, as shown in Figure 3-8. This entry is also in red
because you’ve just added it to the Watches window.

5.	 Select the value, 10, in the second column of the Watches window for the
i you added, type 100, and click the next line of the Watches window.

Code::Blocks changes the value of i to 100. The i variable entry, which used to
be black, has turned red because you changed the value. Notice that the copy
of i in the Locals area has also changed in both value and color.

6.	 Click Next Line three times so that the instruction pointer is on the line
that reads

return 0;

Notice that the output of the application (as well as the value of NumberOfPieces
in the Watches window) has changed to 21900. Normally the output is 2100. The
difference occurs because the value of i was changed.

7.	 Click Debug/Continue.

The application ends.

FIGURE 3-8:
Adding a watch
to the window

presents
additional

information.

CHAPTER 4 Traveling About the Stack 469

Traveling About
the Stack

Debuggers can be powerful things. They can leap tall computer applica-
tions in a single bound and see through them to find all their flaws. The
more you know about debuggers, the more you can put them to use. In this

chapter, you see how to move about the stack, which provides you with a record of
calls within your application, among other useful information.

This chapter also helps you view data in various ways. For example, in the previ-
ous chapter you got a quick view of local variables in the “Watching the variables”
section. This chapter enhances your understanding of local variables. In addition,
you see how threads and memory work, which offers another perspective of data
and how code interacts with it. Finally, you get down to the nuts and bolts with
assembly language, which is sort of the way that the computer sees your applica-
tion, except with a human-readable twist.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookIV\Chapter04 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Chapter 4

IN THIS CHAPTER

»» Moving about the stack

»» How local variables are stored

»» Viewing threads and memory

»» Tracing through assembly code

470 BOOK 4 Fixing Problems

Stacking Your Data
A stack is a common data structure in the computer world. When the operating
system runs an application, it gives that application a stack, which is simply a big
chunk of memory used to store data. But the data is stored just like a stack of cards
(or a stack of pancakes if you prefer): With a stack of real cards, you can put a card
on the top, and then another, and do that six times over; then you can take a card
off and take another card off. You can put cards on the top and take them off the
top. And if you follow these rules, you can’t insert them into the middle or bottom
of the stack. You can only look at what’s on the top. A stack data structure works the
same way: You can store data in it by pushing the data onto the stack, and you can
take data off by popping it off the stack. And yes, because the stack is just a bunch
of computer memory, sneaking around and accessing memory in the middle of
the stack is possible. But under normal circumstances, you don’t do that: You put
data on and take data off.

What’s interesting about the stack is that it works closely with the main CPU
in your system. The CPU has its own little storage bin right on the chip itself.
(It isn’t in the system memory, or RAM; it’s inside the CPU itself.) This stor-
age bin holds what are called registers. One such register is the stack pointer,
called the SP when working with 16-bits, ESP when working with 32-bits, or
RSP when working with 64-bits. The names of the registers vary by regis-
ter size. When the folks at Intel replaced the earlier chips with newer, more
powerful chips, they made the registers bigger. You can see a listing of register
names at https://docs.microsoft.com/en-us/windows-hardware/drivers/
debugger/x64-architecture. The tutorial at https://www.tutorialspoint.
com/assembly_programming/assembly_registers.htm provides additional
information as well.@@@

The stack is useful in many situations and is used extensively behind the scenes
in the applications you write. The compiler generates code that uses the stack to
store:

»» Local variables

»» Function parameters

»» Function calling order

It’s all stacked onto the stack and stuck in place, ready to be unstacked.

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://www.tutorialspoint.com/assembly_programming/assembly_registers.htm
https://www.tutorialspoint.com/assembly_programming/assembly_registers.htm

Tr
av

el
in

g
A

bo
ut

 t
he

St

ac
k

CHAPTER 4 Traveling About the Stack 471

Moving about the stack
The Code::Blocks debugger, like most debuggers, lets you look at the stack. But
really, you’re not looking directly at the hardware stack. When a debugger shows
you the application stack, it’s showing you the list of function calls that led up to
the application’s current position in the application code. However, the applica-
tion stack is a human-readable form of the hardware stack, and the debugger uses
the hardware stack to get that information. So that’s why programmers always
call the list of function calls the stack, even though you’re not actually looking at
the hardware stack.

Figure 4-1 shows an example of the Call Stack window in Code::Blocks. To see the
Call Stack window, simply choose Debug➪  Debugging Windows➪  Call Stack. You
can see the Call Stack window in front of the main Code::Blocks window. No infor-
mation appears in the Call Stack window until you start running an application.

You can try viewing the stack yourself. Look at the NestedCalls example, shown
in Listing 4-1. This listing shows a simple application that makes several nested
function calls.

LISTING 4-1:	 Making Nested Function Calls

#include <iostream>

using namespace std;

int SeatsPerCar() {
 return 4;
}

int CountCarSeats() {
 return 10 * SeatsPerCar();
}

FIGURE 4-1:
The Call Stack

window shows
the function calls
that led up to the
current position.

(continued)

472 BOOK 4 Fixing Problems

int CountStuff() {
 return CountCarSeats() + 25;
}

int main() {
 cout << CountStuff() << endl;
 // Remove the following comment to see the code
 // execute in the debugger.
 //system("PAUSE");
 return 0;
}

To try the Call Stack window, follow these steps:

1.	 Compile this application (set the Build Target field to Debug).

2.	 Set a breakpoint at the cout << CountStuff() << endl; line.

3.	 Run the application in the Code::Blocks debugger by pressing F8.

4.	 Step into the CountStuff() function, and then into the
CountCarSeatsfunction(), and then into the SeatsPerCar() function.

(Or, just put a breakpoint in the SeatsPerCar() function and run the applica-
tion until it stops at the breakpoint.)

5.	 Choose Debug➪  Debugging Windows➪  Call Stack.

A window like the one in Figure 4-1 appears. Note the order of function calls in
the Call Stack window:

SeatsPerCall()
CountCarSeats()
CountStuff()

main()

This information in the Call Stack window means that your application
started with main(), which called CountStuff(). That function then called
CountCarSeats(), which in turn called SeatsPerCall(). And that’s where
you are now. Code::Blocks places a red highlight on the current stack
location — the block of code that the application is currently executing.

This window is handy if you want to know what path the application took to get
to a particular routine. For example, you might see a routine that is called from
many places in your application and you’re not sure which part is calling the rou-
tine when you perform a certain task. To find out which part calls the routine,

LISTING 4-1:	 (continued)

Tr
av

el
in

g
A

bo
ut

 t
he

St

ac
k

CHAPTER 4 Traveling About the Stack 473

set a breakpoint in the function. When you run the application and the debugger
stops at that line, the Call Stack window shows you the path the computer took to
get there, including the name of the function that called the function in question.

In the Call Stack window, you can double-click any function name, and the Debug-
ger moves the cursor to the function’s body in the source code. This feature makes
it easy for you to locate any function within the call stack and see why the code
followed the path it did. Double-clicking only moves your view to the line on the
call stack; the program is still stopped on the line at the top of the stack. When
you switch to a new location in the call stack, the red bar moves to that location
in the Call Stack window so that you can always keep track of where you are in
the call stack.

Stack features are common to almost all debuggers. It’s not possible to say all,
because some truly bad debuggers that don’t have stack features are out there. But
the good debuggers, including those built into Code::Blocks and Microsoft Visual
C++, include features for moving about the stack.

Storing local variables
As you get heavily into debugging, it always helps to fully understand what goes
on under the hood of your application. At this point, the text speaks on two levels:

»» Your C++ code

»» The resulting assembly code that the compiler generates based on your
C++ code. (Assembly is the human-readable form of machine code that the
processor on your machine understands.)

This chapter clearly states which level you’re reading about. Suppose that you
write a function in C++ and you call the function in another part of your applica-
tion. When the compiler generates the assembly code for the function, it inserts
some special code at the beginning and end of the function. At the start of the
function, this special code allocates space for the local variables. At the end of the
function, the special code de-allocates the space. This space for the variables is
called the stack frame for the function.

This space for the local variables lives on the stack. The storage process works as
follows: When you call your function, the computer pushes the return address of
the caller onto the stack. After the computer is running inside the function, the
special code that the compiler inserted saves some more of the stack space —
just enough for the variables. This extra space becomes the local storage for the
variables, and just before the function returns, the special code removes this

474 BOOK 4 Fixing Problems

local space. Thus, the top of the stack is now the return address. The return then
functions correctly.

This process with the stack frame takes place with the help of the internal
registers in the CPU. Before a function call, the assembly code pushes the argu-
ments to the function onto the stack. Then it calls the function by using the CPU’s
built-in call statement. (That’s an assembly-code statement.) This call state-
ment pushes the return address onto the stack and then moves the instruction
pointer to the function address. After the execution is inside the function, the
stack contains the function arguments and then the return address. The special
function start-up code (called a prolog) saves the beginning of the stack frame
address in one of the CPU registers, called the Base Pointer (BP) register. (As with
SP, the name of BP can be EBP or RBP based on the register size.)

The prolog saves the value on the stack. The prolog code first pushes the BP value
onto the stack. Then the prolog code takes the current stack pointer (which points
to the top of the stack in memory) and saves it back in the BP register for later
use. Then the prolog code adjusts the stack pointer to make room for the local
variable storage. The code inside the function then accesses the local variables as
offsets above the position of BP on the stack and the arguments as offsets below
the position of BP on the stack.

Finally, at the end of the function, the special code (now called an epilog) undoes
the work: The epilog copies the value in BP back into SP; this de-allocates the local
variable storage. Then it pops the top of the stack off and restores this value back
into BP. Now the top of the stack contains the function return address, which is
back to the way it was when the function began. The next assembly statement is a
return, which pops the top of the stack off and goes back to the address that the
epilog code popped off the stack. Just think: Every single time a function call takes
place in your computer, this process takes place.

Inside the computer, the stack actually runs upside down. When you push
something onto the stack, the stack pointer goes down in memory — it gets
decremented. When you pop something off the stack, the stack pointer gets
incremented. Therefore, in the stack frame, the local variables are actually below BP
in memory, and you access their addresses by subtracting from the value stored in
the BP register. The function arguments, in turn, are above the BP in memory, and
you get their addresses by adding to the value stored in BP.

The one topic not discussed in the preceding paragraph is the return value of a
function. In C++, the standard way to return a value from a function is for the
function’s assembly code to move the value into the Accumulator, or AX, register
(whose name also varies by register size). The calling code can inspect the AX
register after the function is finished. However, if you are returning something

Tr
av

el
in

g
A

bo
ut

 t
he

St

ac
k

CHAPTER 4 Traveling About the Stack 475

complex, such as a class instance, things get a bit more complex. Suppose that
you have a function that returns an object, but not as a pointer, as in the func-
tion header MyClass MyFunction();. Different compilers handle this differently,
but when the gcc compiler that’s a part of Code::Blocks, Dev-C++, MinGW, or
Cygwin encounters something such as MyClass inst = MyFunction();, it takes
the address of inst and puts it in AX. Then, in the function, it allocates space for
a local variable, and in the return line it copies the object in the local variable into
the object whose address is in AX. So when you return a non-pointer object, you
are, in a sense, passing your object into the function as a pointer.

Debugging with Advanced Features
Most debuggers, including Code::Blocks, have some advanced features that are
handy when you’re tracing through your application. These features include the
capability to look at threads (individual sequences of programmed instructions)
and assembly code.

Viewing threads
If you are writing an application that uses multiple threads and you stop at a
breakpoint, you can get a list of all current threads by using the Running Threads
window. To open the Running Threads window, in the main Code::Blocks window
choose Debug➪  Debugging Windows➪  Running Threads. A window showing the
currently running threads opens. Each line looks something like this:

2 thread 2340.0x6cc test() at main.cpp:7

The first number indicates which thread this is in the application; for example,
this is the second thread. The two numbers after the word thread are the process
ID and the thread ID in hexadecimal, separated by a dot. Then you see the name
of the function where the thread is stopped, along with the line number where the
thread is stopped.

Tracing through assembly code
If you feel the urge, you can view the actual assembly code. In some cases, you
use the assembly code view to find particularly difficult bugs, or you might want
to determine which of two programming techniques produces less code. In fact,
you may just be curious as to how the compiler converts your code. To see the
assembly code, choose Debug➪  Debugging Windows➪  Disassembly and you see the

476 BOOK 4 Fixing Problems

Disassembly window. Check the Mixed Mode option when you want see a mix
of C++ and assembly code, as shown in Figure 4-2. This approach makes it a lot
easier to understand how Code::Blocks turns your C++ code into assembly lan-
guage. Notice that the top of the window tells you the name of the function you’re
viewing and which file contains the function, and the C++ code includes line num-
bers so that you know precisely where you are in the source code.

Some readers have noted that Code::Blocks will sometimes freeze when displaying
the Disassembly window. The IDE will report that the disassembly is being loaded,
but the process never completes. In this case, close the sample code and restart
the IDE. In most cases, the disassembly will load on the second try.

The window shown in Figure 4-2 is the disassembly of the SeatsPerCar() func-
tion shown previously in Listing 4-1. Here’s the function again so that you can
compare it to Figure 4-2:

int SeatsPerCar() {
 return 4;
}

The following lines create the stack frame:

0x401350 push %ebp
0x401351 mov %esp,%ebp

You know that this is a 32-bit application because the disassembly uses the 32-bit
register names throughout. If this were a 64-bit application, the register names
would reflect the proper size, such as %rbp and %rsp.

FIGURE 4-2:
The Disassembly

window shows
the assembly

code that results
from the C++

code you write.

Tr
av

el
in

g
A

bo
ut

 t
he

St

ac
k

CHAPTER 4 Traveling About the Stack 477

After the code creates a stack frame, it moves a value of 4 (the return 4; part of
the code) into EAX, as shown here:

0x401353 mov $0x4,%eax

The code then pops EBP and returns to the caller (the CountCarSeats() function)
using this code:

0x401358 pop %ebp
0x401359 ret

Now, if you move into the CountCarSeats() function, you see assembly like that
shown in Figure 4-3.

As before, the assembly code begins by creating a stack frame. It then issues a call
to the SeatsPerCar() function. When the function returns, the assembly per-
forms the multiplication part of the task. Finally, the code performs the usual
task of placing the return value in EAX, popping EBP, and returning to the caller.
Notice that what appears to be simple multiplication to you may not be as simple
in assembly language. Say that you change the code to read

int CountCarSeats() {
 return 4 * SeatsPerCar();
}

The math is simpler now because you’re using 4, which is easily converted into a
binary value. Figure 4-4 shows the assembly that results from this simple change.

FIGURE 4-3:
This Disassembly

window shows
the Count

CarSeats()
function code.

478 BOOK 4 Fixing Problems

Now all the code does is perform a shift-left (SHL) instruction. Shifting the value
in EAX left by 2 is the same as multiplying it by 4. The assembler uses the SHL
instruction because shifting takes far fewer clock cycles than multiplication,
which makes the code run faster. The result is the same, even if the assembly code
doesn’t quite match your C++ code.

If you want to see the values in the registers so that you can more easily follow
the assembly code, choose Debug➪  Debugging Windows➪  CPU Registers. You see
the CPU Registers window, shown in Figure 4-5. This window reflects the state
of the registers at the current stopping point in the code. Consequently, you can’t
see each step of the assembly code shown in the Disassembly window reflected in
these registers unless you step through the code, one instruction at a time.

FIGURE 4-4:
Small C++ code

changes can
result in large

assembly-code
changes.

FIGURE 4-5:
Viewing the CPU

registers can
give you insight

into how code
interacts with the

processor.

5Advanced
Programming

Contents at a Glance
CHAPTER 1:	 Working with Arrays, Pointers, and

References . . 481
Building Up Arrays. . 482
Pointing with Pointers. . 498
Referring to References. . 510

CHAPTER 2:	 Creating Data Structures. . 515
Working with Data. . 515
Structuring Your Data. . 529
Naming Your Space. . 534

CHAPTER 3:	 Constructors, Destructors, and Exceptions. 541
Constructing and Destructing Objects. . 542
Programming the Exceptions to the Rule . . 563

CHAPTER 4:	 Advanced Class Usage . . 571
Inherently Inheriting Correctly . . 572
Using Classes and Types within Classes. . 591

CHAPTER 5:	 Creating Classes with Templates. 601
Templatizing a Class. . 602
Going Beyond the Basics. . 609
Parameterizing a Template. . 612
Typedefing a Template. . 622
Deriving Templates. . 623
Templatizing a Function. . 630

CHAPTER 6:	 Programming with the Standard Library 637
Architecting the Standard Library. . 638
Containing Your Classes. . 638
The Great Container Showdown. . 658
Copying Containers. . 673
Creating and Using Dynamic Arrays. . 675
Working with Unordered Data . . 677
Working with Ranges . . 679

CHAPTER 1 Working with Arrays, Pointers, and References 481

Working with Arrays,
Pointers, and References

When the C programming language, predecessor to C++, came out in the
early 1970s, it was a breakthrough because it was small. C had only a few
keywords. Tasks like printing to the console were handled not by built-

in keywords but by functions. Technically, C++ still has few keywords, so it’s still
small. So what makes C++ big?

»» Its libraries are huge.

»» It’s extremely sophisticated, resulting in millions of things you can do with the
language.

In this chapter, you encounter the full rundown of topics that lay the foundation
for C++: arrays, pointers, and references. In C++, these items come up again and
again.

This chapter assumes that you have a basic understanding of C++ — that
you understand the material in Books 1 and 2. You know the basics of pointers
and arrays (and maybe just a teeny bit about references) and you’re ready to
grasp them thoroughly. When you finish this chapter, you’ll have expanded on
your knowledge enough to perform some intermediate and advanced tasks with
relative ease.

Chapter 1

IN THIS CHAPTER

»» Working with arrays and
multidimensional arrays

»» Understanding the connection
between arrays and pointers

»» Dealing with pointers in all their
forms

»» Using reference variables

482 BOOK 5 Advanced Programming

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookV\Chapter01 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Building Up Arrays
As you work with C++ arrays, it seems like you can do a million things with them.
This section provides the complete details on arrays. The more you know about
arrays, the less likely you are to use them incorrectly, which would result in a bug.
(The following sections don’t tell you about the std::array class described at
https://en.cppreference.com/w/cpp/container/array. Instead, they discuss
basic C++ arrays. Book 3, Chapter 1 provides a simple std::array example in the
“Creating a declarative C++ example” section, and you get a more detailed look in
the “Working with std::array” section in Chapter 6 of this minibook.)

Know how to get the most out of arrays when necessary — not just because they’re
there. Avoid using arrays in the most complex way imaginable.

Declaring arrays
The usual way of declaring an array is to line up the type name, followed by a vari-
able name, followed by a size in brackets, as in this line of code:

int Numbers[10];

This code declares an array of 10 integers. The first element gets index 0, and the
final element gets index 9. Always remember that in C++, arrays start at 0, and
the highest index is one less than the size. (Remember, index refers to the posi-
tion within the array, and size refers to the number of elements in the array.) To
declare an array of indeterminate size, leave out the size value, like this:

int Numbers[];

In certain situations, you can declare an array without putting a number in the
brackets. For example, you can initialize an array without specifying the number
of elements:

int MyNumbers[] = {1,2,3,4,5,6,7,8,9,10};

https://en.cppreference.com/w/cpp/container/array

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 483

The compiler is smart enough to count how many elements you put inside the
braces, and then the compiler makes that count the array size.

Specifying the array size helps decrease your chances of having bugs. Plus, it has
the added benefit that, in the actual declaration, if the number in brackets does
not match the number of elements inside braces, the compiler issues an error.
The following

int MyNumbers[5] = {1,2,3,4,5,6,7,8,9,10};

yields this compiler error:

error: too many initializers for 'int [5]'

But if the number in brackets is greater than the number of elements, as in the
following code, you won’t get an error. Instead, the remaining array elements
aren’t defined, so you can’t access them. So be careful!

int MyNumbers[15] = {1,2,3,4,5,6,7,8,9,10};

You also can skip specifying the array size when you pass an array into a function,
like this:

int AddUp(int Numbers[], int Count) {
 int loop;
 int sum = 0;
 for (loop = 0; loop < Count; loop++) {
 sum += Numbers[loop];
 }
 return sum;
}

This technique is particularly powerful because the AddUp() function can work for
any size array. You can call the function like this:

cout << AddUp(MyNumbers, 10) << endl;

But this way to do it is kind of annoying because you have to specify the size each
time you call in to the function. However, you can get around this problem. Look
at this line of code:

cout << AddUp(MyNumbers, sizeof(MyNumbers) / 4) << endl;

484 BOOK 5 Advanced Programming

With the array, the sizeof operator tells you how many bytes it uses. But the size
of the array is usually the number of elements, not the number of bytes. So you
divide the result of sizeof by 4 (the size of each int element).

But now you have that magic number, 4, sitting there. (By magic number, we mean
a seemingly arbitrary number that’s stuffed somewhere into your code.) So a
slightly better approach would be to enter this line:

cout << AddUp(MyNumbers, sizeof(MyNumbers) / sizeof(int))
 << endl;

Now this line of code works, and here’s why: The sizeof the array divided by the
sizeof each element in the array gives the number of elements in the array. (You
also see this technique demonstrated in the “Declaring and accessing an array”
section of Book 2, Chapter 2.)

Arrays and pointers
The name of the array is a pointer to the array itself. The array is a sequence of
variables stored in memory. The array name points to the first item. The following
sections discuss arrays and pointers.

Seeing arrays as arrays and pointers
An interesting question about arrays and pointers is whether it’s possible to use a
function header, such as the following line, and rely on sizeof to determine how
many elements are in the array. If so, this function wouldn’t need to have the
caller specify the size of the array.

int AddUp(int Numbers[]) {

Consider this function found in the Array01 example and a main() that calls it:

#include <iostream>

using namespace std;

void ProcessArray(int Numbers[]) {
 cout << "Inside function: Size in bytes is "
 << sizeof(Numbers) << endl;
}

int main(int argc, char *argv[]) {

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 485

 int MyNumbers[] = {1,2,3,4,5,6,7,8,9,10};
 cout << "Outside function: Size in bytes is ";
 cout << sizeof(MyNumbers) << endl;
 ProcessArray(MyNumbers);
 return 0;
}

When you run this application, here’s what you see:

Outside function: Size in bytes is 40
Inside function: Size in bytes is 4

Outside the function, the code knows that the size of the array is 40 bytes. How-
ever, inside the function the size reported is 4 bytes. The reason is that even
though it appears that you’re passing an array, you’re really passing a pointer to
an array. The size of the pointer is just 4, and so that’s what the final cout line
prints.

Understanding external declarations
Declaring arrays has a slight idiosyncrasy. When you declare an array by giving a
definite number of elements, such as

int MyNumbers[5];

the compiler knows that you have an array, and the sizeof operator gives you the
size of the entire array. The array name, then, is both a pointer and an array! But
if you declare a function header without an array size, such as

void ProcessArray(int Numbers[]) {

the compiler treats this as simply a pointer and nothing more. This last line is, in
fact, equivalent to the following line:

void ProcessArray(int *Numbers) {

Thus, inside the functions that either line declares, the following two lines of code
are equivalent:

Numbers[3] = 10;
*(Numbers + 3) = 10;

486 BOOK 5 Advanced Programming

This equivalence means that if you use an extern declaration on an array, such as

extern int MyNumbers[];

and then take the size of this array, the compiler will get confused. Here’s an
example: If you have two files, numbers.cpp and main.cpp, where numbers.cpp
declares an array and main.cpp externally declares it (as shown in the Array02
example), you will get a compiler error if you call sizeof:

#include <iostream>

using namespace std;

extern int MyNumbers[];

int main(int argc, char *argv[]) {
 cout << sizeof(MyNumbers) << endl;
 return 0;
}

In Code::Blocks, the gcc compiler gives this error:

error: invalid application of 'sizeof' to incomplete type
'int []'

The solution is to put the size of the array inside brackets, such as extern int
MyNumbers[10];. Just make sure that the size is the same as in the other source
code file! You can fake out the compiler by changing the number, and you won’t
get an error. But that’s bad programming style and just asking for errors.

Although an array is simply a sequence of variables all adjacent to each other in
memory, the name of an array is really just a pointer to the first element in the
array. You can use the name as a pointer. However, do that only when you really
need to work with a pointer. After all, you really have no reason to write code that
is cryptic, such as *(Numbers + 3) = 10;.

The converse is also true. Look at this function:

void ProcessArray(int *Numbers) {
 cout << Numbers[1] << endl;
}

This function takes a pointer as a parameter, yet you access it as an array. Again,
don’t write code like this; instead, you should try to understand why code like this

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 487

works. That way, you gain a deeper knowledge of arrays and how they live inside
the computer, and this knowledge, in turn, can help you write code that works
properly.

Differentiating between pointer types
Even though this chapter tells you that the array name is just a pointer, the name
of an array of integers isn’t the exact same thing as a pointer to an integer. Check
out these lines of code (found in the Array03 example):

#include <iostream>

using namespace std;

int main() {
 int LotsONumbers[50];
 int x;
 LotsONumbers = &x;
}

The code tries to point the LotsONumbers pointer to something different:
something declared as an integer. The compiler doesn’t let you do this; you
get an error. That wouldn’t be the case if LotsONumbers were declared as int
*LotsONumbers; then this code would work. But as written, this code gives you a
compiler error like this one:

error: incompatible types in assignment of 'int*' to 'int [50]'

This error implies the compiler does see a definite distinction between the two
types, int* and int[50]. Nevertheless, the array name is indeed a pointer, and
you can use it as one; you just can’t do everything with it that you can with a
normal pointer, such as reassign it. These tips will help you keep your arrays
bug-free:

»» Keep your code consistent. If you declare, for example, a pointer to an integer,
do not treat it as an array.

»» Keep your code clear and understandable. If you pass pointers, it’s okay to
take the address of the first element, as in &(MyNumbers[0]) if this makes the
code clearer — though it’s equivalent to just MyNumbers.

»» When you declare an array, always try to put a number inside the brackets,
unless you are writing a function that takes an array.

488 BOOK 5 Advanced Programming

»» When you use the extern keyword to declare an array, also put the array size
inside brackets. But be consistent! Don’t use one number one time and a
different number another time. The easiest way to be consistent is to use a
constant, such as const int ArraySize = 10; in a common header file
and then use that in your array declaration: int MyArray[ArraySize];.

Using multidimensional arrays
Arrays do not have to be just one-dimensional. Dimensions make it possible to
model data more realistically. For example, a three-dimensional array would
allow you to better model a specific place in 3-D space. The following sections
discuss using multidimensional arrays.

Declaring a multidimensional array
You can declare a multidimensional array using a technique similar to a single-
dimensional array, as shown in the Array04 example in Listing 1-1. The difference
is that you must declare each dimension separately.

LISTING 1-1:	 Using a Multidimensional Array

#include <iostream>

using namespace std;

int MemorizeThis[10][20];

int main() {
 for (int x = 0; x < 10; x++) {
 for (int y = 0; y < 20; y++) {
 MemorizeThis[x][y] = x * y;
 }
 }

 cout << MemorizeThis[9][13] << endl;
 cout << sizeof(MemorizeThis) / sizeof(int) << endl;
 return 0;
}

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 489

When you run this, MemorizeThis gets filled with the multiplication tables. Here’s
the output for the application, which is the contents of MemorizeThis[9][13],
and then the size of the entire two-dimensional array:

117
200

And indeed, 9 times 13 is 117. The size of the array is 200 elements. Because each
element, being an integer, is 4 bytes, the size of the array in bytes is 800.

You can have many, many dimensions, but be careful. Every time you add a dimen-
sion, the size multiplies by the size of that dimension. Thus an array declared like
the following line has 48,600 elements, for a total of 194,400 bytes:

int BigStuff[4][3][5][3][5][6][9];

And the following array has 4,838,400 elements, for a total of 19,353,600 bytes.
That’s about 19 megabytes!

int ReallyBigStuff[8][6][10][6][5][7][12][4];

If you really have this kind of a data structure, consider redesigning it. Any data
stored like this would be downright confusing. And fortunately, the compiler will
stop you from going totally overboard. Just for fun, try this giant monster:

int GiantMonster[18][16][10][16][15][17][12][14];

You’ll get an error of:

error: size of array 'GiantMonster' is too large

Considering data type
The data type of your array also makes a difference. Here are some byte values for
arrays of the same size, but using different types:

char CharArray[20][20]; // 400 bytes
short ShortArray[20][20]; // 800 bytes
long LongArray[20][20]; // 1,600 bytes
float FloatArray[20][20]; // 1,600 bytes
double DoubleArray[20][20]; // 3,200 bytes

490 BOOK 5 Advanced Programming

Initializing multidimensional arrays
Just as you can initialize a single-dimensional array by using braces and separat-
ing the elements by commas, you can initialize a multidimensional array with
braces and commas and all that jazz, too. But to do this, you combine arrays inside
arrays, as in this code:

int Numbers[5][6] = {
 {1,2,3,4,5,6},
 {7,8,9,10,12},
 {13,14,15,16,17,18},
 {19,20,21,22,23,24},
 {25,26,27,28,29,30}
};

The hard part is remembering whether you put in five arrays containing six sub-
arrays or six arrays containing five subarrays. Think of it like this: Each time you
add another dimension, it goes inside the previous dimension. That is, you can
write a single-dimensional array like this:

int MoreNumbers[5] = {
 100,
 200,
 300,
 400,
 500,
};

Then, if you add a dimension to this array, each number in the initialization is
replaced by an array initializer of the form {1,2,3,4,5,6}. Then you end up with
a properly formatted multidimensional array.

Passing multidimensional arrays
If you have to pass a multidimensional array to a function, things can get just a
bit hairy. That’s because you don’t have as much freedom in leaving off the array
sizes as you do with single-dimensional arrays. Suppose you have this function:

int AddAll(int MyGrid[5][6]) {
 int x,y;
 int sum = 0;
 for (x = 0; x < 5; x++) {
 for (y = 0; y < 6; y++) {

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 491

 sum += MyGrid[x][y];
 }
 }
 return sum;
}

So far, the function header is fine because it explicitly states the size of each
dimension. But you may want to do this:

int AddAll(int MyGrid[][]) {

or maybe pass the sizes as well:

int AddAll(int MyGrid[][], int rows, int columns) {

But unfortunately, the compiler displays this error for both lines:

declaration of 'MyGrid' as multidimensional array
must have bounds for all dimensions except the first

The compiler is telling you that you must explicitly list all the dimensions, but it’s
okay if you leave the first one blank, as with one-dimensional arrays.

So this crazy code will compile:

int AddAll(int MyGrid[][6]) {

The reason is that the compiler treats multidimensional arrays in a special way.
A multidimensional array is not really a two-dimensional array, for exam-
ple; rather, it’s an array of an array. Thus, deep down inside C++, the compiler
treats the statement MyGrid[5][6] as if it were MyGrid[5] where each item in
the array is itself an array of size 6. And you’re free not to specify the size of a
one-dimensional array. Well, the first brackets represent the one-dimensional
portion of the array. So you can leave that space blank, as you can with other
one-dimensional arrays. But then, after that, you have to give the subarrays
bounds, a specific number of entries.

When using multidimensional arrays, it’s often easier to think of them as an array
of arrays. Either of the following function headers, for example, is confusing:

int AddAll(int MyGrid[][6]) {
int AddAll(int MyGrid[][6], int count) {

492 BOOK 5 Advanced Programming

Here’s a way around this problem: Use a typedef, which is cleaner:

typedef int GridRow[6];
int AddAll(GridRow MyGrid[], int Size) {
 int x,y;
 int sum = 0;
 for (x = 0; x < Size; x++) {
 for (y = 0; y < 6; y++) {
 sum += MyGrid[x][y];
 }
 }
 return sum;
}

The typedef line defines a new type called GridRow. This type is an array of six
integers. Then, in the function, you’re passing an array of GridRows.

Using this typedef is the same as simply using two brackets, except it emphasizes
that you’re passing an array of an array — that is, an array in which each member
is itself an array of type GridRow.

Arrays and command-line parameters
In a typical C++ application, the main() function receives an array and a count
as command-line parameters — parameters provided as part of the command to
execute that application at the command line. However, to beginning program-
mers, the parameters can look intimidating. But they’re not: Think of the two
parameters as an array of strings and a size of the array. However, each string in
this array of strings is actually a character array. In the old days of C, and earlier
breeds of C++, no string class was available. Thus strings were always character
arrays, usually denoted as char *MyString. (Remember, an array and a pointer
can be used interchangeably for the most part). Thus you could take this thing
and turn it into an array — either by throwing brackets at the end, as in char
*MyString[], or by making use of the fact that an array is a pointer and adding a
second pointer symbol, as in char **MyString. The following code from the Com-
mandLineParams example shows how you can get the command-line parameters:

#include <iostream>

using namespace std;

int main(int argc, char *argv[]) {
 int loop;

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 493

 for (loop = 0; loop < argc; loop++) {
 cout << argv[loop] << endl;
 }
 return 0;
}

Before you build your application, add some command-line arguments to it
by choosing Project ➪ Set Program’s Arguments to display the Select Target
dialog box, shown in Figure 1-1. Type these arguments (one on each line) in the
Program Arguments field and then click OK.

You see the following output when you run the application. (Note that the appli-
cation name comes in as the first parameter and the quoted items come in as a
single parameter.)

C:\CPP_AIO4\BookV\Chapter01\CommandLineParams\bin\Debug\
CommandLineParams.exe

abc
def
abc 123

FIGURE 1-1:
Use the Select

Target dialog box
to add program

arguments.

494 BOOK 5 Advanced Programming

The first argument is always the name of the executable. The executable name
can be accompanied by the .exe extension, the executable path, and the drive on
which the executable resides. What you see depends on your IDE and compiler.

Allocating an array on the heap
Arrays are useful, but it would be a bummer if the only way you could use them
were as stack variables. This section shows an exception to not treating arrays
as pointers by telling how you can allocate an array on the heap by using the
new keyword. (If you can’t quite remember the difference between the stack
and the heap, check out the “Heaping and Stacking the Variables” section in
Book 1, Chapter 8.) But first you need to know about a couple of little tricks to make
it work.

You can easily declare an array on the heap by using new int[50], for example.
But think about what this is doing: It declares 50 integers on the heap, and the
new word returns a pointer to the allocated array. But, unfortunately, the makers
of C++ didn’t see it that way. For some reason, they based the array pointer type
on the first element of the array (which is, of course, the same as all the elements
in the array). Thus the call:

new int[50]

returns a pointer of type int *, not something that explicitly points to an array,
just as this call does:

new int;

If you want to save the results of new int [50] in a variable, you have to have a
variable of type int *, as in the following:

int *MyArray = new int[50];

In this case, an array name is a pointer and vice versa. So now that you have a
pointer to an integer, you can treat it like an array:

MyArray[0] = 25;

Deleting an array from the heap
When you finish using the array, you can call delete. But you can’t just call delete
MyArray;. The reason is that the compiler knows only that MyArray is a pointer
to an integer; it doesn’t know that it’s an array! Thus delete MyArray will only

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 495

delete the first item in the array, leaving the rest of the elements sitting around
on the heap, wondering when their time will come. So the makers of C++ gave us a
special form of delete to handle this situation. It looks like this:

delete[] MyArray;

If you’re really curious about the need for delete[] and delete, consider that
there’s a distinction between allocating an array and allocating a single element
on the stack. Look closely at these two lines:

int *MyArray = new int[50];
int *somenumber = new int;

The first allocates an array of 50 integers, while the second allocates a single array.
But look at the types of the pointer variables: They’re both the same! They’re both
pointers; each one points to an integer. And so the statement

delete something;

is ambiguous if something is a pointer to an integer: Is it an array, or is it a single
number? The designers of C++ knew this was a problem, so they unambiguated
it. They declared and proclaimed that delete shall delete only a single mem-
ber. Then they invented a little extra that must have given the compiler writers a
headache: They said that if you want to delete an array instead, just throw on an
opening and closing bracket after the word delete. And all will be good.

Storing arrays of pointers
and arrays of arrays
Because of the similarities between arrays and pointers, you are likely to encoun-
ter some strange notation. For example, in main() itself, you have seen both of
these at different times:

char **argc
char *argc[]

If you work with arrays of arrays and arrays of pointers, the best bet is to make
sure that you completely understand what these kinds of statements mean.
Remember that although you can treat an array name as a pointer, you’re in for
some technical differences. The following lines of code show these differences.

496 BOOK 5 Advanced Programming

First, think about what happens if you initialize a two-dimensional array of char-
acters like this:

char NameArray[][6] = {
 {'T', 'o', 'm', '\0', '\0', '\0'},
 {'S', 'u', 'z', 'y' , '\0', '\0'},
 {'H', 'a', 'r', 'r' , 'y', '\0'}
};

This is an array of an array. Each inner array is an array of six characters. The outer
array stores the three inner arrays. (The individual content of an array is some-
times called a member — the inner array has six members and the outer array has
three members.) Inside memory, the 18 characters are stored in one consecutive
row, starting with T, then o, and ending with m and finally three copies of \0,
which is the null character. But now take a look at this:

char* NamePointers[] = {
 "Tom",
 "Suzy",
 "Harry"
};

This is an array of character arrays as well, except that it’s not the same as the
code that came just before it. This is actually an array holding three pointers: The
first points to a character string in memory containing Tom (which is followed by
a null-terminator, \0); the second points to a string in memory containing Suzy
ending with a null-terminator; and so on. Thus, if you look at the memory in the
array, you won’t see a bunch of characters; instead, you see three numbers, each
being a pointer.

It’s often helpful to see the content of memory as you work with arrays. To see
memory in Code::Blocks, choose Debug ➪ Debugging Windows ➪ Memory Dump.
You see the Memory window. Type & (ampersand) plus the name of the variable
you want to view in the Address field and click Go. (You can also see the content of
a specific memory address by typing its address, such as 0x28ff08, or the memory
pointed to by a register by typing $ plus the register name, such as $sp.)

So where on earth (or in the memory, anyway) are the three strings, Tom, Suzy,
and Harry when you have an array of three pointers to these strings? When the
compiler sees string constants such as these, it puts them in a special area where
it stores all the constants. These constants then get added to the executable file at
link time, along with the compiled code for the source module. And that’s where
they reside in memory. The array, therefore, contains pointers to these three con-
stant strings in memory. Now, if you try to do the following (notice the type of
PointerToPointer)

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 497

char **PointerToPointer = {
 "Tom",
 "Suzy",
 "Harry"
};

you will get an error:

error: initializer for scalar variable requires one element

A scalar is just another name for a regular variable that is not an array. In other
words, the PointerToPointer variable is a regular variable (that is, a scalar), not
an array.

Yet, inside the function header for main(), you can use char **, and you can
access this as an array. As usual, there’s a slight but definite difference between
an array and a pointer. You can’t always treat a pointer as an array; for example,
you can’t initialize a pointer as an array. But you can go the other way: You can
take an array and treat it as a pointer most of the time. Thus you can do this:

char* NamePointers[] = {
 "Tom",
 "Harry",
 "Suzy"
};
char **AnotherArray = NamePointers;

This code compiles, and you can access the strings through AnotherArray[0], for
example. Yet you’re not allowed to skip a step and just start out initializing the
AnotherArray variable like so:

char** AnotherArray = {
 "Tom",
 "Harry",
 "Suzy"
};

If you write the code that way, it’s the same as the code shown just before this
example — and it yields a compiler error! This is one (perhaps obscure) example
in which the slight differences between arrays and pointers become obvious, but
it does help explain why you can see something like this:

int main(int argc, char **argv)

498 BOOK 5 Advanced Programming

and you are free to use the argv variable to access an array of pointers —
specifically, in this case, an array of character pointers, also called strings.

Building constant arrays
If you have an array and you don’t want its contents to change, you can make
it a constant array. The following lines of code, found in the Array05 example,
demonstrate this approach:

const int Permanent[5] = { 1, 2, 3, 4, 5 };
cout << Permanent[1] << endl;

This array works like any other array, except you cannot change the numbers
inside it. If you add a line like the following line, you get a compiler error, because
the compiler is aware of constants:

Permanent[2] = 5;

Here’s the error you get when working in Code::Blocks:

error: assignment of read-only location 'Permanent[2]'

Arrays have a certain constancy built in. For example, you can’t assign one array
to another. If you make the attempt (as shown in the Array06 example), the
Code::Blocks compiler presents you with an error: invalid array assignment
error message.)

int NonConstant[5] = { 1, 2, 3, 4, 5 };
int OtherList[5] = { 10, 11, 12, 13, 14 };
OtherList = NonConstant;

In other words, that third line is saying, “Forget what OtherList points to;
instead, make it point to the NonConstant array, {1,2,3,4,5}!” The point is that
arrays are always constant. If you want to make the array elements constant, you
can precede its type with the word const. When you do so, the array name is con-
stant, and the elements inside the array are also constant.

Pointing with Pointers
To fully understand C++ and all its strangeness and wonders, you need to become
an expert in pointers. (Fortunately, many modern innovations in C++ are mak-
ing the need to know pointers less of an issue — you have other means at your

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 499

disposal, as discussed in Book 1, Chapter 8.) One of the biggest sources of bugs is
when programmers who have a so-so understanding of C++ work with pointers
and mess them up. But what’s bad in such cases is that the application may run
properly for a while and then suddenly not work. Those bugs are the hardest bugs
to catch, because the user may see the problem occur and then report it, but pro-
grammers can’t reproduce the problem. In this section, you see how you can get
the most out of pointers and use them correctly in your applications so that you
won’t have these strange problems.

Becoming horribly complex
You could see a function header like this:

void MyFunction(char ***a) {

Yikes! What are all those asterisks for? Looks like a pointer to a pointer to a pointer
to . . . something! How confusing. Some humans have brains that are more like
computers, and they can look at that code and understand it just fine, but most
people can’t. The following sections help you understand how passing pointers to
functions works.

Using a typedef
To understand the code, think about this: Suppose you have a pointer variable,
and you want a function to change what the pointer variable points to. What this
is saying is that the function wants to make the pointer point to something else,
rather than change the contents of the thing that it points to. There’s a big differ-
ence between the two. Any time you want a function to change a variable, you have
to either pass it by reference or pass its address. This process can get confusing
with a pointer. One way to reduce the confusion is to define a new type — using
the typedef word. It goes like this (as shown in the Pointer01 example):

typedef char *PChar;

This is a new type called PChar that is equivalent to char *. That is, PChar is a
pointer to a character.

Now look at this function:

void MyFunction(PChar &x) {
 x = new char('B');
}

500 BOOK 5 Advanced Programming

This function takes a pointer variable and points it to the result of new char('B').
That is, it points it to a newly allocated character variable containing the letter B.
Now, think this through carefully: A PChar simply contains a memory address —
really. You pass it by reference into the function, and the function modifies the
PChar so that the PChar contains a different address. That is, the PChar now points
to something different from what it previously did.

To try this function, here’s some code you can put in main() that tests
MyFunction():

PChar ptr = new char('A');
PChar copy = ptr;
MyFunction(ptr);
cout << "ptr points to " << *ptr << endl;
cout << "copy points to " << *copy << endl;

The code creates two variables of type PChar: ptr and copy. It assigns a new char,
'A', to ptr and then copies the address of ptr to copy so that they both point to
the same location in memory. At this point, then, ptr and copy both have the
same memory address in them.

Next, the code calls MyFunction(), which changes where ptr points in memory.
On return from the function, the code prints two characters: the character that
ptr points to and the character that copy points to. Here’s what you see when you
run it:

ptr points to B
copy points to A

This means that MyFunction() worked! The ptr variable now points to the char-
acter allocated in MyFunction (a B), while the copy variable still points to the
original A. In other words, they no longer point to the same thing: MyFunction()
managed to change what the variable points to.

Using pointers to pointers
Now consider the same function, but instead of using references, try it with
pointers. Here’s a modified form (as found in the Pointer02 example):

typedef char *PChar;
void AnotherFunction(PChar *x) {
 *x = new char('C');
}

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 501

The parameter is really a char ** in this case. You could create another typedef
to handle it, as in typedef char **PPChar;. Because the parameter is a pointer,
you have to dereference it to modify its value. Thus you see an asterisk, *, at the
beginning of the middle line. Here’s a modified main() that calls this function:

PChar ptr = new char('A');
PChar copy = ptr;
AnotherFunction(&ptr);
cout << "ptr points to " << *ptr << endl;
cout << "copy points to " << *copy << endl;

Because the function uses a pointer rather than a reference, you have to pass the
address of the ptr variable, not the ptr variable directly. So notice that the call to
AnotherFunction() has an ampersand, &, in front of the ptr. This code works as
expected. When you run it, you see this output:

ptr points to C
copy points to A

This version of the function, called AnotherFunction(), made a new character
called C. Indeed, it’s working correctly: ptr now points to a C character, and copy
hasn’t changed. Again, the function pointed ptr to something else.

Avoiding typedefs
The previous examples created a typedef to make it much easier to understand
what the functions are doing. However, not everybody does it that way; there-
fore you have to understand what other people are doing when you attempt to
fix their code. So here are the same two functions found in the previous sections,
MyFunction() and AnotherFunction(), but without typedef. Instead of using
the new PChar type, they directly use the equivalent char * type:

void MyFunction(char *&x) {
 x = new char('B');
}

void AnotherFunction(char **x) {
 *x = new char('C');
}

To remove the use of the typedefs, all you do is replace the PChar in the two
function headers and the variable declarations with its equivalent char *. You can
see that the headers now look goofier. But they mean exactly the same as before:
The first is a reference to a pointer, and the second is a pointer to a pointer.

502 BOOK 5 Advanced Programming

But think about char **x for a moment. Because char * is also the same as a
character array in many regards, char **x is a pointer to a character array. In fact,
sometimes you may see the header for main() written like this

int main(int argc, char **argv)

instead of

int main(int argc, char *argv[])

Notice the argv parameter in the first of these two is the same type as we’ve been
talking about: a pointer to a pointer (or, in a more easily understood manner, the
address of a PChar). But you know that the argument for main() is an array of
strings.

Using multiple typedefs
Now it’s time to consider what happens when you have a pointer that points to an
array of strings and a function that is going to make it point to a different array of
strings. The Pointer03 example begins by creating the required typedefs:

typedef char **StringArray;
typedef char *PChar;

StringArray is a type equivalent to an array of strings. In fact, if you put these
two lines of code before your main(), you can actually change your main() header
into the following and it will compile:

int main(int argc, StringArray argv)

Now here’s a function that will take as a parameter an array of strings, create a
new array of strings, and set the original array of strings to point to this new array
of strings:

void ChangeAsReference(StringArray &array) {
 StringArray NameArray = new PChar[3];
 NameArray[0] = "Tom";
 NameArray[1] = "Suzy";
 NameArray[2] = "Harry";
 array = NameArray;
}

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 503

Just to make sure that it works, here’s something you can put in main():

StringArray OrigList = new PChar[3];
OrigList[0] = "John";
OrigList[1] = "Paul";
OrigList[2] = "George";

StringArray CopyList = OrigList;
ChangeAsReference(OrigList);

cout << OrigList[0] << endl;
cout << OrigList[1] << endl;
cout << OrigList[2] << endl << endl;
cout << CopyList[0] << endl;
cout << CopyList[1] << endl;
cout << CopyList[2] << endl;

The code creates a pointer to an array of three strings. It then stores three strings
in the array. Next, the code saves a copy of the pointer in the variable called
CopyList, changes the OrigList pointer by calling ChangeAsReference(), and
prints all the values. Here’s the output:

Tom
Suzy
Harry

John
Paul
George

The first three outputs are the elements in OrigList, which were passed into
ChangeAsReference(). They no longer have the values John,Paul, and George.
The three original Beatles names have been replaced by three new names: Tom,
Harry, and Suzy. However, the Copy variable still points to the original string list.
Thus, once again, changing the pointer reference worked.

Working with string arrays using pointers
The previous section uses typedefs to work with string arrays, but you can also do
it with pointers. Here’s the modified version of the function, this time using said
pointers (as shown in the Pointer04 example):

void ChangeAsPointer(StringArray *array) {
 StringArray NameArray = new PChar[3];

504 BOOK 5 Advanced Programming

 NameArray[0] = "Tom";
 NameArray[1] = "Harry";
 NameArray[2] = "Suzy";
 *array = NameArray;
}

As before, here’s the slightly modified sample code that tests the function:

StringArray OrigList = new PChar[3];
OrigList[0] = "John";
OrigList[1] = "Paul";
OrigList[2] = "George";

StringArray CopyList = OrigList;
ChangeAsPointer(&OrigList);

cout << OrigList[0] << endl;
cout << OrigList[1] << endl;
cout << OrigList[2] << endl << endl;
cout << CopyList[0] << endl;
cout << CopyList[1] << endl;
cout << CopyList[2] << endl;

You can see that when the code calls ChangeAsPointer(), it passes the address of
OrigList. The output of this version is the same as that of the previous version.

Here are the two function headers without using the typedefs:

int ChangeAsReference(char **&array) {

and

int ChangeAsPointer(char ***array) {

You may see code like these two lines from time to time. Such code isn’t the easiest
to understand, but after you know what these lines mean, you can interpret them.

Most developers use a typedef, even if it’s just before the function in question.
That way, it’s clearer to other people what the function does. You are welcome to
follow suit. But if you do, make sure that you’re familiar with the non-typedef
version so that you understand that version when somebody else writes it without
using typedef.

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 505

Pointers to functions
When an application is running, the functions in the application exist in the
memory; so just like anything else in memory, they have an address.

You can access the address of a function by taking the name of it and putting the
address-of operator (&) in front of the function name, like this:

address = &MyFunction;

But to make this work, you need to know what type to declare address. The
address variable is a pointer to a function, and the cleanest way to assign a type
is to use auto, like this:

auto address = &MyFunction;

The traditional method is to use a typedef (as shown in the FunctionPointer01
example). Here’s the typedef you need:

typedef int(*FunctionPtr)(int);

It’s hard to follow, which is why using auto is better, but the name of the new type
is FunctionPtr. This defines a type called FunctionPtr that returns an integer
(the leftmost int) and takes an integer as a parameter (the rightmost int, which
must be in parentheses). The middle part of this statement is the name of the new
type, and you must precede it by an asterisk, which means that it’s a pointer to
all the rest of the expression. Also, you must put the type name and its preced-
ing asterisk inside parentheses. Now you’re ready to declare some variables! Here
goes:

FunctionPtr address = &MyFunction;

This line declares address as a pointer to a function and initializes it to
MyFunction(). For this to work, the code for MyFunction() must have the same
prototype declared in the typedef: In this case, it must take an integer as a
parameter and return an integer. So, for example, you may have a function
like this:

int TheSecretNumber(int x) {
 return x + 1;
}

506 BOOK 5 Advanced Programming

Then you could have a main() that stores the address of this function in a
variable — and then calls the function by using the variable:

int main() {
 typedef int (*FunctionPtr)(int);
 int MyPasscode = 20;
 FunctionPtr address = &TheSecretNumber;
 cout << address(MyPasscode) << endl;
}

Using the typedef approach has the advantage of specifying precisely what you
want in the way of inputs, but the auto form is shorter and easier to understand.
Here’s main() using the auto form (you must be using C++ 11 or above to use this
form):

int main() {
 int MyPasscode = 20;
 auto address = &TheSecretNumber;
 cout << address(MyPasscode) << endl;
}

Just so you can say that you’ve seen it, here’s what the address declaration would
look like without using a typedef:

int (*address)(int) = &TheSecretNumber;

The giveaway should be that you have two things in parentheses side by side,
and the set on the right has only types inside it. The one on the left has a variable
name. So this line is not declaring a type; rather, it’s declaring a variable.

Pointing a variable to a method
When working with object-oriented programming (OOP), you need a way to access
the methods within the object. Within an object’s code, you use the this pointer
to obtain the address of an object’s method so that you can access the method
instance data directly.

Remember that each instance of a class gets its own copy of the properties unless
the properties are static. But methods are shared throughout the class. Yes, you
can distinguish static methods from nonstatic methods. But doing so just refers to
the types of variables they access: Static methods can access only static properties,
and you don’t need to refer to them with an instance. Nonstatic (that is, normal,
regular) methods work with a particular instance. However, inside the memory,
really only one copy of the method exists.

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 507

So how does the method know which instance to work with? The this parame-
ter gets passed into the method to differentiate between instances. Suppose you
have a class called Gobstopper that has a method called Chew(). Next, you have an
instance called MyGum, and you call the Chew() method, like so:

MyGum.Chew();

When the compiler generates assembly code for this, it actually passes a parame-
ter into the function — the address of the MyGum instance, also known as the this
pointer. Therefore only one Chew() function is in the code, but to call it, you must
use a particular instance of the class.

Because only one copy of the Chew() method is in memory, you can take its
address. But to do so requires some sort of cryptic-looking code. Here it is, quick
and to the point. Suppose your class looks like this:

class Gobstopper {
public:
 int WhichGobstopper;
 int Chew(string name) {
 cout << WhichGobstopper << endl;
 cout << name << endl;
 return WhichGobstopper;
 }
};

The Chew() method takes a string and returns an integer. Here’s a typedef for a
pointer to the Chew() function:

typedef int (Gobstopper::*GobMember)(string);

And here’s a variable of the type GobMember:

GobMember func = &Gobstopper::Chew;

As with other functions, you can use auto to make things simple when you work
with C++ 11 or above. Here’s the auto form of a variable that points to the Chew()
method:

auto func = &Gobstopper::Chew;

If you look closely at the typedef, it looks similar to a regular function pointer.
The only difference is that the class name and two colons precede the asterisk.
Other than that, it’s a regular old function pointer.

508 BOOK 5 Advanced Programming

But whereas a regular function pointer is limited to pointing to functions of a par-
ticular set of parameter types and a return type, this function pointer shares those
restrictions but has a further limitation: It can point only to methods within the
class Gobstopper.

To call the function stored in the pointer, you need to have a particular instance.
Notice that in the assignment of func in the earlier code, there was no instance,
just the class name and function, &Gobstopper::Chew. So to call the function,
grab an instance, add func, and go! The FunctionPointer02 example, shown in
Listing 1-2, contains a complete example with the class, the method address, and
two separate instances.

LISTING 1-2:	 Taking the Address of a Method

#include <iostream>

using namespace std;

class Gobstopper {
public:
 int WhichGobstopper;
 int Chew(string name) {
 cout << WhichGobstopper << endl;
 cout << name << endl;
 return WhichGobstopper;
 }
};

int main() {
 typedef int (Gobstopper::*GobMember)(string);
 GobMember func = &Gobstopper::Chew;

 Gobstopper inst;
 inst.WhichGobstopper = 10;

 Gobstopper another;
 another.WhichGobstopper = 20;

 (inst.*func)("Greg W.");
 (another.*func)("Jennifer W.");
 return 0;
}

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 509

The code begins by creating a typedef called GobMember, as discussed earlier in
this section. It then creates a method pointer, func, to access the method. When
using C++ 11 or above, you can replace these two lines with the much easier-to-
understand single line:

auto func = &Gobstopper::Chew;

Of course, when you use this alternative, the compiler must deduce the correct
types, which it may not always do correctly. Using the typedef gives you addi-
tional control at the cost of complexity.

The code then creates two instances of Gobstopper, inst and another. In both
cases, it directly assigns a value to WhichGobstopper, which will vary depending
on instance and accessed through this. The final section calls the Chew() method
indirectly using func in each instance and assigns a name as the input string.

When you run the code, you can see from the output that it is indeed calling the
correct method for each instance:

10
Greg W.
20
Jennifer W.

Now, when you hear “the correct method for each instance,” what the statement
really means is that the code is calling the same method each time but using
a different instance. If you’re thinking in object-oriented terms, consider each
instance as having its own copy of the method. Therefore it’s okay to say “the
correct method for each instance.”

Pointing to static methods
A static method is, in many senses, just a plain old function. The difference is that
you have to use a class name to call a static function. But remember that a static
method does not go with any particular instance of a class; therefore you don’t
need to specify an instance when you call the static function.

Here’s an example class (as shown in the FunctionPointer03 example) with a
static function:

class Gobstopper {
public:
 static string MyClassName() {

510 BOOK 5 Advanced Programming

 return "Gobstopper!";
 }
 int WhichGobstopper;
 int Chew(string name) {
 cout << WhichGobstopper << endl;
 cout << name << endl;
 return WhichGobstopper;
 }
};

And here’s some code that takes the address of the static function and calls it by
using the address:

int main() {
 typedef string (*StaticMember)();
 StaticMember staticfunc = &Gobstopper::MyClassName;
 cout << staticfunc() << endl;
 return 0;
}

Note that the call staticfunc() doesn’t refer to a specific instance and it doesn’t
refer to the class, either. The application just called it. Because the truth is that
deep down inside, the static function is just a plain old function.

Referring to References
This section discusses how to use references and assumes that you already know
how to pass a parameter by reference when you’re writing a function. (For more
information about passing parameters by reference, see Book 1, Chapter 8.) But
you can use references for more than just parameter lists. You can declare a vari-
able as a reference type. And just like job references, this use of references can be
both good and devastating. So be careful when you use them.

Reference variables
Declaring a variable that is a reference is easy. Whereas the pointer uses an aster-
isk, *, the reference uses an ampersand, &. But it has a twist. You can’t just declare
it, like this:

int &BestReference; // Nope! This won't work!

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 511

If you try this, you see an error that says BestReference declared as reference
but not initialized. That sounds like a hint: Looks like you need to initialize it.

Yes, references need to be initialized. As the name implies, reference refers to
another variable. Therefore, you need to initialize the reference so that it refers to
some other variable, like so (as shown in the Reference01 example):

int ImSomebody;
int &BestReference = ImSomebody;

From this point on, the variable BestReference refers to — that is, is an alias
for — ImSomebody. So, if you change the value of BestReference, as shown here:

BestReference = 10;

you’ll really be setting ImSomebody to 10. Look at this code that could go inside
main():

int ImSomebody;
int &BestReference = ImSomebody;
BestReference = 10;
cout << ImSomebody << endl;

When you run this code, you see the output

10

That is, setting BestReference to 10 caused ImSomebody to change to 10, which
you can see when you print the value of ImSomebody. That’s what a reference does:
It refers to another variable.

Because a reference refers to another variable, that implies that you can’t have a
reference to just a number, as in int &x=10. In fact, the offending line has been
implicated: You are not allowed to do that. You can have only a reference that
refers to another variable.

Returning a reference from a function
It’s possible to return a reference from a function. But be careful if you try to do
this: You don’t want to return a reference to a local variable within a function,
because when the function ends, the storage space for the local variables goes
away.

512 BOOK 5 Advanced Programming

But you can return a reference to a global variable. Or, if the function is a method,
you can return a reference to a property.

For example, here’s a class found in the Reference02 example that has a function
that returns a reference to one of its variables:

class DigInto {
private:
 int secret;
public:
 DigInto() { secret = 150; }
 int &GetSecretVariable() { return secret; }
 void Write() { cout << secret << endl; }
};

Notice that the constructor stores 150 in the secret variable, which is private.
The GetSecretVariable() function returns a reference to the private variable
called secret. The Write() function writes out the value of the secret variable.
Lots of secrets here! And some surprises, too, which you discover shortly. You can
use this class like so:

int main()
{
 DigInto inst;
 inst.Write();

 int &pry = inst.GetSecretVariable();
 pry = 30;
 inst.Write();

 auto &pry2 = inst.GetSecretVariable();
 pry2 = 40;
 inst.Write();
 return 0;
}

The example uses two kinds of references, one int and one auto (you must have
C++ 11 or above installed to use the second type). Notice that using auto doesn’t
eliminate the need for the & to create a reference. If you were to write auto
pry2 = inst.GetSecretVariable(); instead, you’d receive a warning message
stating warning: variable 'pry2' set but not used. However, the code would
still compile, and if you use the Build ➪ Build and Run option, you might not even
notice the warning.

W
or

ki
ng

 w
it

h
A

rr
ay

s,

Po
in

te
rs

, a
nd

 R
ef

er
en

ce
s

CHAPTER 1 Working with Arrays, Pointers, and References 513

When you run this example, you see the following output:

150
30
40

Here’s a look at the code in a little more detail. The first output line is the value in
the secret variable right after the application creates the instance. But look at the
code carefully: The variable called pry is a reference to an integer, and it gets the
results of GetSecretVariable().What is that result? It’s a reference to the private
variable called secret — which means that pry itself is now a reference to that
variable. Yes, a variable outside the class now refers directly to a private member
in the instance! After that, the code sets pry to 30. When the code calls Write()
again, the private variable will indeed change. (The same sequence occurs when
you use the auto variable pry2.)

Creating code like this is a bad idea because it provides access to a private variable.
The GetSecretVariable() function pretty much wipes out any sense of the vari-
able’s actually remaining private. The main() function is able to grab a reference
to it and poke around and change it however it wanted, as if it were not private!

That’s a problem with references: They can potentially leave your code wide open.
Therefore, think twice before returning a reference to a variable. Here’s one of the
biggest risks: Somebody else may be using this code, may not understand refer-
ences, and may not realize that the variables called pry and pry2 have a direct link
to the private secret variable. Such an inexperienced programmer might then
write code that uses and changes pry or pry2 — without realizing that the prop-
erty is changing along with it. Later on, then, a bug results — a pretty nasty one
at that!

Because functions returning references can leave unsuspecting and less-
experienced C++ programmers with just a wee bit too much power on their hands,
it’s a best practice to use caution with references. No, you don’t have to avoid
them altogether; it’s simply a good idea to be careful. Use them only if you really
feel you must. But remember also that a better approach in classes is to have
member access functions that can guard the private variables.

However, now that you’ve received the usual warnings, know that references can
be very powerful, provided that you understand what they do. When you use a
reference, you can easily modify another variable without having to go through
pointers — which can make life much easier sometimes. So, please: Use your
newfound powers carefully.

CHAPTER 2 Creating Data Structures 515

Creating Data Structures

C++, being a computer language and all, provides you with a lot of ways to
manipulate data — numbers, letters, strings, arrays — anything you can
store inside the computer memory. To get the most out of C++, you should

know as much as you can about the fundamental data types. This chapter covers
them and how to use them.

This chapter refers to the ANSI standard of C++. ANSI is the American National
Standards Institute. The information provided in this chapter deals with the ANSI
standard (singular) of C++. Fortunately, the GNU gcc compiler that comes with
Code::Blocks is ANSI-standard-compliant.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookV\Chapter02 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Working with Data
In the sections that follow, you see how to manipulate data, consider the data
types available to you, and discover how you can change one data type to another.

Chapter 2

IN THIS CHAPTER

»» Discovering all the different data
types

»» Casting and converting

»» Using structures with your data

»» Comparing and manipulating
structures

516 BOOK 5 Advanced Programming

The great variable roundup
The ANSI C++ standard dictates the fundamental C++ types shown in Table 2-1.

C++ includes a signed keyword, but you have little reason to use it because
signed is assumed if you don’t specifically use unsigned. Note that when you
use unsigned, the size of the variable doesn’t change: It takes the same number
of bytes. Instead, the range shifts. For example, a short ranges from –32,768 to
32,767, so there are 65,536 possibilities. An unsigned short ranges from 0 to
65,535; again, there are 65,536 possibilities.

The precise values of some of these types, such as long double, can vary by com-
piler. The best way to ensure that you understand the limits of your compiler is to
run a simple test. The VarTypes example, shown in Listing 2-1, demonstrates the
maximum values for each data type found in Table 2-1.

TABLE 2-1:	 ANSI C++ Character Types
Name Size in Bytes Range

char 1 –128 to 127

unsigned char 1 0 to 255

short 2 –32,768 to 32,767

unsigned short 2 0 to 65,535

int and long 4 −2,147,483,648 to 2,147,483,647

unsigned int and
unsigned long

4 0 to 4,294,967,295

long long 8 −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long long 8 0 to 18,446,744,073,709,551,615

bool 1 true/false

float 4 1.17549e-038 to 3.40282e+038

double 8 2.22507e-308 to 1.79769e+308

long double 12 3.3621e-4932 to 1.18973e+4932

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 517

LISTING 2-1:	 Testing Maximum Type Values

#include <iostream>
#include <climits>
#include <cfloat>

using namespace std;

int main() {
 char Char = CHAR_MAX;
 unsigned char UChar = UCHAR_MAX;
 short Short = SHRT_MAX;
 unsigned short UShort = USHRT_MAX;
 int Int = INT_MAX;
 unsigned int UInt = UINT_MAX;
 long Long = LONG_MAX;
 unsigned ULong = ULONG_MAX;
 long long LongLong = LLONG_MAX;
 unsigned long long ULongLong = ULLONG_MAX;
 bool Bool = true;
 float Float = FLT_MIN;
 double Double = DBL_MIN;
 long double LDouble = LDBL_MIN;

 cout << "Char\t\t\t" << Char << "\t\t\t" <<
 sizeof(Char) << endl;
 cout << "Unsigned Char\t\t" << UChar << "\t\t\t" <<
 sizeof(UChar) << endl;
 cout << "Short\t\t\t" << Short << "\t\t\t" <<
 sizeof(Short) << endl;
 cout << "Unsigned Short\t\t" << UShort << "\t\t\t" <<
 sizeof(UShort) << endl;
 cout << "Int\t\t\t" << Int << "\t\t" <<
 sizeof(Int) << endl;
 cout << "Unsigned Int\t\t" << UInt << "\t\t" <<
 sizeof(UInt) << endl;
 cout << "Long\t\t\t" << Long << "\t\t" <<
 sizeof(Long) << endl;
 cout << "Unsigned Long\t\t" << ULong << "\t\t" <<
 sizeof(ULong) << endl;
 cout << "Long Long\t\t" << LongLong << "\t" <<
 sizeof(LongLong) << endl;
 cout << "Unsigned Long Long\t" << ULongLong << "\t" <<
 sizeof(ULongLong) << endl;

(continued)

518 BOOK 5 Advanced Programming

 cout << "Bool\t\t\t" << (Bool ? "True" : "False") <<
 "\t\t\t" << sizeof(Bool) << endl;
 cout << "Float\t\t\t" << Float << "\t\t" <<
 sizeof(Float) << endl;
 cout << "Double\t\t\t" << Double << "\t\t" <<
 sizeof(Double) << endl;
 cout << "Long Double\t\t" << LDouble << "\t\t" <<
 sizeof(LDouble) << endl;
 return 0;
}

Notice the use of constants, such as CHAR_MAX, to set maximum values. When
working with integers, you use the statement #include <climits>, which reads
as include the file climits. You may see other headers used, but they may not
include the ULLONG_MAX constant. When working with floating-point numbers,
you #include <cfloat>. This example provides the following output:

Char 127 1
Unsigned Char 255 1
Short 32767 2
Unsigned Short 65535 2
Int 2147483647 4
Unsigned Int 4294967295 4
Long 2147483647 4
Unsigned Long 4294967295 4
Long Long 9223372036854775807 8
Unsigned Long Long 18446744073709551615 8
Bool True 1
Float 1.17549e-038 4
Double 2.22507e-308 8

The char output will reflect a character, rather than a number, in all cases. Con-
sequently, you may see a different character output on your display. Notice also
the use of (Bool ? "True" : "False") to display a textual value, rather than a
numeric value, for Bool.

Expressing variables from either side
Occasionally, when you look at error messages (or if you read the ANSI stan-
dard), you see the terms lvalue and rvalue. The l and r refer to left and right,

LISTING 2-1:	 (continued)

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 519

respectively. In an assignment statement, an lvalue is any expression that can be
on the left side of the equals sign, and an rvalue is an expression that can be on
the right side of an equals sign.

The terms lvalue and rvalue don’t refer to what happens to be on the left side
and right side of an assignment statement. They refer to what is allowed or not
allowed on the left or right side of an assignment statement. You can have only
lvalues on the left side of an assignment statement and rvalues on the right side
of an assignment statement. Here are some examples, in which ploggle is an int
type. This is allowed because ploggle is an lvalue:

ploggle = 3;

On the left side, you cannot have items that are strictly an rvalue. The following
is not allowed because 2 is strictly an rvalue:

2 = ploggle;

The number 2 can’t appear on the left (setting it equal to something else makes no
sense), therefore it isn’t an lvalue. In fact, anything you can set equal to some-
thing else is an lvalue.

The main reason you need to know these terms is their tendency to show up in
error messages. If you try to compile the line 2 = ploggle, you see an error mes-
sage similar to this one:

non-lvalue in assignment

If you don’t know what the term lvalue means, these messages can be confus-
ing. Although seeing the problem with 2 = ploggle is pretty easy, sometimes the
problem is not that obvious. Look at this:

ChangeMe() = 10;

In most cases, putting a function call on the left doesn’t make sense, so you don’t
do it. In other words, you must consider whether the expression ChangeMe() is
considered an lvalue. Look at this code from the LValueAndRValue example:

#include <iostream>

using namespace std;

int uggle;

520 BOOK 5 Advanced Programming

int &ChangeMe() {
 return uggle;
}

int main() {
 ChangeMe() = 10;
 cout << ChangeMe() << endl;
 return 0;
}

The function ChangeMe() returns a reference to an integer; this line is valid:

ChangeMe() = 10;

The expression ChangeMe() refers to the variable uggle, and thus this line of code
stores 10 in uggle. You can still use ChangeMe() as a function, as shown in the
next line with the cout, so it can still stand alone.

The words lvalue and rvalue aren’t C++ keywords. You don’t type these into an
application.

Casting a spell on your data
Although C++ has all these great data types, such as int and char, the fact is that
the CPU just stores them as numbers. And sometimes you may have a character
and need to use its underlying number. To do this, you can cast the data into a
different type.

The way you cast is to take a variable of one type and type the variable’s name,
preceded by the other type you would like it to be. You put that other type in
parentheses, as shown in the SimpleCast example that follows.

#include <iostream>

using namespace std;

int main() {
 char buddy = 'A';
 int underneath = (int)buddy;
 cout << underneath << endl;
 return 0;
}

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 521

When you run this code, you obtain an output value of 65. If you substituted a
lowercase a, the output would be 97 because uppercase and lowercase letters have
different numeric values.

Comparing casting and converting
The idea behind casting is to take some data and, without changing it, use it
in another way. For example, you could have an array containing the characters
Apple. But inside the memory, each letter is stored as a number. For example, the
A is stored as 65, p is stored as 112, l as 108, and e as 101. Therefore, you use code
like that found in the CastOrConvert example that follows when you want to cast
each character to an integer:

char str[] = {'A','p','p','l','e','\0'};
cout << str << endl;

for (int x: str)
 cout << x << endl;

where str is the string Apple (notice the null value required to end the string).
The for each loop casts each character in str, one at a time, to an int, and then
prints it out onscreen. This act would print out the numerical equivalents of each
letter, as shown here:

Apple
65
112
112
108
101
0

In other words, the code casts the characters to integers — but doesn’t actually
change any data.

Converting, however, is different. If you want to take the number 123, casting it
to a string will not create a string 123. The string 123 is made up of three under-
lying characters. The numbers for the string 123 are 49, 50, and 51, respectively.
Casting the number 123 into a char won’t produce the string, "123". Instead,
you would need to convert the number to a string using code like this, as shown
in CastOrConvert.

int value = 123;
char strValue[4];

522 BOOK 5 Advanced Programming

strValue[3] = '\0';
for (int counter = 2; counter >= 0; counter--) {
 strValue[counter] = (char)(value % 10 + 48);
 value = value / 10;
}
cout << strValue << endl;

In this case, the code works backward to create the string from the number by
using a combination of integer division and modulus. The content in value is
destroyed in the process, but strValue contains the correct string in the end.
To get an idea of how this works, 123 % 10 = 3, while 123 / 10 = 12. The value
3 + 48 = 51 comes out to the char value '3' when cast. Of course, there is a much
easier way to perform this task (you must #include <string>):

string EasyValue = to_string(123);
cout << EasyValue << endl;

As is true of most techniques, there are times when casting won’t work as expected.
One of those times come into play when converting between floats and integers.
Instead of using a conversion function, the C++ compiler automatically converts
from float to integer and vice versa if you try to cast one to the other. Ugh. That
goes against the rest of the rules, so be careful. Here’s an example of converting
a float to an integer:

float f = 6.3;
int i = (int)f;

But the crazy part is that you can also do the same thing without even using the
cast:

float f = 6.3;
int i = f;

Casting and converting can both cause problems. For example, when casting
between a float and an int, you have the potential for data loss. A float value
of 0.123 will appear as an int value of 0. Whenever possible, use built-in con-
versions (those where you can simply make one data type equal to another data
type, such as making an int variable equal to a char variable) to ensure that the
output you receive truly represents the correct transition between one type and
another. Later in this chapter, you also see how to use safe casting techniques with
both dynamic_cast and static_cast. Unlike most languages, C++ won’t protect
you from yourself. For example, you can cast a pointer to some other type, even
though such a cast doesn’t make sense. You could even convert the address into
a string if you want. C++ assumes that you want the low-level access that it can
provide, so it also gives you the extra flexibility to perform tasks incorrectly.

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 523

Casting safely with C++
The ANSI standard of C++ comes with all kinds of goodies that make life easier
than it used to be. Casting is one example. Originally, you could just cast all you
wanted and change from one data type to another, possibly causing a mess, espe-
cially if you take existing code and compile it under a different operating system
or perhaps even under a different compiler on the same operating system. One
type may have a different underlying representation, and then, when you con-
vert it on one system, you get one thing; take it to a different system and you get
something else. That’s bad. It creates bugs!

So the ANSI standard for C++ gives some newer and better ways of casting between
items of data. These include dynamic_cast, static_cast, and const_cast. (There
is also a reinterpret_cast, but it’s incredibly unsafe to use and therefore not
demonstrated.)

UNDERSTANDING AND AVOIDING
NARROWING CASTS
A narrowing cast is one in which you could lose data, such as casting a float into an
int (you can lose the decimal part of the data) or a double into a float (double holds
larger numbers). Unfortunately, standard implementations of most compilers don’t nec-
essarily warn you about narrowing casts, as is the case for the CastOrConvert exam-
ple. However, you can overcome this issue by using the Guideline Support Library (GSL)
described at https://www.modernescpp.com/index.php/c-core-guideline-
the-guidelines-support-library. It includes the narrow cast, which throws an
exception when some code you’ve written will result in a narrowing cast, such as that
shown here:

double d = 9.9;
int i = narrow<int>(d);

This code will throw an exception because the cast will result in a narrowing of the data.
The narrow_cast is an alternative that allows a narrowing cast because you’ve indi-
cated that you’re aware that narrowing will occur, as shown here:

double d = 9.9;
int i = narrow_cast<int>(d);

This time, you don’t see an exception because you’ve indicated that you know the cast
will result in a narrowing of the data. The Microsoft documentation at https://docs.
microsoft.com/en-us/cpp/code-quality/c26472?view=vs-2019 provides some
additional insights about GSL.

https://www.modernescpp.com/index.php/c-core-guideline-the-guidelines-support-library
https://www.modernescpp.com/index.php/c-core-guideline-the-guidelines-support-library
https://docs.microsoft.com/en-us/cpp/code-quality/c26472?view=vs-2019
https://docs.microsoft.com/en-us/cpp/code-quality/c26472?view=vs-2019

524 BOOK 5 Advanced Programming

Dynamically casting with dynamic_cast
When the makers of C++ came up with these new ways of casting, their motiva-
tion was this: Think in terms of conversions. A cast simply takes one data type
and tells the compiler to treat it as another data type. So first ask yourself whether
one of the conversions will work for you. If not, you can consider one of the new
ways of casting.

But remember, a cast tells the compiler to treat some data as another type of data.
But the new ways of casting prevent you from doing a cast that doesn’t make
sense. For example, you may have a class hierarchy, and you have a pointer to a
base class. But because an instance of a derived class can be treated as an instance
of a base class, this instance that you’re looking at could actually be an instance
of a derived class.

In the old style of C and C++ programming, you could just cast the instance and
have at it:

DoSomethingCool((derivedclass *) someptr);

This code assumes that someptr is of type pointer-to-base-class that, in fact,
points to a derivedclass instance. It may point to derivedclass, but that
depends on how you wrote the application. But, relying on assumptions rather
than actual knowledge is a great way to create a buggy application.

However, with the new ANSI ways of casting, you can be sure that someptr points
to a derivedclass instance. The DynamicCast example, shown in Listing 2-2, is a
complete application that demonstrates a proper down-cast that uses a pointer to
a base class and casts it down to a pointer of a derived class.

LISTING 2-2:	 Casting Instances Dynamically for Safety

#include <iostream>

using namespace std;

class King {
protected:
 string CrownName;
public:
 virtual string &MyName() { return CrownName; }
 virtual ~King(){}
};

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 525

class Prince : public King {
public:
 string School;
};

void KingInfo(King *inst) {
 cout << "=========" << endl;
 cout << inst->MyName() << endl;
 Prince *asPrince = dynamic_cast<Prince *>(inst);
 if (asPrince != 0)
 {
 cout << asPrince->School << endl;
 }
}

int main() {
 Prince George;
 George.MyName() = "George I";
 George.School = "School of the Kings";
 KingInfo(&George);
 King Henry;
 Henry.MyName() = "Henry II";
 KingInfo(&Henry);
 return 0;
}

When you run this code, you see output that looks like this:

=========
George I
School of the Kings
=========
Henry II

Some strange things are going on in this code. Starting with main(), the code calls
KingInfo(), first passing it the address of George (a Prince instance, derived
from King) and then the address of Henry (a King instance).

The KingInfo() function first prints the information that is common to both due
to inheritance using the MyName() function and prints the resulting name. Then
comes the important part: the dynamic cast. To do the dynamic cast, the code
calls dynamic_cast and saves inst (which can be of type King or Prince) in a
pointer variable called asPrince. Notice the syntax of dynamic_cast. It looks like

526 BOOK 5 Advanced Programming

a template in that you include a type in angle brackets. Then you put the variable
you want to cast in parentheses (in this case inst).

If the dynamic cast works, it returns a pointer that you can save as the type inside
angle brackets. Otherwise, the dynamic cast returns 0. After calling dynamic_cast,
the code tests the result against 0. If the result is not 0, the dynamic cast worked,
which means that inst is of type Prince. Then, in the if block, the code retrieves
and prints the School member, which is part of Prince, not King.

Notice the unique design of the King class in Listing 2-2. For dynamic_cast to
work, the base class involved must have at least one virtual function. Thus the
base class — and each of its derived classes — has a virtual table (also needed for
dynamic_cast to work). In addition, the Code::Blocks compiler raises a warning
message when you don’t provide a virtual destructor:

warning: 'class King' has virtual functions but non-virtual
destructor

Consequently, the example includes a virtual destructor as well. Notice also that
this class uses good design by keeping CrownName private and providing an acces-
sor function, MyName(), to it.

You don’t need to use references in a class as shown here to make dynamic_cast
work. But you do need at least one virtual function.

The fundamental difference between an old-style direct cast and a dynamic_cast
is that the compiler generates code that automatically does an old-style cast,
regardless of whether the cast is valid, during compile time. That is, the cast is
hardcoded. But dynamic_cast tests the types at runtime. The dynamic cast may or
may not work depending on the type of the object.

When you use a dynamic cast, you can cast either a pointer or a reference. The
KingInfo() function shown previously in Listing 2-2 uses a pointer. Here’s a
modified form that uses a reference:

void KingInfoAsReference(King &inst) {
 cout << "=========" << endl;
 cout << inst.MyName() << endl;
 try {
 Prince &asPrince = dynamic_cast<Prince &>(inst);
 cout << asPrince.School << endl;
 } catch (...) { }
}

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 527

To make this version work, you have to use an exception handler (which is a way to
deal with unusual situations; see Chapter 3 in this minibook for more information
on exception handlers). The reason for using an exception handler is that with a
pointer, you can simply test the result against 0. But with references, you have no
such thing as a null reference or 0 reference. The reference must work or you get
a runtime error. In C++, the way you can catch a situation that didn’t work is by
typing the word try, followed by your code that attempts to do the job, in braces.
Follow that with the word catch and a set of parentheses containing three peri-
ods. Following that, you put braces — and possibly any code you want to run —
just in case the earlier code didn’t work.

This code doesn’t do anything inside the catch block because the application will
continue to work even if the call fails — the output simply lacks the school name.
C++ requires that all try blocks are matched with a catch block, so you must
include the catch block even when it doesn’t do anything.

Statically casting with static_cast
The ANSI C++ standard includes a special type of cast that does no type checking.
If you have to cast directly without the help of dynamic_cast, you should opt for
static_cast instead of the old C-style cast.

When you want to do a static cast, call static_cast and follow it with angle
brackets containing the type you want to cast to. Then put the item being cast
inside parentheses, as in the following:

FinalType *f = static_cast<FinalType *>(orig);

The advantage of using static_cast is that it does some type checking at compile
time, whereas old C-style casts do not. The compiler allows you to do static_
cast only between related objects. You can do a static_cast from an instance
of one class to an instance of a derived or base class. But if two classes are not
related, you will get a compiler error. For example, suppose that you have these
two lines of code:

class FinalType {};
class AnotherType {};

They’re unrelated classes. Then, if you have these lines of code

AnotherType *orig = new AnotherType;
FinalType *f = static_cast<FinalType *>(orig);

528 BOOK 5 Advanced Programming

and you try to compile the code, you get an error:

static_cast from 'AnotherType *' to 'FinalType *'

The following code, found in the StaticCast example, shows how to make the
casting work:

#include <iostream>

using namespace std;

class FinalType {};
class AnotherType : public FinalType {};

int main() {
 AnotherType *orig = new AnotherType;
 FinalType *f = static_cast<FinalType *>(orig);
}

The difference between static_cast and dynamic_cast is that static_cast does
all its type checking at compile time; the compiler makes sure that the cast is
okay. A dynamic_cast performs both runtime and compile time checks, so it’s
more comprehensive. Old C-style casts do none of this type checking.

If you’re just doing a conversion between floating-point numbers and integers,
you can do an old-style cast. (That’s because an old-style cast is really a conver-
sion, not a cast.) Alternatively, of course, you’re welcome to use static_cast to
get the same job done:

float f = static_cast<float>(x);

Changing the constness of variables
with const_cast
Sometimes you need to add or remove const from a variable in order to perform a
cast. The variable itself doesn’t change, but the cast output does. For example, if
you want to send a const value to a function that doesn’t accept a const value, you
need to perform a const_cast. Likewise, you may have a volatile variable, one
that is changed by code outside the current application. (This is a common process
in embedded applications; see the article at https://www.tutorialspoint.com/
What-does-the-volatile-keyword-mean-in-Cplusplus for more information.)
You may need to cast the volatile variable as a common variable. The ConstCast
example that follows shows both techniques:

https://www.tutorialspoint.com/What-does-the-volatile-keyword-mean-in-Cplusplus
https://www.tutorialspoint.com/What-does-the-volatile-keyword-mean-in-Cplusplus

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 529

#include <iostream>

using namespace std;

void PrintIt(int *out) {
 cout << "The value is: " << *out << endl;
}

int main() {
 volatile int X = 20;
 const int Y = 30;

 PrintIt(const_cast<int*>(&X));
 PrintIt(const_cast<int*>(&Y));
 return 0;
}

In the first case, if you were to try PrintIt(&X), you’d see error: invalid con-
version from 'volatile int*' to 'int*' during compilation. Likewise, in
the second case, PrintIt(&Y) would produce an error: invalid conversion
from 'const int*' to 'int*' error message. Of course, neither X nor Y has its
attributes removed; you simply strip the volatile or const attribute off for the
purpose of sending the value to PrintIt().

Structuring Your Data
Before C++ came to life, C had something that was similar to classes, called struc-
tures. The difference was that structures had only properties — no methods.
Here’s an example of a structure:

struct Dimensions {
 int height;
 int width;
 int depth;
 int weight;
 int price;
};

This block of code is similar to a class; as you can see, it has some properties
but no methods. Nor does it have any access control (such as public, private, or
protected).

530 BOOK 5 Advanced Programming

But not only did the designers of C++ add classes to C++, they also enhanced the
structures in C++. So now you can use structures more powerfully in C++ than you
could in C. The main change to structures in C++ is that they can have methods
and access control. Thus, you can add to the Dimensions structure like so (making
struct and class equivalent):

struct Dimensions {
private:
 int price;
public:
 int height;
 int width;
 int depth;
 int weight;
 int GetPrice() { return price; }
};

Then create an instance of Dimensions in your code like this:

Dimensions FirstIem;
Dimensions *SecondItem = new Dimensions;

When the great founder of the C++ language (Bjarne Stroustrup) created C++, he
enhanced structures to the point that classes and structures are identical, with
one exception. Members of a structure are public by default. Members of a class,
however, are private by default. Because the differences are so small, most C++
programmers today never even touch a structure, except to create an object that
has only public properties.

In other words, programmers use struct for simple data types that are a collec-
tion of smaller data types. (That is, they use structs the same way C originally
used them.) The sections that follow tell you about some of these data-structure
issues.

If you’re familiar with C and just learning C++, you may be interested to know that
when you declare a variable that is a structure type, in C++ you need to give only
the name of the structure. You no longer need the word struct in the declaration.
Thus the following line will still compile in C++:

struct Dimensions another;

but all you really need is

Dimensions another;

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 531

Structures as component data types
A common use of structures is as an advanced data type made up of underlying
data types. For example, a lot of operating systems that deal with graphics include
libraries that require a Point structure. Typically, a Point structure is simply a
grouping of an X-coordinate and a Y-coordinate, all in one package like this:

struct Point {
 int x;
 int y;
};

Then, when you need to call a function that requires such a structure — such
as the function created for this example called DrawDot() — you would simply
declare a Point and call the function, as in the following:

Point onedot;
onedot.x = 10;
onedot.y = 15;
DrawDot(onedot);

The DrawDot function would have a prototype that looks like this:

void DrawDot(Point pt);

Note that the function doesn’t take a pointer to a Point, nor does it take a refer-
ence to a Point. It just gets right to the Point directly.

If you want, you can initialize the members of a structure the same way you would
an array:

Point seconddot = { 30, 50 };
DrawDot(seconddot);

Equating structures
Setting simple structures that are equal to another structure is easy. The C++
compiler automatically handles this by copying the members one by one. The
EquateStruct example, shown in Listing 2-3, is an example of this process in
action.

532 BOOK 5 Advanced Programming

LISTING 2-3:	 Copying Structures Easily

#include <iostream>

using namespace std;

struct Point3D {
 double x;
 double y;
 double z;
};

int main() {
 Point3D FirstPoint = { 10.5, 22.25, 30.8 };
 Point3D SecondPoint = FirstPoint;

 cout << SecondPoint.x << endl;
 cout << SecondPoint.y << endl;
 cout << SecondPoint.z << endl;
 return 0;
}

Because structures are almost identical to classes, you can take Listing 2-2 and
change the structure definition to the following class definition, and the applica-
tion will continue to function the same:

class Point3D {
public:
 double x;
 double y;
 double z;
};

No matter which form of the application you use, the output is simple. When you
run this application, you see output similar to this:

10.5
22.25
30.8

Returning compound data types
Because simple structures are just a grouping of smaller data items, you can treat
them as one chunk of data. For that reason, you can easily return them from

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 533

functions without having to use pointers. The following function (found in the
CompoundData example) shows how to return a structure:

Point3D StartingPoint(float x) {
 Point3D start;
 start.x = x;
 start.y = x * 2;
 start.z = x * 3;
 return start;
}

This function relies on the Point3D struct defined in the preceding section,
“Equating structures.” The following code shows how to use this function:

int main() {
 Point3D MyPoint = StartingPoint(5.2);
 Point3D OtherPoint = StartingPoint(6.5);

 cout << MyPoint.x << endl;
 cout << MyPoint.y << endl;
 cout << MyPoint.z << endl;
 cout << endl;
 cout << OtherPoint.x << endl;
 cout << OtherPoint.y << endl;
 cout << OtherPoint.z << endl;
}

These cout statements produce the following output:

5.2
10.4
15.6

6.5
13
19.5

Note that StartingPoint() creates a local variable, start, of type Point3D. This
variable isn’t a pointer or reference. The return is an unmodified start. Call-
ing StartingPoint() copies the value of the returned structure into variables in
main(), first MyPoint and then OtherPoint.

534 BOOK 5 Advanced Programming

You may start to see some trouble in paradise when returning structures (or class
instances, because they’re the same thing). Returning a structure works, but what
happens is sophisticated. When you create an instance of the structure in the
function, you’re just creating a local variable. That’s definitely not something you
want to return; it would sit on the stack as a local variable. But consider this call:

Point3D MyPoint = StartingPoint(5.2);

At the assembly level, StartingPoint() receives the address of MyPoint. Then at
the end of the function, again at the assembly level, the compiled code copies the
contents of start into the MyPoint structure by using the pointer to MyPoint. So
StartingPoint() doesn’t actually return anything; instead, the data is copied.
Thus, if your structure includes a pointer variable (for example), you get a copy
of the pointer variable as well — that is, your pointer variable will point to the
same thing as the pointer in the function. That may or may not be what you want,
depending on your situation. So be careful and make sure you fully understand
what you’re doing when you return a structure from a function!

Naming Your Space
It’s often nice to be able to use a common name for a variable or other item
without fear that the name will clash with a preexisting identifier. For exam-
ple, somewhere in a header file, you may have a global variable called Count, and
somebody else may want to make a variable called Count in an application that
uses your header file. Or you may want to name a function GetData() — but you
need to ensure that it doesn’t conflict with another header that already has a Get-
Data() function. These are examples of potential naming clashes (or sometimes
called a name collision). The following sections describe how to create and use
namespaces to your benefit.

Creating a namespace
You can use namespaces to group identifiers, such as all your classes, under a
single name. If you called this group Menagerie, for example, Menagerie is your
namespace. You would then put your classes inside it, as shown in the Simple-
Namespace example:

namespace Menagerie {
 class Oxen {
 public:

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 535

 int Weight;
 int NumberOfTeeth;
 };

 class Cattle {
 public:
 int Weight;
 int NumberOfChildren;
 };
}

The names Oxen and Cattle are unique within the Menagerie namespace. You
are free to reuse these names in other namespaces without worrying about a
clash. Then, if you want to use either of the two classes outside the Menagerie
namespace, you fully qualify the names of the classes, like so (notice the use of the
double colons between Menagerie and Cattle):

Menagerie::Cattle bessie;
bessie.Weight = 643;

Unlike class and structure declarations, a namespace declaration doesn’t have to
end with a semicolon.

Employing using namespace
If you plan to use the names in the Menagerie namespace without having to retype
the namespace name each time, just put a line after the namespace declaration in
the other namespace (but somewhere preceding the use of the names Cattle and
Oxen in your code), like this:

using namespace Menagerie;

Then you can access the names as if they’re not in a namespace:

Cattle bessie;
bessie.Weight = 643;

When you include a line that has using namespace, the compiler knows that the
namespace is only for lines that follow the using namespace declaration. Consider
the following code:

void cattleranch() {
 Cattle x;
}

536 BOOK 5 Advanced Programming

using namespace Menagerie;
void dairy() {
 Cattle x;
}

Here the first function won’t compile because the compiler won’t know the name
Cattle. To get it to work, you have to replace Cattle with Menagerie::Cattle.
But the second function will compile because you included using namespace
Menagerie;.

The using namespace line is good only for lines that follow it. If you put using
namespace inside a code block — inside curly braces { and }, as you would inside a
function — the line applies only to lines that follow it within the same code block.
Thus, in this case:

void cattleranch() {
 using namespace Menagerie;
 Cattle x;
}

void dairy() {
 Cattle x;
}

the compiler will be happy with the first function, cattleranch() but not with
the second function, dairy(). The using namespace line is good only for the
length of the cattleranch() function; it’s inside that function’s code block.

When you have a using namespace line, any variables or identifiers you cre-
ate after that line don’t become part of the namespace you’re using. The using
namespace line simply tells the compiler that if it finds an identifier it doesn’t
recognize, it should check next inside the namespaces you’re using.

When you have a using namespace line, you can follow it with more using
namespace lines for other namespaces — and doing so won’t cause the compiler
to forget the previous using namespace line. Thus, if you have

using namespace Menagerie;
using namespace Ocean;

you can successfully refer to identifiers in both the Menagerie and the Ocean
namespaces.

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 537

However, now if there are multiple occurrences of the same name, you receive an
error message saying that the reference to the name is ambiguous. The compiler
then presents a list of namespaces that contain the name so that you can decide
which one to use. You resolve the name clash by fully qualifying the name.

Using variables
You can put variables in a namespace and then later refer to them through the
namespace, as in the following:

namespace Menagerie {
 int CattleCount;
}

And do it again later — for example, in your main() — like this:

Menagerie::CattleCount = 10;

But remember: A namespace is not a class! Only one instance of the CattleCount
variable exists; it just happens to have a full name of Menagerie::CattleCount.
You can’t get away with creating multiple instances of Menagerie because it’s a
namespace. (Think of it like a surname: There could be multiple people named John,
and to distinguish between them in a meeting at work, you might tack on their
last names: John Squibbledash and John Poltzerbuckin.) Although the namespace
name comes first in Menagerie::CattleCount, it’s analogous to the last name.
Two variables can be called CattleCount: one in the Menagerie namespace and
one in the Farm namespace. Their full names are Menagerie::CattleCount and
Farm::CattleCount.

CREATING ONE NAMESPACE
IN MANY PLACES
After you create a namespace, you can add to it later in your code if necessary. All you
have to do is start the first block of code with (for example) namespace Menagerie {
and then finish it with a closing brace. Then, later in your code, do the same line again —
starting the block again with namespace Menagerie { and ending it with a closing
brace. The identifiers in both blocks become part of the namespace Menagerie.

538 BOOK 5 Advanced Programming

Using part of a namespace
You can use only a portion of a namespace if desired. Using the Menagerie
namespace declared earlier in this section, you could do something like this out-
side the namespace:

using Menagerie::Oxen;
Oxen ollie;

(Notice that no namespace word appears after using.) The first line tells the com-
piler about the name Oxen, and the second line creates an instance of Oxen. Of
course, if you have using namespace Menagerie, the using Menagerie::Oxen
isn’t very useful because the Oxen name is already available from the using
namespace Menagerie line.

Think of a using declaration as pulling a name into the current namespace. There-
fore, a declaration such as using Menagerie::Oxen pulls the name Oxen into the
current namespace. The single name then lives in both namespaces.

To understand how one name becomes a part of two namespaces, consider the
Namespace example, shown in Listing 2-4.

LISTING 2-4:	 Pulling Names into Other Namespaces with the using Declaration

#include <iostream>

using namespace std;

namespace A {
 int X;
}

namespace B {
 using A::X;
}

int main() {
 A::X = 2;
 cout << B::X << endl;
 return 0;
}

Cr
ea

ti
ng

 D
at

a
St

ru
ct

ur
es

CHAPTER 2 Creating Data Structures 539

This code has two namespaces, A and B. The first namespace, A, has a variable
called X. The second namespace, B, has a using statement that pulls the name X
into that namespace. The single variable that lives inside A is now part of both
namespaces, A and B. main() verifies this: It saves a value in the X variable of A
and prints the value in the X variable of B with an output of:

2

A::X and B::X refer to the same variable, thanks to the using declaration!

THE STANDARD NAMESPACE
Sooner or later, you’re going to encounter something like this:

std::cout << "Hi" << std::endl;

You see this because normally cout, cin, endl, and everything else that comes from
#include<iostream> is in a namespace called std (which is short for standard). Most
developers don’t want to write a namespace name and two colons every time for each
occurrence of cout or endl. To avoid this problem you simply put

using namespace std;

at the beginning of your application, after the include lines. So if you look at the down-
loadable code, you see that line at the beginning of every application.

CHAPTER 3 Constructors, Destructors, and Exceptions 541

Constructors,
Destructors,
and Exceptions

In this chapter, you encounter three vital topics: constructors, destructors, and
exceptions. Fully understanding what goes on with constructors (creating an
object) and destructors (destroying an object) is very important. The better you

understand how constructors and destructors work, the less likely you are to write
class and structure code that doesn’t function the way you expected and the more
likely you are to avoid bugs.

Exceptions are important also in that they let you handle unexpected situations —
that is, you can handle problems when they do come up. An exception can signal
a program error, a missing resource, use input issues, or any number of other
situations that the application code didn’t expect. That’s why it’s called an
exception — an exception to what was expected.

Many developers feel that constructors, destructors, and exceptions are extremely
simple. In fact, many developers would doubt that these three topics could fill an
entire chapter, but they can. After you read this chapter, you should have a good
mastery of constructors, destructors, and exceptions.

Chapter 3

IN THIS CHAPTER

»» Writing and using different kinds of
constructors

»» Writing destructors

»» Understanding constructor and
destructor ordering

»» Throwing and catching exceptions

542 BOOK 5 Advanced Programming

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookV\Chapter03 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Constructing and Destructing Objects
As described in Book 2, Chapter 3, classes describe how to build objects. Construc-
tors are methods that the application calls when it creates an instance. This topic
appeared as early as the “Using an initializer” section of Book 1, Chapter 8, so
you’ve already heard about them a few times. Destructors, on the other hand, are
methods that the application calls when it deletes an instance. The “Starting and
Ending with Constructors and Destructors” section of Book 2, Chapter 1 provides
you with an overview of them. Both are essential to making classes complete by
telling how to create and delete objects described by the class.

A single class can have multiple constructors. In fact, several kinds of constructors
are available. There aren’t as many kinds of destructors. (In fact, there’s really
only one.) In the sections that follow, you obtain all the necessary information to
create both constructors and destructors.

Overloading constructors
You’re allowed to put multiple constructors in your class. The way the user of your
class chooses a constructor is by setting up the parameters in the variable declara-
tion. Suppose you have a class called Clutter, and suppose you see the following
two lines of code:

Clutter inst1("Jim");
Clutter inst2(123, "Sally");

These two lines have different types of parameters in the list. Each one is making
use of a different constructor for the single class.

You can put multiple constructors in your class. The process of putting multiple
constructors is called overloading the constructors. The Constructor01 example
demonstrates how to create a Clutter class that has two constructors, as shown
here:

class Clutter {
protected:

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 543

 string ChildName;
 int Toys;

public:
 Clutter(int count, string name) {
 ChildName = name;
 Toys = count;
 }

 Clutter(string name) {
 ChildName = name;
 Toys = 0;
 }
};

The compiler determines which overloaded constructor to use based on the
parameters. Therefore, the overloaded constructors must differ by parameter
lists, which means the number or type of parameters (or both); just changing the
names doesn’t count! If the parameter lists don’t differ, the compiler can’t dis-
tinguish them, and you’ll get an error when it tries to compile the class definition.

If your constructor doesn’t have a parameter provided by other constructors, you
should initialize the associated variable within the constructor code. For example,
the second constructor doesn’t include a parameter for Toys, so the constructor
code initializes this variable to 0. As an alternative, you can use an initializer, as
described in the “Initializing members” section of the chapter.

Having multiple constructors makes your class more flexible and easier to use.
Multiple constructors give the users of your class more ways to use the class,
allowing them to configure the instances differently, depending on the situation.
Further, the constructors force the user to configure the instances only in the
ways your constructors allow.

Initializing members
When C++ originally came out, any time you wanted to initialize a property, you
had to put it inside a constructor. This created some interesting problems. The
main problem had to do with references: You can put reference variables in a
class, but normally reference variables must be initialized. You can’t just have
a reference variable floating around that doesn’t refer to anything. But if you put a
reference variable inside a class and create an instance of the class, the application
will first create the instance and then call the constructor. Even if you initialize
the reference in the first line of the constructor, there’s still a moment when you
have an uninitialized reference. The following sections help you build a class with
an initializer, and you see the result of these efforts as the Constructor2 example.

544 BOOK 5 Advanced Programming

Starting the ANSI approach simply
The ANSI standard uses a single approach for setting up properies: initializers.
An initializer goes on the same line as the constructor in the class definition; or,
if the constructor isn’t inline — defined within the class code block — the initial-
izer goes with the constructor in the code outside the class definition. Here’s an
example of how to add an initializer to a class (this section continues to build on
this class):

class MySharona {
protected:
 int OneHitWonders;
 int NumberRecordings;
public:
 MySharona() : OneHitWonders(1), NumberRecordings(10) {}
};

When you create an instance of this class, the OneHitWonders member gets the
value 1 and the NumberRecordings member gets the value 10. Note the syntax:
The constructor name and parameter list (which is empty in this case) are fol-
lowed by a single colon. The properties appear after that, each followed by an ini-
tial value in parentheses. Commas separate the properties. After the properties is
the open brace for any code you want in the constructor.

You can put any of the class properties in the initializer list, but you don’t have to
include them all. If you don’t care to initialize some, you don’t have to. Note also
that you cannot put inherited members in the initializer list; you can include only
members that are in the class itself.

Passing a variable
Initializers don’t have to rely on static values. You can also pass these initial values
in through the constructor. Here’s a slightly modified version of the MySharona
class. This time, the constructor has a parameter saved in the NumberRecordings
member:

class MySharona {
protected:
 int OneHitWonders;
 int NumberRecordings;
public:
 MySharona(int Records) : OneHitWonders(1),
 NumberRecordings(Records) {}
};

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 545

By associating an initializer list with a constructor, you can have different initial-
izers with different constructors. You’re not limited to initializing the data the
same way for all your constructors.

Accessing base constructors
You may have noticed that the member initialization follows a format similar to
the way you initialize an inherited constructor. Look at how the following code
calls the base class constructor:

class MusicInfo {
public:
 int PhoneNumber;
 MusicInfo(int Phone) : PhoneNumber(Phone) {}
};

class MySharona : public MusicInfo {
protected:
 int OneHitWonders;
 int NumberRecordings;
public:
 MySharona(int Records) : OneHitWonders(1),
 NumberRecordings(Records),
 MusicInfo(8675309) {}
};

In the MySharona class, the properties get initialized, and the base class construc-
tor gets called, all in the initialization. The call to the base class constructor is this
portion:

MusicInfo(8675309)

But note that the code passes a number into the constructor. The MusicInfo con-
structor takes a single number for a parameter, and it uses the number it receives
to initialize the Phone member:

MusicInfo(int Phone) : PhoneNumber(Phone) {}

Therefore, every time someone creates an instance of the class MySharona, the
inherited PhoneNumber member is automatically initialized to 8675309. Thus you
can create an instance of MySharona like this:

MySharona CD(20);

546 BOOK 5 Advanced Programming

This instance starts out having the member values OneHitWonders = 1, Number-
Recordings = 20, and Phone = 8675309. The only thing the user can specify is
the NumberRecordings member. The other two members are set automatically by
the class.

However, you don’t have to do it this way. Perhaps you want the users of this
class to be able to specify the PhoneNumber when they create an instance. Here’s a
modified form that does it for you:

class MusicInfo {
public:
 int PhoneNumber;
 MusicInfo(int Phone) : PhoneNumber(Phone) {}
};

class MySharona : public MusicInfo {
protected:
 int OneHitWonders;
 int NumberRecordings;
public:
 MySharona(int Records, int Phone) : OneHitWonders(1),
 NumberRecordings(Records), MusicInfo(Phone) {}
};

Look carefully at the difference: The MySharona class now has two parameters.
The second is an integer that’s passed into the base class through the portion:

MusicInfo(Phone)

So to use this class, you might do something like this:

MySharona CD(20, 5551212);

This code snippet creates an instance of MySharona, with the members initialized
to OneHitWonders = 1, NumberRecordings = 20, and PhoneNumber = 5551212.

Overloading the constructor
If you have overloaded constructors, you can have different sets of initializations.
Look at one more modification to this final version of the Constructor02 example:

class MySharona : public MusicInfo {
protected:
 int OneHitWonders;
 int NumberRecordings;

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 547

public:
 MySharona(int Records, int Phone) : MusicInfo(Phone),
 OneHitWonders(1), NumberRecordings(Records) {}

 MySharona(int Records) : MusicInfo(8675309),
 OneHitWonders(1), NumberRecordings(Records) {}
};

This class has two constructors from the combination of the previous two ver-
sions, so now you can use either constructor. You can create two variables, for
example, each using a different constructor:

MySharona CD(20, 5551212);
MySharona OldCD(30);
cout << CD.PhoneNumber << endl;
cout << OldCD.PhoneNumber << endl;

When you run the cout lines, they have different values for the PhoneNumber
member. The first passes a specific value; the second accepts a default value:

5551212
8675309

You should initialize the base class values first. Otherwise the compiler is likely to
display warning messages when you compile the application.

Using default values
If the only real difference in the different constructors is whether the user sup-
plies a value (as was the case in the previous example), you can use a slightly
better approach. Constructors (and any function in C++, really) can have default
values. The Constructor03 example shortens the previous examples by using
default values. The result is the same:

class MySharona : public MusicInfo {
protected:
 int OneHitWonders;
 int NumberRecordings;
public:
 MySharona(int Records, int Phone=8675309) :
 MusicInfo(Phone), OneHitWonders(1),
 NumberRecordings(Records) {}
};

548 BOOK 5 Advanced Programming

In the preceding code, the second parameter to the constructor has an equals
sign and a number after it, which means that the user of the class doesn’t have to
specify this parameter. If the parameter is not present, it automatically gets the
value 8675309.

You can have as many default parameters as you want in a constructor or any
other function, but the rule is that the default parameters must come at the end.
After you have a default parameter, all the parameters that follow must have a
default value. Therefore, the following type of code is not allowed:

MySharona(int Records = 6, int Phone) :
 MusicInfo(Phone), OneHitWonders(1),
 NumberRecordings(Records) {}

There’s a practical reason for this prohibition: When the user calls the construc-
tor (by creating a variable of type MySharona, there is no way to leave out just a
first parameter and have only a second one. It’s not possible, unless C++ were to
allow an empty parameter followed by a comma, as in MySharona(,8675309).
Overloaded constructors (and other functions) must also differ by non-optional
parameters. Otherwise, the compiler can’t tell whether you’re trying to use one
function or another with some parameters omitted.

Adding a default constructor
A default constructor is a constructor that takes no parameters — the compiler gen-
erally creates it when you don’t create any constructors. You can have a default
constructor in a class in either of two ways: by coding it or by letting the compiler
implicitly build one for you. Every class that lacks a constructor has a default con-
structor created by the compiler.

You’ve probably seen a default constructor before. This class has no constructor,
so the compiler generates an implicit one for you. It works like this:

class Simple {
public:
 int x,y;
 void Write() {
 cout << x << " " << y << endl;
 }
};

Of course, the preceding class doesn’t do much. It’s the same as this:

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 549

class Simple {
public:
 int x,y;
 void Write() {
 cout << x << " " << y << endl;
 }

 Simple() {}
};

Recognizing that the default constructor is there, however, is important. And
you need to realize when the compiler doesn’t create a constructor automatically
because you may run into some problems. Look at this modified version of the
class (found in the Constructor04 example):

class Simple {
public:
 int x,y;
 void Write() {
 cout << x << " " << y << endl;
 }

 Simple(int startx) { x = startx; }
};

This class includes a constructor that takes a parameter. After adding this con-
structor, the class no longer gets an implicit default constructor from the com-
piler. Adding a line like this to main():

Simple inst;

causes the compiler to generate an error message like this:

In function 'int main()'
error: no matching function for call to 'Simple::Simple()'
note: candidate: Simple::Simple(int)
note: candidate expects 1 argument, 0 provided
note: candidate: constexpr Simple::Simple(const Simple&)
note: candidate expects 1 argument, 0 provided
note: candidate: constexpr Simple::Simple(Simple&&)
note: candidate expects 1 argument, 0 provided|

If you remove the added constructor, this error goes away! Therefore, when you
provide no constructors, the compiler gives you an implicit default constructor.

550 BOOK 5 Advanced Programming

Now here’s where you could run into trouble: Suppose you build a class and pro-
vide no constructors for it. You give the class to other people to use. They’re using
it in their code, all happy, making use of the default constructor. Then one day
somebody else decides to enhance the class by adding a special constructor with
several parameters. The rogue programmer adds the constructor and then makes
use of it. Unfortunately, this also means that all the other people who were using
the implicit default constructor suddenly start getting compiler errors! You can
avoid this problem by explicitly including a default constructor, even if it does
nothing:

class Simple {
public:
 int x,y;
 void Write() {
 cout << x << " " << y << endl;
 }

 Simple() {}
};

Then when someone adds a constructor with parameters, the default constructor
will still be there. The added constructor will overload the default constructor:

class Simple {
public:
 int x,y;
 void Write() {
 cout << x << " " << y << endl;
 }

 Simple() {}
 Simple(int startx) { x = startx; }
};

Note that now this class has two constructors! And all will be happy, because
everybody’s code will still compile.

Functional constructors
Every once in a while, you may come across code that looks like this:

Simple inst = Simple(5);

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 551

It looks like a function call or like the way you would declare a pointer variable,
except there’s no asterisk and no new word. It’s actually a functional syntax for
calling a constructor. The right side creates a new instance of Simple, passing 5
into the constructor. This new instance gets copied into the inst variable.

This approach can be handy when you create an array of objects, where the array
contains actual objects, not pointers to objects:

Simple MyList[] = { Simple(1), Simple(50), Simple(80),
 Simple(100), Simple(150) };

The approach seems a little strange because the variable MyList is not a pointer,
yet you’re setting it equal to something on the right. But this approach is handy
because you may need a temporary variable. The Constructor05 example, shown
in Listing 3-1, demonstrates how you can use the functional syntax to create a
temporary instance of the class string.

LISTING 3-1:	 Creating Temporary Instances with Functional Constructors

#include <iostream>

using namespace std;

void WriteMe(string str) {
 cout << "Here I am: " << str << endl;
}

int main() {
 WriteMe(string("Sam"));
 return 0;
}

When you compile and run this, you see this output:

Here I am: Sam

The code creates a temporary instance of the string class in main(). But as it
turns out, an even shorter version of this code is available by calling WriteMe()
like this:

WriteMe("Sam");

This code works out well because you don’t even feel like you’re working with a
class called string. The parameter just seems like a basic type, and you’re passing

552 BOOK 5 Advanced Programming

a character array, Sam. However, the parameter is an instance of a class. Here’s
how the code works. Suppose you have a class like the one found in the Construc-
tor06 example and a function to go with it:

class MyNumber {
public:
 int First;
 MyNumber(int TheFirst) : First(TheFirst) {}
};

void WriteNumber(MyNumber num) {
 cout << num.First << endl;
}

WriteNumber() isn’t a member of MyNumber. You can make any of the following
calls to WriteNumber().

»» Use a previously declared variable of type MyNumber:

MyNumber prime = 17;

WriteNumber(prime);

»» Create a temporary instance, passing the value 23 into the constructor:

WriteNumber(MyNumber(23));

»» Create a temporary instance, but do so implicitly:

WriteNumber(29);

The output from this example is

17
23
29

You may wonder when your temporary variables get destroyed. For instance, if
you call WriteNumber(MyNumber(23));, how long does the temporary MyNumber
instance live on? The ANSI standard states that the instance is deleted at the end
of the full expression.

Be careful when using implicit temporary objects. Consider the following class
and function found in the Constructor07 example:

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 553

class MyName {
public:
 string First;
 MyName(string TheFirst) : First(TheFirst) {}
};

void WriteName(MyName name) {
 cout << "Hi I am " << name.First << endl;
}

Seems straightforward. The MyName constructor takes a string, so it seems as
though the following code should work:

WriteName("George");

Unfortunately, the compiler gives the following error message:

In function 'int main()':
error: could not convert '(const char*)"George"' from
 'const char*' to 'MyName'

Here’s the problem: The compiler got shortsighted. The compiler considers the
type of the string constant to be a const char * (that is, a pointer to a const
character, or really a constant character array). There aren’t any constructors that
take a const char * parameter, but one does take a string, and the string
class has a constructor that takes a const char * parameter. Unfortunately, the
compiler doesn’t fall for that, and it complains. To make the call work, you must
adjust the

WriteName(string("George"));

This time it works. Now the compiler explicitly creates a temporary string
instance. Using a temporary string implicitly creates a temporary instance of
MyName class.

Calling one constructor from another
If you have some initialization code and you want several constructors to call it,
you might try putting the code in one constructor and then having the other con-
structors call the constructor that has the initialization code. Unfortunately, this

554 BOOK 5 Advanced Programming

scenario won’t work. When you have a constructor and write code to call another
constructor from within it, such as this:

CallOne::CallOne(int ax)
{
 y = 20;
 CallOne();
}

where CallOne is your class, the code will compile but won’t behave the way you
may expect. The line CallOne(); isn’t calling a constructor for the same instance!
The compiler treats this line as a functional constructor, which creates a separate,
temporary instance. When CallOne() ends, the application deletes the instance.
You can see this behavior with the following class:

class CallOne {
public:
 int x,y;
 CallOne();
 CallOne(int ax);
};

CallOne::CallOne() {
 x = 10;
 y = 10;
}

CallOne::CallOne(int ax) {
 y = 20;
 CallOne();
}

When you create an instance by using the second constructor like this, the value
of the y member of the instance will be 20, not 10:

CallOne Mine(10);

To people who don’t know any different, it may look as though the y would first
get set to 20 in the second constructor, and then the call to the default constructor
would cause it to get changed to 10. But that’s not the case: The second construc-
tor is not calling the default constructor for the same object; it’s creating a sepa-
rate, temporary instance.

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 555

If you have common initialization code that you want in multiple constructors,
put the code in its own private or protected function (called, for example, Init()),
and have each constructor call the Init() function. If you have one constructor
call another constructor, it won’t work. The second constructor will be operating
on a separate instance.

Copying instances with copy constructors
One nice thing about C++ is that it lets you copy instances of classes. For example,
if you have a class called Copyable, you can write code like this:

Copyable first;
Copyable second = first;

This code creates two instances, and second is a duplicate of first. The appli-
cation accomplishes this by simply copying all the properties from first to sec-
ond, which works well except that you may want to customize the behavior. For
example, you may have a property that contains a unique ID for each instance.
In your constructor, you may have code that generates a unique ID. The problem
is that the previous sample doesn’t call your constructor: It makes a duplicate
of the object. Thus, your two objects have the same number for their supposedly
unique IDs.

If you want control over the copying, you can create a copy constructor. A copy
constructor is just a constructor that takes as a parameter a reference to another
instance of the same class, as in this example:

Copyable(const Copyable& source);

When you copy an instance, your application calls this constructor. The parameter
to this constructor is the instance you’re copying. Thus, in the case of Copyable
second = first;, the source parameter is first. And because it’s a reference
(which is required for copy constructors), you can access its members by using the
dot notation (.) rather than the pointer notation (->).

The Constructor08 example shown in Listing 3-2 is a complete application that
demonstrates copy constructors.

556 BOOK 5 Advanced Programming

LISTING 3-2:	 Customizing the Copying of Instances

#include <iostream>

using namespace std;

class Copyable {
protected:
 static int NextAvailableID;
 int UniqueID;
public:
 int SomeNumber;
 int GetID() { return UniqueID; }
 Copyable();
 Copyable(int x);
 Copyable(const Copyable& source);
};

Copyable::Copyable() {
 UniqueID = NextAvailableID;
 NextAvailableID++;
}

Copyable::Copyable(int x) {
 UniqueID = NextAvailableID;
 NextAvailableID++;
 SomeNumber = x;
}

Copyable::Copyable(const Copyable& source) {
 UniqueID = NextAvailableID;
 NextAvailableID++;
 SomeNumber = source.SomeNumber;
}

int Copyable::NextAvailableID;

int main() {
 Copyable take1 = 100;
 Copyable take2;
 take2.SomeNumber = 200;
 Copyable take3 = take1;
 cout << take1.GetID() << " "
 << take1.SomeNumber << endl;
 cout << take2.GetID() << " "
 << take2.SomeNumber << endl;

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 557

 cout << take3.GetID() << " "
 << take3.SomeNumber << endl;
 return 0;
}

You see the following output when you run this application:

0 100
1 200
2 100

You need to know two things about this code:

»» Copy constructor with const instance. C++ has a rule where you must have
a constant instance to create a copy. If you leave off const, this line would not
compile properly.

»» Copying the propeterties manually from one instance to the other. Now
that the class has its own copy constructor, the computer will not copy the
members as it would when the code lacks a copy constructor.

Listing 3-2 uses a static member to keep track of what the next available UniqueID
is. Remember that a class shares a single static member among all instances of the
class. Therefore, you have only one instance of NextAvailableID, and it’s shared
by all the instances of class Copyable.

When constructors go bad
Suppose that you’re writing a class that will connect to the Internet and automati-
cally download the latest weather report for the country of Upper Zamboni. The
question is this: Do you put the code to connect to the Internet in the constructor
or not?

People are often faced with this common design issue. Putting the initialization
code in the constructor provides many advantages. For one, you can produce a
usable instance without having to first create it and then call a separate method
that does the initialization. In general, this approach works fine.

However, sometimes the initialization process can produce an error. For example,
suppose that the constructor is unable to connect to the Internet. Remember: A
constructor doesn’t return a value. So you can’t have it return, for example, a bool
that would state whether it successfully did its work.

558 BOOK 5 Advanced Programming

You have many choices for dealing with issues like Internet connections, and dif-
ferent people seem to have rather strong opinions about which choice is best. Here
are the common options:

»» Just don’t do it: Write your constructors so that they create the object but
don’t do any work. Instead, put the work code in a separate method, which
can return a bool representing whether it was successful.

»» Let the constructor do the work: If the work fails (for example, it can’t
connect to the Internet), have the constructor save an error code in a prop-
erty. When you create an instance, you can check the property to see whether
it works.

»» Let the constructor do some more of the work: If the work fails, throw an
exception. In your code, then, you would wrap the creation of the instance with
a try...catch block and include an exception handler. (See “Programming the
Exceptions to the Rule,” later in this chapter, for more information on try...
catch blocks and exception handlers.)

Each of these options comes with potential problems. For example, having a two-
part creation and initialization process means that you depend on the developer
to perform both steps. Using an error code means that you depend on the devel-
oper to check it. Raising exceptions during the creation process means that you’re
depending on the developer to wrap the code in a try...catch block. None of
these options comes without risk.

Destroying your instances
Although constructors are versatile and people could seemingly write entire books
on them, destructors are simple, and there’s not a whole lot to say about them.
But you do need to know some information to make them work properly. For
example, destructors don’t get parameters, and (like constructors) they do not
provide return values.

Suppose you have a class that contains, as members, instances of other classes.
When you delete an instance of the main class, you need to know that the contained
instances will be deleted automatically. If your class contains actual instances
(as opposed to pointers), they will get deleted. Look at this code from the Destruc-
tor01 example:

class LittleInst {
public:
 int MyNumber;
 ~LittleInst() { cout << MyNumber << endl; }
};

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 559

class Container {
public:
 LittleInst first;
 LittleInst *second;
 Container();
};

Container::Container() {
 first.MyNumber = 1;
 second = new LittleInst;
 second->MyNumber = 2;
}

You see two classes, LittleInst and Container. The Container class holds an
instance of LittleInst (the property called first) and a pointer to Little-
Inst. The constructor sets up the two LittleInst instances. For first, it already
exists, and all you have to do is configure first’s MyNumber member. But second
is just a pointer, so the code creates the instance before it can configure the second
MyNumber member. Thus we have two instances, one a pointer and one a regular
instance.

Now suppose you use these classes like so:

Container *inst = new Container;
delete inst;

Container has no destructor, so the concern is whether first and second get
destroyed. Here’s the output you see:

1

That’s the output from the LittleInst destructor. The number 1 goes with the
first member. So you can see that first was destroyed, but second wasn’t.

Here’s the rule: When you delete an instance of a class, the members that are
direct (that is, not pointers) are deleted as well. If you have any pointers, however,
you must manually delete them in your destructor (or elsewhere).

Sometimes you may want an object to hold an instance of another class but want
to keep the instance around after you delete the containing object. In that case,
you wouldn’t delete the other instance in the destructor.

560 BOOK 5 Advanced Programming

Here’s a modification to the Container class (found in the Destructor02
example) that deletes the second instance:

class Container {
public:
 LittleInst first;
 LittleInst *second;
 Container();
 ~Container() { delete second; }
};

Then, when you run these two lines again:

Container *inst = new Container;
delete inst;

you see this output, which deletes both instances:

2
1

In the preceding output, you can see that it deleted the second instance first. The
reason is that the application calls the destructor before it destroys the direct
members. In this case, when the code deleted the Container instance, the appli-
cation first called the destructor before deleting the first member. That’s actu-
ally a good idea, because in the code for the destructor, you may want to do some
work on the properties before they get wiped out.

Virtually inheriting destructors
You can (and should) make destructors virtual — unlike constructors (the con-
structor can’t be virtual because when a constructor of a class is executed, there is
no virtual table in the memory, which means no virtual pointer has been defined
yet). The reason is that you can pass an instance of a derived class into a function
that takes a base class, like this:

void ProcessAndDelete(DeleteMe *inst) {
 cout << inst->Number << endl;
 delete inst;
}

This function takes an instance of class DeleteMe, does some work on it, and
deletes it. Now, suppose you have a class derived from DeleteMe — say, class
Derived. Because of the rules of inheritance, you’re allowed to pass the instance

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 561

of Derived into this function. But by the rules of polymorphism (as described in
the “Specializing with polymorphism” section of Book 2, Chapter 3), if you want
the ProcessAndDelete() function to call an overloaded method of Derived, you
need to make the method virtual. That’s the case with all destructors as well. The
Destructor03 example, shown in Listing 3-3, demonstrates making destructors
virtual.

LISTING 3-3:	 Making the Destructors Virtual

#include <iostream>

using namespace std;

class DeleteMe {
public:
 int Number;
 virtual ~DeleteMe();
};

class Derived : public DeleteMe {
public:
 virtual ~Derived();
};

DeleteMe::~DeleteMe() {
 cout << "DeleteMe::~DeleteMe()" << endl;
}

Derived::~Derived() {
 cout << "Derived::~Derived()" << endl;
}

void ProcessAndDelete(DeleteMe *inst) {
 cout << inst->Number << endl;
 delete inst;
}

int main() {
 DeleteMe *MyObject = new(Derived);
 MyObject->Number = 10;
 ProcessAndDelete(MyObject);
 return 0;
}

562 BOOK 5 Advanced Programming

When you run this application, delete calls the destructor for Derived , which in
turn calls the base class destructor. You can see how all this works thanks to the
cout calls in the destructors. Here’s the output:

10
Derived::~Derived()
DeleteMe::~DeleteMe()

The first line is the output from ProcessAndDelete(). The middle line is the
output from the Derived() destructor, and the third line is the output from the
DeleteMe() destructor. The code passes in a Derived instance, and the applica-
tion calls the Derived destructor.

Now try this: Remove virtual from the DeleteMe destructor:

class DeleteMe {
public:
 int Number;
 ~DeleteMe();
};

When you compile and run the application, the application calls the base class
destructor. Because ProcessAndDelete() takes a DeleteMe instance, you see this
output:

10
DeleteMe::~DeleteMe()

ORDERING YOUR CONSTRUCTORS
AND DESTRUCTORS
When you have constructors and destructors in a base and derived class and you create
an instance of the derived class, remember the ordering: The computer first creates the
members for the base class, and then the computer calls the constructor for the base
class. Next, the computer creates the members of the derived class, and then the com-
puter calls the constructor for the derived class.

The order for destruction is opposite. When you destroy an instance of a base class, first
the computer calls the destructor for the derived class and then deletes the members
of the derived class. Next, the computer calls the destructor for the base class and then
deletes the members of the base class.

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 563

In the preceding example, the destructor isn’t virtual; it’s not able to find the
proper destructor when you pass a Derived instance. So it calls the destructor for
whatever type is listed in the parameter.

Getting into the habit of always making your destructors virtual is a good idea.
That way, if somebody else writes a function, such as ProcessAndDelete(), you
can be assured the function automatically calls the correct destructor.

Programming the Exceptions to the Rule
An exception is an unexpected situation that occurs in your software. For
example, if you try to write to a file, but somehow that file is corrupted and you
can’t, the operating system might throw an exception. Or you might have a func-
tion that processes some data, and if the function encounters corrupted data, it
might throw an exception. The following sections get you started using exceptions.

Creating a basic try. . .catch block
The Exception01 example, shown in Listing 3-4, is a sample of a function that
throws an exception.

LISTING 3-4:	 Throwing and Catching Exceptions

#include <iostream>

using namespace std;

void ProcessData() {
 throw new string("Oops, I found some bad data!");
}

int main() {
 try {
 ProcessData();
 cout << "No problems!" << endl;
 } catch (string *excep) {
 cout << "Found an error. Here's the message.";
 cout << endl;

(continued)

564 BOOK 5 Advanced Programming

 cout << *excep;
 cout << endl;
 }
 cout << "All finished." << endl;
 return 0;
}

You see the following text as output when you run this application:

Found an error. Here's the message.
Oops, I found some bad data!
All finished.

Look closely at what this application does. In main(), there’s a call to
ProcessData() inside a try...catch block. Because the call is inside a try...
catch block, the computer calls the function; and if the function throws an
exception, the application automatically comes back out of the function and goes
into the catch block. The catch block receives the object that was thrown as a
parameter, much like a parameter to a function.

But if ProcessData() doesn’t encounter any problems and therefore doesn’t
throw an exception, the function will complete its work and the application
will continue with the code after the function call. If there is no exception, then
upon completion of ProcessData(), the computer executes the cout line after the
ProcessData() call.

Think of an exception handler as a way to detect unexpected events. When some-
thing unexpected happens, even if there is no fault in the code or the assumptions
you make, the catch block can handle the situation or at least alert you to it.
After the try...catch block completes, the application runs any lines that fol-
low, regardless of whether an exception occurred. Thus, in all cases, Listing 3-4
executes the line

cout << "All finished." << endl;

In the listing, note that ProcessData() calls throw, meaning that it generates an
exception. Normally, you probably wouldn’t just have a function throw an excep-
tion for no reason, as this function does — it’s included like this for the example.
This particular throw looks like this:

throw new string("Oops, I found some bad data!");

LISTING 3-4:	 (continued)

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 565

The exception is thrown using a new string instance. You can create an instance
of any class you want, and it can be either a pointer or a direct instance, depend-
ing on whether you prefer to work with pointers or references (it’s your choice).

Now look at the catch block in Listing 3-4. Notice that it starts with this:

catch (string *excep)

Because the function throws a pointer to a string instance, the catch block must
accept a pointer to a string instance. Everything must match.

Normally you don’t throw an exception of type string. Instead, you use one
of the exception categories described at https://en.cppreference.com/w/
cpp/error, such as invalid_argument, to standardize the exception. You can
also create a custom exception category using a struct or a class that extends
std::exception, as described at http://peterforgacs.github.io/2017/06/25/
Custom-C-Exceptions-For-Beginners/. Note that some exception categories are
available only to users of C++ 11, C++ 17, or above. Both C++ 17 and C++ 20 remove
some exception categories, so it’s important to verify the categories you use in
your application.

When working with C++ 11 or above, the catch block parameter may also have
attributes that control how you interact with it, such as making the parame-
ter const. Catching exceptions by reference avoids some significant problems
that can occur when catching exceptions by value, as described in the article at
https://riptutorial.com/cplusplus/example/9212/best-practice--throw-
by-value--catch-by-const-reference.

Never throw an exception in a destructor. If an object’s method throws an excep-
tion, the application calls the object’s destructor before moving out of the try...
catch block. When the destructor experiences an unexpected event and also
throws an exception, the application sees that two exceptions are active at the
same time and calls the terminate() function, which causes the application to
stop running.

Using multiple catch blocks
You can have more than one catch block. Suppose that different types of excep-
tions could get thrown. For example, you might have a function like this to use
with ProcessData() from the previous section:

void ProcessMore() {
 throw new int(10);
}

https://en.cppreference.com/w/cpp/error
https://en.cppreference.com/w/cpp/error
http://peterforgacs.github.io/2017/06/25/Custom-C-Exceptions-For-Beginners/
http://peterforgacs.github.io/2017/06/25/Custom-C-Exceptions-For-Beginners/
https://riptutorial.com/cplusplus/example/9212/best-practice--throw-by-value--catch-by-const-reference
https://riptutorial.com/cplusplus/example/9212/best-practice--throw-by-value--catch-by-const-reference

566 BOOK 5 Advanced Programming

ProcessData() threw a pointer to a string, but this one throws a pointer to an
integer. When you call the two functions, your try...catch block can look like
this:

try {
 ProcessData();
 ProcessMore();
 cout << "No problems!" << endl;
} catch (string *excep) {
 cout << "Found an error. Here's the message.";
 cout << endl;
 cout << *excep;
 cout << endl;
} catch (int *num) {
 cout << "Found a numerical error. Here it is.";
 cout << endl;
 cout << *num;
 cout << endl;
}
cout << "All finished." << endl;

If you add this code and the ProcessMore() function to Listing 3-4, you want to
comment out the throw line from ProcessData() if you want to see this applica-
tion handle the integer exception. That’s because the execution of the lines in the
try block cease as soon as a throw statement occurs, and control transfers to the
appropriate catch block. Which catch block gets the honor depends on the type
of the object thrown.

Throwing direct instances
You can throw a direct instance that is not a pointer. This is called throwing
an exception by value. However, you should avoid this practice for two reasons
(which is why the technique isn’t demonstrated here):

»» Resource usage and time: Throwing an exception by value means that the
application must create a second copy of the object because the original object
goes out of scope. You now have two copies of the exception object on the stack.

»» The slicing problem: If the catch clause is created to catch a super class
object (the parent) and the exception thrower uses a derived class instead,
the catch block receives only a copy of the super class object without any of
the attributes intact. The super class object in the catch block doesn’t have the
values defined by the derived class, so if the thrown object includes any of
those values they are lost.

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 567

The preferred method of throwing exceptions in newer versions of C++ is to use
references in the catch block. (The throw line does not change.) It looks like this:

try {
 ProcessData();
 ProcessMore();
} catch (string &excep) {
 cout << excep;
} catch (int &num) {
 cout << num;
}

You may notice something just a little strange. For the integer version, the throw
statement looks like this:

throw 10;

That is, the line of code is throwing a value, not an object. But the catch line looks
like this:

catch (int &num) {

The catch statement is catching a reference. Normally you can have references
only to variables, not to values! But it works here because inside the computer,
the application makes a temporary variable, and that’s what you’re referring to
in the catch block.

Catching any exception
If you want to write a general catch handler that will catch any exception and you
don’t care to actually catch the object that was thrown, you can write your han-
dler like this:

try {
 ProcessData();
 ProcessMore();
 cout << "No problems!" << endl;
} catch (...) {
 cout << "An unknown exception occurred." << endl;
}

That is, instead of putting what is effectively a parameter in the catch header,
you just put three dots, called an ellipsis. You can also use the ellipsis as a general
exception catcher in addition to your other handlers. However, because the general

568 BOOK 5 Advanced Programming

exception handler is generic, you must place it last in the list. When creating a list of
catch blocks, always move from most specific to least specific. Here’s an example:

try {
 ProcessData();
 ProcessMore();
 cout << "No problems!" << endl;
} catch (string excep) {
 cout << "Found an error. Here's the message.";
 cout << endl;
 cout << excep;
 cout << endl;
} catch (int num) {
 cout << "Found a numerical error. Here it is.";
 cout << endl;
 cout << num;
 cout << endl;
} catch (...) {
 cout << "An unknown exception occurred." << endl;
}

If your function calls throw an exception and you don’t have any exception han-
dler for it (because your catch blocks don’t handle the type of exception being
thrown or you don’t have any try...catch blocks), your application will stop. The
application prints the following message on the console and then immediately
terminates the application:

abnormal program termination

These programming rules keep your users happily ignorant of exceptions:

»» Know when you’re calling a function that could throw an exception.

»» When you’re calling a function that could throw an exception, include an
exception handler.

»» It doesn’t matter how deep the exception is when it’s thrown; somewhere,
somebody needs to catch it. A function could call a function that calls a function
that calls a function that calls a function that throws an exception. If no intermedi-
ate function has an exception handler, put one in your outer function.

Rethrowing an exception
When inside a catch block, a throw statement without anything after it simply
rethrows the same exception. Although this reaction may seem a bit convoluted
(and indeed it can be), you may have a function that contains a try...catch block

Co
ns

tr
uc

to
rs

, D
es

tr
uc

to
rs

,
an

d
Ex

ce
pt

io
ns

CHAPTER 3 Constructors, Destructors, and Exceptions 569

that works with the object at a low level. However, the function may not have the
resources or information to handle the exception, so it rethrows the exception to a
function higher up that may have the required access. The calling function might
have a try...catch block that can actually handle the exception. In other words,
you might have something like the code found in the Exception02 example:

#include <iostream>

using namespace std;

void Inner() {
 throw string("Error!");
}

void Outer() {
 try {
 Inner();
 } catch (string excep) {
 cout << "Outer caught an exception: ";
 cout << excep << endl;
 throw;
 }
}

int main()
{
 try {
 Outer();
 } catch (string excep) {
 cout << "main caught an exception: ";
 cout << excep << endl;
 }
 return 0;
}

In the preceding code, main() calls Outer(). Outer(), in turn, calls Inner().
Inner() throws an exception, and Outer() catches it. But main() also wants to
catch the exception. So Outer() rethrows the exception. You do that by calling
throw without anything after it, like this:

throw;

When you run this application, you see the following output.

Outer caught an exception: Error!
main caught an exception: Error!

570 BOOK 5 Advanced Programming

Using a standard category
Normally you use a standard category of exception whenever possible. Previous
examples show one method of working with exceptions, but using a standard cat-
egory means that you gain access to additional functionality and know how the
recipient will interpret the exception. Also, using categories helps you create hier-
archies of exceptions so that you handle the most detailed exception first. With
these ideas in mind, the Exception03 example shows how to use an exception
category of invalid_argument. You must have C++ 11 or above to use this example.

#include <iostream>

using namespace std;

bool CheckInt(int value) {
 if (value > 5) {
 return true;
 } else {
 throw invalid_argument("Input too small!");
 }
 return false;
}

int main() {
 try {
 cout << (CheckInt(6) ? "OK" : "Not Right") << endl;
 cout << (CheckInt(5) ? "OK" : "Not Right") << endl;
 } catch (const invalid_argument& ex) {
 cerr << "Invalid Argument: " << ex.what() << endl;
 }
 return 0;
}

Notice that you use the same techniques as usual, such as calling throw to throw
the exception. In this case, though, you’re creating an exception object of type
invalid_argument, which requires an input string detailing the error.

The catch block relies on a const invalid_argument reference, which is the most
efficient and least error-prone method of passing exception information. Notice
that you can call the what() method to obtain access to the error information. This
example also shows how to use cerr to output the exception information to the
standard error stream.

CHAPTER 4 Advanced Class Usage 571

Advanced Class Usage

Classes are amazingly powerful. You can do so much with them. In this chap-
ter, you discover many of the extra features you can use in your classes. But
these aren’t just little extras that you may want to use on occasion. If you

follow the instructions in this chapter, you should find that your understanding
of classes in C++ greatly improves, and you’ll want to use many of these topics
throughout your programming.

This chapter also discusses many of the issues that come up when you’re deriving
new classes and inheriting members. This discussion includes virtual inheritance
and multiple inheritance, topics that people mess up a lot. As part of this discus-
sion, you see the ways you can put classes and types inside other classes.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookV\Chapter04 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Chapter 4

IN THIS CHAPTER

»» Using polymorphism effectively

»» Adjusting member access when
deriving new classes

»» Multiple-inheriting new classes

»» Making virtual inheritance work
correctly

»» Putting one class or type inside
another

572 BOOK 5 Advanced Programming

Inherently Inheriting Correctly
Without inheritance, doing object-oriented programming (OOP) would be nearly
impossible. Yes, you could divide your work into objects, but the real power comes
from inheritance. However, you have to be careful when using inheritance or you
can really cause yourself problems. In the sections that follow, you see different
ways to use inheritance — and how to keep it all straight.

Morphing your inheritance
Polymorphism refers to using an object as an instance of a base class. For example,
if you have the class Creature and from that you derive the class Platypus, you
can treat the instances of class Platypus as if they’re instances of class Creature.
This concept is useful if you have a function that takes as a parameter a pointer to
Creature. You can pass a pointer to Platypus.

However, you can’t go further than that. You can’t take a pointer to a pointer to
Creature. (Remember that when creating a pointer to a pointer, the first pointer
is the address of the second pointer variable.) So if you have a function such as
this:

void Feed1(Creature *c) {
 cout << "Feed me!" << endl;
}

you’re free to pass the address of a Platypus object, as in the following:

Platypus *plato = new Platypus;
Feed1(plato);

However, with a function that takes the address of a pointer variable (note the two
asterisks in the parameter), like this:

void Feed2(Creature **c) {
 cout << "Feed me!" << endl;
}

you can’t pass the address of a pointer to a Platypus instance, as in this example:

Platypus *plato = new Platypus;
Feed2(&plato);

If you try to compile this code, you get a compiler error.

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 573

Avoiding polymorphism
You don’t always use polymorphism when you declare a variable, as shown in the
previous section. If you do, you’re declaring variables like this:

Creature *plato = new Platypus;

The type of plato is a pointer to Creature. But the object is a Platypus. You can
create a Platypus from a Creature because a pointer to a base class can point to an
object of a derived class. But now the compiler thinks that plato is a pointer to a
Creature instance, so you can’t use plato to call a Platypus method — you can use
plato only to call Creature methods. For example, if your two classes look like this:

class Creature {
public:
 void EatFood() {
 cout << "I'm eating!" << endl;
 }
};

class Platypus : public Creature {
public:
 void SingLikeABird() {
 cout << "I'm siiiiiinging in the rain!" << endl;
 }
};

the following code doesn’t work:

Creature *plato = new Platypus;
plato->SingLikeABird();

Although the first line compiles, the second doesn’t. When the compiler gets
to the second line, it thinks that plato is an object of class type Creature, and
Creature doesn’t have a method called SingLikeABird(), so the compiler gets
upset. You can fix the situation by casting, like this:

Creature *plato = new Platypus;
static_cast <Platypus *>(plato)->SingLikeABird();

If you want to save some work, start by declaring plato as type Platypus, as
shown here:

Platypus *plato = new Platypus;
plato->SingLikeABird();

574 BOOK 5 Advanced Programming

You may need to perform a cast at times. For example, you may have a variable
that can hold an instance of an object or its derived object. Then you have to use
polymorphism, as in the following code:

Creature *plato;
if (HasABeak == true) {
 plato = new Platypus;
} else {
 plato = new Creature;
}

This code defines a pointer to Creature. That pointer stores the address of either
a Platypus instance or a Creature instance, depending on what’s in the HasABeak
variable.

But if you use an if statement like that, you shouldn’t follow it with a call to Sin-
gLikeABird(), even if you cast it:

static_cast <Platypus *>(plato)->SingLikeABird();

The reason is that if the else clause took place and plato holds an instance of
Creature, not Platypus, the plato object won’t have a SingLikeABird() method.
Either you get some type of error message when you run the application or you
don’t, but the application will mess up later. And those messing-up-later errors
are the worst kind to try to fix.

Adjusting access
You may have a class that has protected members; and in a derived class, you may
want to make these members public. You transition the members to public by
adjusting the access. You have two ways to do this: One is the older way, and the
other is the newer American National Standards Institute (ANSI) way, which is the
method supported by the current version of the GNU Compiler Collection (GCC). If
your compiler supports the newer way, the creators of the ANSI standard ask that
you use the ANSI way.

In the following classes, Secret has a member, X, that is protected. The derived
class, Revealed, makes the member X public. Here’s the older way:

class Secret {
protected:
 int X;
};

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 575

class Revealed : public Secret {
public:
 Secret::X;
};

The code declares the member X public by providing the base class name, two
colons, and then the member name. It didn’t include any type information; that
was implied. So in the class Secret, the member X is protected. But in Revealed,
it’s public.

Here’s the ANSI way, which requires the word using. Otherwise, it’s the same:

class Secret {
protected:
 int X;
};

class Revealed : public Secret {
public:
 using Secret::X;
};

Now, when you use the Revealed class, the inherited member X is public, but X is
still protected in the base class, Secret.

Avoiding variable naming conflicts
If you want to make a protected member public in a derived class, don’t just rede-
clare the member. If you do, you end up with two properties of the same name
within the class; and needless to say, that can be confusing! Look at the following
two classes:

class Secret {
protected:
 int X;
public:
 void SetX() {
 X = 10;
 }
 void GetX() {
 cout << "Secret X is " << X << endl;
 }
};

576 BOOK 5 Advanced Programming

class Revealed : public Secret {
public:
 int X;
};

The Revealed class has two int X members! Suppose you try this code with it:

Revealed me;
me.SetX();
me.X = 30;
me.GetX();

The first line declares the variable. The second line calls SetX(), which stores 10
in the inherited X, because SetX() is part of the base class. The third line stores
30 in the new X declared in the derived class. GetX() is part of the base class, so
it prints 10.

Having two properties of the same name is confusing. It would be best if the com-
piler didn’t allow you to have two variables of the same name. But just because
the compiler allows it doesn’t mean you should do it. Having two variables of the
same name is a perfect way to increase the chances of bugs creeping into your
application.

Using class-based access adjustment
Suppose you have a class that has several public members, and when you derive a
new class, you want all the public members to become protected, except for one.
You can do this task in a couple of ways. You can adjust the access of all the mem-
bers except for the one you want left public. Or, if you have lots of members, you
can take the opposite approach. Look at this code:

class Secret {
public:
 int Code, Number, SkeletonKey, System, Magic;
};

class AddedSecurity : protected Secret {
public:
 using Secret::Magic;
};

The derived class inherits the base class as protected, as you can see in the
header line for AddedSecurity. That means that all the inherited public members

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 577

of Secret are protected in the derived class. But then the code promotes Magic
back to public by adjusting its member access. Thus, Magic is the only public
member of AddedSecurity. All the rest are protected.

If you have a member that is private and you try to adjust its access to protected
or public in a derived class, you quickly discover that the compiler won’t let you
do it. The reason is that the derived class doesn’t even know about the member
because the member is private. And because the derived class doesn’t know about
the member, you can’t adjust its access.

Returning something different,
virtually speaking
Two words that sound similar and have similar meanings in computer program-
ming are overload and override. To overload means to take a function and write
another function of the same name that takes a different set of parameters. To
override means to take an existing function in a base class and give the function
new code in a derived class. The function in the derived class has the same pro-
totype as the base class: It takes the same parameters and returns the same type.

An overloaded function can optionally return a different type, but the parameters
must be different from the original function, whether in number or type or both.
The overloaded function can live in the same class or in a derived class. The idea
here is to create what appears to be a single function that can take several types
of parameters. For example, you may have a function called Append() that works
on strings. By using Append(), you’d be able to append a string to the end of the
string represented by the instance, or you could append a single character to the
end of the string represented by the instance. Now, although it feels like one func-
tion called Append(), really you would implement it as two separate functions:
one that takes a string parameter and one that takes a character parameter.

This section discusses one particular issue dealing with overriding functions (that
is, replacing a function in a derived class). Generally, the overriding function must
have the same parameter types and must return the same type as the original
function. A situation exists under which you can violate this rule, although only
slightly. You can violate the rule of an overriding function returning the same type
as the original function if all three of the following are true:

»» The overriding function returns an instance of a class derived from the type
returned by the original function.

»» You return either a pointer or a reference, not an object.

»» If you return a pointer, the pointer doesn’t refer to yet another pointer.

578 BOOK 5 Advanced Programming

Typically, you want to use this approach when you have a container class that
holds multiple instances of another class. For example, you may have a class called
Peripheral. You may also have a container class called PeripheralList, which
holds instances of Peripheral. You may later derive a new class from Peripheral,
called Printer, and a new class from PeripheralList, called PrinterList. If
PeripheralList has a function that returns an instance of Peripheral, you would
override that function in PrinterList. But instead of having it return an instance
of Peripheral, you would have it return an instance of Printer. The Overriding-
Derived example, shown in Listing 4-1, shows how to perform this task.

LISTING 4-1:	 Overriding and Returning a Derived Class

#include <iostream>
#include <map>

using namespace std;

class Peripheral {
public:
 string Name;
 int Price;
 int SerialNumber;
 Peripheral(string aname, int aprice, int aserial) :
 Name(aname), Price(aprice),
 SerialNumber(aserial) {}
};

class Printer : public Peripheral {
public:
 enum PrinterType {laser, inkjet};
 PrinterType Type;
 Printer(string aname, PrinterType atype, int aprice,
 int aserial) :
 Peripheral(aname, aprice, aserial), Type(atype) {}
};

typedef map<string, Peripheral *> PeripheralMap;

class PeripheralList {
public:
 PeripheralMap list;
 virtual Peripheral *GetPeripheralByName(string name);
 void AddPeripheral(string name, Peripheral *per);
};

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 579

class PrinterList : public PeripheralList {
public:
 Printer *GetPeripheralByName(string name);
};

Peripheral *PeripheralList::GetPeripheralByName
 (string name){
 return list[name];
}

void PeripheralList::AddPeripheral(
string name, Peripheral *per) {
 list[name] = per;
}

Printer *PrinterList::GetPeripheralByName(string name) {
 return static_cast<Printer *>(
 PeripheralList::GetPeripheralByName(name));
}

int main(int argc, char *argv[]) {
 PrinterList list;
 list.AddPeripheral(string("Koala"),
 new Printer("Koala", Printer::laser,
 150, 105483932)
);
 list.AddPeripheral(string("Bear"),
 new Printer("Bear", Printer::inkjet,
 80, 5427892)
);

 Printer *myprinter = list.GetPeripheralByName("Bear");
 if (myprinter != 0) {
 cout << myprinter->Price << endl;
 }
 return 0;
}

This example uses a special type called map, which is simply a container or list that
holds items in pairs. The first item in the pair is called a key, and the second item
is called a value. You can retrieve values from the map based on the key. This exam-
ple stores a Peripheral (the value) based on a name, which is a string (the key).

580 BOOK 5 Advanced Programming

The example uses a typedef to create the map by specifying the two types involved:
first the key and then the value. The typedef, then, looks like this:

typedef map<string, Peripheral *> PeripheralMap;

This line creates a type of a map that stores a set of Peripheral instances and you
can look them up based on a name. The code uses a notation similar to that of an
array to put an item in the map, where list is the map, name is a string, and per is
a pointer to Peripheral. The key goes inside square brackets, like this:

list[name] = per;

To retrieve the item, you refer to the map entry using brackets again, as in this line
from the listing:

return list[name];

Listing 4-1 shows a Printer class derived from a Peripheral class. It also has a
container class called PrinterList derived from PeripheralList. The idea is
that the PrinterList holds only instances of the class called Printer. So the code
overrides the GetPeripheralByName() function. The version inside PrinterList
casts the item to a Printer because the items in the list are instances of Periph-
eral. If you were to leave this function as is, every time you want to retrieve a
Printer, you’d get back a pointer to a Peripheral instead, and you’d have to cast
it to a (Printer *) type. Overriding the GetPeripheralByName() function and
performing the cast there is easier and more efficient.

The code in Listing 4-1 has a small bug: Nothing is stopping you from putting an
instance of Peripheral in the PrinterList container. Or, for that matter, you
could add an instance of any other class derived from Peripheral if there were
more. But when you retrieve the instance in the GetPeripheralByName(), it’s
automatically cast to a Printer. That would be a problem if somebody had stuffed
something else in there other than a Printer instance. To prevent a wrongful
addition, create a special AddPeripheral() function for the PrinterList class
that takes, specifically, a Printer. To do that, you would make the AddPeriph-
eral() function in PeripheralList virtual and then override it, modifying the
parameter to take a Printer rather than a Peripheral. When you do so, you hide
the function in the base class. But that’s okay: You don’t want people calling
the base class version because it can accept any Peripheral, not just a Printer
instance. When you run this application, you should get an output value of 80 (the
price of the printer named Bear).

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 581

Multiple inheritance
In C++, having a single base class from which your class inherits is generally best.
However, it is possible to inherit from multiple base classes, a process called mul-
tiple inheritance.

Employing multiple inheritance
One class may have some features that you want in a derived class, and another
class may have other features that you want in the same derived class. If that’s the
case, you can inherit from both through multiple inheritance.

Multiple inheritance is messy and difficult to pull off properly. But when you use
it with care, you can make it work. The DerivingTwoDiff example, shown in
Listing 4-2, shows how to perform this task.

LISTING 4-2:	 Deriving from Two Different Classes

#include <iostream>

using namespace std;

class Mom {
public:
 void Brains() {
 cout << "I'm smart!" << endl;
 }
};

class Dad {
public:
 void Beauty() {
 cout << "I'm beautiful!" << endl;
 }
};

class Derived : public Mom, public Dad {
};

int main(int argc, char *argv[]) {
 Derived child;
 child.Brains();
 child.Beauty();
 return 0;
}

582 BOOK 5 Advanced Programming

When you run this code, you see the following output:

I'm smart!
I'm beautiful!

In the preceding code, the class Derived inherited the functions of both classes
Mom and Dad. Because it did, the compiler allows a Derived instance, child, to call
both functions. You use this approach to derive from multiple classes:

class Derived : public Mom, public Dad

You start with the base classes to the right of the single colon, as with a single
inheritance, and separate the classes with a comma. You also precede each class
with the type of inheritance, public.

Setting access in multiple inheritance
As with single inheritance, you can use inheritance other than public. But you
don’t have to use the same access for all the classes. For example, the following,
although a bit confusing, is acceptable:

class Derived : public Mom, protected Dad

This means that public members derived from Dad are now protected in the
Derived class, which also means that users can’t call the methods inherited from
Dad, nor can they access any properties inherited from Dad. If you used this type
of inheritance in Listing 4-2, this line would no longer work:

child.Beauty();

If you try to compile it, you see the following error, because the Beauty() member
is protected now:

'void Dad::Beauty()' is inaccessible

When you work with multiple inheritance, be careful that you understand what
your code is doing. Although it may compile correctly, it still may not function
correctly, leading to the famous creepy-crawly thing called a bug.

Seeing multiple inheritance go wrong
Strange, bizarre, freaky things can happen with multiple inheritance. If both base
classes have a property called Bagel, the compiler gets confused. Suppose you

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 583

enhance the two base classes with a Bagel effect (as seen in the DerivingTwo-
Diff2 example):

class Mom {
public:
 int Bagel;
 void Brains() {
 cout << "I'm smart!" << endl;
 }
};

class Dad {
public:
 int Bagel;
 void Beauty() {
 cout << "I'm beautiful!" << endl;
 }
};

class Derived : public Mom, public Dad {
};

In the preceding code, each of the two base classes, Mom and Dad, has a Bagel
member. The compiler will let you do this. But if you try to access the member, as
in the following code, you get an error:

Derived child;
child.Bagel = 42;

Here’s the error message we see in Code::Blocks:

error: request for member 'Bagel' is ambiguous

The message means that the compiler isn’t sure which Bagel the code refers
to: The one inherited from Mom or the one inherited from Dad. If you write code
like this, make sure you know which inherited member you’re referring to so you
can fix the problem.

Now this is going to look bizarre, but it’s correct. Suppose you’re referring to the
Bagel inherited from Mom. You can put the name Mom before the word Bagel, sepa-
rated by two colons:

child.Mom::Bagel = 42;

584 BOOK 5 Advanced Programming

Yes, that really is correct, even though it seems a little strange. And if you want to
refer to the one by Dad, you do this:

child.Dad::Bagel = 17;

Both lines compile properly because you removed any ambiguities. In addition,
you can access them individually by using the same technique:

cout << child.Mom::Bagel << endl;
cout << child.Dad::Bagel << endl;

Virtual inheritance
At times, you may see the word virtual thrown in when deriving a new class, as
in the following:

class Diamond : virtual public Rock

This inclusion of virtual is to fix a strange problem that can arise. When you
use multiple inheritance, you can run into a crazy situation in which you have a
diamond-shaped inheritance, as in Figure 4-1.

In Figure 4-1, you can see that the base class is Rock. The Diamond and Jade
classes derive from Rock. At this point, the code uses multiple inheritance to
derive the class MeltedMess from Diamond and Jade. Yes, you can do this. But you
have to be careful.

FIGURE 4-1:
Using diamond
inheritance can

be hard.

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 585

Understanding the diamond-shaped
inheritance problem
Think about this: Suppose Rock has a public member called Weight. Then both
Diamond and Jade inherit that member. Now when you derive MeltedMess and
try to access its Weight member, the compiler claims that it doesn’t know which
Weight you’re referring to — the one inherited from Diamond or the one inherited
from Jade. You know that there should only be one instance of Weight, because
it came from a single base class, Rock. But the compiler sees only one level up,
not two.

To understand how to fix the problem, recognize what happens when you create
an instance of a class derived from another class: Deep down inside the computer,
the instance has a portion that is itself an instance of the base class. When you
derive a class from multiple base classes, instances of the derived class have one
portion for each base class. Thus an instance of MeltedMess has a portion that is
a Diamond and a portion that is a Jade, as well as a portion that wasn’t directly
inherited from Rock.

Digging deeper, MeltedMess has both a Diamond in it and a Jade in it, and each of
those in turn has a Rock in them, which means that the compiler sees two Rocks
in MeltedMess. With each Rock comes a separate Weight instance. The Cracking-
Diamonds example, shown in Listing 4-3, demonstrates the problem. This listing
declares the classes Rock, Diamond, Jade, and MeltedMess.

LISTING 4-3:	 Cracking Diamonds

#include <iostream>

using namespace std;

class Rock {
public:
 int Weight;
};

class Diamond : public Rock {
public:
 void SetDiamondWeight(int newweight) {
 Weight = newweight;
 }
 (continued)

586 BOOK 5 Advanced Programming

 int GetDiamondWeight() {
 return Weight;
 }
};

class Jade : public Rock {
public:
 void SetJadeWeight(int newweight) {
 Weight = newweight;
 }

 int GetJadeWeight() {
 return Weight;
 }
};

class MeltedMess : public Diamond, public Jade {
};

int main(int argc, char *argv[])
{
 MeltedMess mymess;
 mymess.SetDiamondWeight(10);
 mymess.SetJadeWeight(20);

 cout << mymess.GetDiamondWeight() << endl;
 cout << mymess.GetJadeWeight() << endl;
 return 0;
}

One member is called Weight, and it’s part of Rock. The Jade and Diamond classes
include two accessor methods, one to set the value of Weight and one to get it.

The MeltedMess class derives from both Diamond and Jade. The code creates an
instance of MeltedMess and calls the four methods that access the supposedly
single Weight member in Rock. The code calls the accessor for Diamond, setting
Weight to 10. Then it calls the one for Jade, setting Weight to 20.

In a perfect world, in which each object only has one Weight, this would have first
set the Weight to 10 and then to 20. When you print it, you should see 20 both
times. But you don’t:

LISTING 4-3:	 (continued)

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 587

10
20

Repairing the diamond-shaped
inheritance problem
When you print the Diamond portion of the MeltedMess instance Weight in List-
ing 4-3, shown previously, you see 10. The Jade portion displays 20 instead.
Therefore, mymess has two different Weight members. That’s not a good thing.

To fix it, add the word virtual when you inherit from Rock. According to the
ANSI standard, you put virtual in the two middle classes (as shown in the
CrackingDiamonds2 example provided with the downloadable source and
explained in this section). This means Diamond and Jade in this case. Thus, you
need to modify the class headers in Listing 4-3 to look like this:

class Diamond : virtual public Rock {

and this:

class Jade : virtual public Rock {

When you make these modifications and then run the application, you find that
you have only one instance of Weight in the final MeltedMess class instance,
mymess. It’s not such a mess after all! Here’s the output after making the change:

20

20

Now this makes sense: Only one instance of Weight is in the mymess object, so the
following line changes the Weight to 10:

mymess.SetDiamondWeight(10);

Then the following line changes the same Weight to 20:

mymess.SetJadeWeight(20);

You can also access Weight directly now without error, so the accessor methods
aren’t strictly needed:

mymess.Weight = 30;

588 BOOK 5 Advanced Programming

Then the following lines print the value of the one Weight instance, 30:

cout << mymess.GetDiamondWeight() << endl;
cout << mymess.GetJadeWeight() << endl;
cout << mymess.Weight << endl;

With a diamond inheritance, use virtual inheritance in the middle classes to ensure
that they point to the correct type. Although you can also add the word virtual
to the final class (in the example’s case, that’s MeltedClass), you don’t need to.

Friend classes and functions
You may encounter a situation in which you want one class to access the private
and protected members of another class. Normally, doing so isn’t allowed. But it is
if you make the two classes friends. C++ provides the friend keyword to override
the normal class protections.

Use friend only when you really need to. If you have a class, say Square, that
needs access to the private and protected members of a class called DrawingBoard,
you can add a line inside the class DrawingBoard that looks like this:

friend class Square;

This code allows the code in Square to access the private and protected members
of any instance of type DrawingBoard.

POLYMORPHISM WITH MULTIPLE
INHERITANCES
If you have multiple inheritance, you can safely treat your object as any of the base
classes. In the case of the diamond example, you can treat an instance of MeltedMess
as a Diamond instance or as a Jade instance. For example, if you have a function that
takes a pointer to a Diamond instance as a parameter, you can safely pass a pointer to
a MeltedMess instance. Casting also works: You can cast a MeltedMess instance to a
Diamond, Jade, or Rock instance. However, if you do, use the static_cast method
like this to ensure the best outcome:

Rock casted = static_cast<Rock>(mymess);
cout << casted.Weight << endl;

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 589

In many cases, allowing complete access of one class by another class opens too
many possibilities for bugs and security issues (among other things). Friend func-
tions are a more limited form of the friend keyword because they limit access to
a global function or a single method within a class. If you need to provide friend
access for some reason, using a friend function is better. Listing 4-4 shows the
BestFriends example that demonstrates both friend classes and friend functions.

LISTING 4-4:	 Working with Friends

#include <iostream>

using namespace std;

class PAndP;

class Limited {
public:
 void ShowProtected(PAndP &);
};

class PAndP {
public:
 friend class Peeks;
 friend void Limited::ShowProtected(PAndP &X);
 friend void FriendFunction(PAndP &X);
protected:
 void IsProtected() {cout << "Protected" << endl;}
private:
 string var = "Var";
 void IsPrivate() {cout << "Private " << var << endl;}
};

class Peeks {
public:
 void ShowProtected(PAndP &X) {X.IsProtected();}
 void ShowPrivate(PAndP &X) {
 X.var = "From Peeks";
 X.IsPrivate();
 }
};

void Limited::ShowProtected(PAndP &X){
 X.IsProtected();
}
 (continued)

590 BOOK 5 Advanced Programming

void FriendFunction(PAndP &X) {
 X.IsProtected();
 X.var = "From FriendFunction";
 X.IsPrivate();
}

int main() {
 PAndP Hidden;
 Peeks ShowMe;
 Limited ShowMeAgain;

 ShowMe.ShowProtected(Hidden);
 ShowMe.ShowPrivate(Hidden);

 ShowMeAgain.ShowProtected(Hidden);

 FriendFunction(Hidden);
 return 0;
}

The private and protected (PAndP) class contains protected and private members
that Peeks, Limited::ShowProtected(), and FriendFunction() access. Each
of these entities takes a different route, and that route isn’t always as obvious as
it might be.

When working with the Limited class, coding order is important. You begin by
creating a forward reference to class PAndP and then define the Limited class.
However, you can’t define Limited::ShowProtected() yet because the members
of PAndP aren’t known to the compiler and there isn’t a way to create a forward dec-
laration of them. Consequently, the actual code for Limited::ShowProtected()
comes later, which is the only method in Limited that has access to PAndP. If
you were to try accessing PAndP from any other member, the compiler would
complain.

Creating the friend entries for Peeks and FriendFunction() is easier because
you aren’t dealing with just a part of the element. All you need are the friend
entries in the PAndP class. Note that every method or function that interacts with
PAndP receives a pointer to a PAndP instance to do so. The code in main() creates
the required objects and accesses the PAndP protected and private members. You
see the following output when you run this application:

LISTING 4-4:	 (continued)

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 591

Protected
Private From Peeks
Protected
Protected
Private From FriendFunction

Using Classes and Types within Classes
Sometimes an application needs a fairly complex internal structure to get its work
done. Three ways to accomplish this goal with relatively few headaches are nest-
ing classes, embedding classes, and declaring types within classes. The following
sections discuss the two most common goals: nesting classes and declaring types
within classes. The “Nesting a class” section also discusses protection for embed-
ded classes.

Nesting a class
You may have times when you create a set of classes with one class acting as the
primary class while all the other classes function as supporting classes. For exam-
ple, you may be a member of a team of programmers, and your job is to write a set
of classes that log on to a competitor’s computer at night and lower all the prices
on the products. Other members of your team will use your classes in their appli-
cations. You’re just writing a set of classes; the teammates are writing the rest of
the application. The following sections consider the issues involved in performing
this task, as well as a potential solution in the form of nested classes.

FRIENDS OF A SAME CLASS
An instance of a class can access the private and protected members of other instances
of the same class. The compiler allows you to do it. However, you normally want objects
to remain isolated from each other for all sorts of reasons, including keeping bugs at
bay and reducing security risks. It helps to think of the only situation in which this kind
of activity is actually useful as a host and client, when one instance acts as a host to a
client instance for something like creating a container for an object of the same type. To
make this sort of access happen, you provide a pointer to another instance of the same
class (the client) inside the host class, perhaps passed in as a parameter. The host class
is free to modify any of the passed class members.

592 BOOK 5 Advanced Programming

Considering the nesting scenario issues
In the classes you’re creating, you want to make the task easy on your coworkers.
In doing so, you may make a primary class, such as EthicalCompetition, that
they will instantiate to use your set of classes. This primary class will include the
methods for using the system. In other words, it serves as an interface to the set
of classes.

In addition to the main EthicalCompetition class, you might create additional
auxiliary classes that the EthicalCompetition class will use, but your coworkers
won’t interact with directly. One might be a class called Connection that handles
the tasks of connecting to the competitor’s computer. However, the Connection
class may present these problems:

»» Potential conflicts: The class Connection may be something you write, but
your organization may support another Connection class, and your cowork-
ers might need to use that class.

»» Privacy: You may not want your coworkers using this special Connection
class. Perhaps it has special functionality that would reveal too many
organizational secrets, or you just want them using the main interface,
the EthicalCompetition class.

To solve the unique name problem, you have several choices. For one, you can just
rename the class something different, such as EthicalCompetitionConnection.
But that’s a bit long for a class used exclusively for internal needs. However, you
could shorten the class name and call it something that’s likely to be unique, such
as ECConnection.

Yet at the same time, if the users of your classes look at the header file and see
a whole set of classes, which classes they should be using may not be clear.
(Of course, you would write some documentation to clear this up, but you do want
the code to be at least somewhat self-explanatory.)

Understanding the nested class solution
One solution for dealing with both naming conflict and privacy issues for support
classes is to use nested classes. With a nested class, you write the declaration for
the main class, EthicalCompetition, and then, inside the class, you write the
supporting classes, as in the following:

class EthicalCompetition {
private:
 class Connection {
 public:

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 593

 void Connect();
 };
public:
 void HardWork();
};

Note that this shows a class inside a class. Here’s the code for the functions:

void EthicalCompetition::HardWork() {
 Connection c;
 c.Connect();
 cout << "Connected" << endl;
}

void EthicalCompetition::Connection::Connect() {
 cout << "Connecting..." << endl;
}

The header for the Connect function in the Connection class requires first the
outer class name, then two colons, then the inner class name, then two colons
again, and finally the function name. This follows the pattern you normally use
where you put the class name first, then two colons, and then the function name.
But in this case, you have two class names separated with two colons.

When you want to declare an instance of the Connection class, you do it differ-
ently, depending on where you are in the code when you declare it:

»» Inside a method of the outer EthicalCompetition class: You simply refer
to the class by its name, Connection. Look at the method HardWork, with
this line:

Connection c;

»» Outside the methods: You can declare an instance of the inner class,
Connection, without an instance of the outer class, EthicalCompetition. To
do this, you fully qualify the class name, like this:

EthicalCompetition::Connection myconnect;

This line would go, for instance, in the main() function of your application if
you want to create an instance of the inner class, Connection.

However, you may recall that one of the reasons for putting the class inside the
other was to shield it from the outside world, to keep your nosy coworkers from
creating an instance of it. But so far, what you’ve done doesn’t really stop them

594 BOOK 5 Advanced Programming

from using the class. They can just use it by referring to its fully qualified name,
EthicalCompetition::Connection.

Creating an inner class definition
So far, you’ve created a handy grouping of the class, and you also set up your
grouping so that you can use a simpler name that won’t conflict with other classes.
If you just want to group your classes, you can use a nested class. If you want to
add higher security to a class so that others can’t use your inner class, however,
you have to create an inner class definition.

Here’s a series of three tricks devoted to showing you how you create that inner
class definition. For the first trick, you declare the class with a forward definition
but put the class definition outside the outer class. Never put the inner class defi-
nition inside a private or protected section of the outer class definition; it doesn’t
work. The following code takes care of that declaration for you:

class EthicalCompetition {
private:
 class Connection;
public:
 void HardWork();
};

class EthicalCompetition::Connection {
public:
 void Connect();
};

Here, inside the outer class, is a header for the inner class and a semicolon that
you use instead of writing the whole inner class; that’s a forward declaration. The
rest of the inner class appears after the outer class. To make this code work, you
must fully qualify the class name, like this:

class EthicalCompetition::Connection

If you skip the word EthicalCompetition and two colons, the compiler compiles
this class as though it’s a different class. Later, the compiler will complain it can’t
find the rest of the Connection class declaration. The error is

error: aggregate 'EthicalCompetition::Connection c' has
incomplete type and cannot be defined

Remember that message so that you know how to correct it when you forget the
outer class name.

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 595

By declaring the inner class after the outer class, you can now employ the second
trick. The idea is to write the inner class so that only the outer class can access the
members. To accomplish this task, you make all the members of the inner class
either private or protected and then make the outer class, EthicalCompetition,
a friend of the inner class, Connection. Here’s the modified version of the Con-
nection class:

class EthicalCompetition::Connection {
protected:
 friend class EthicalCompetition;
 void Connect();
};

Only the outer class can access most of the Connection members now. However,
even though the members are protected, nothing stops users outside EthicalCon-
nection from creating an instance of the Connection class. To add this security,
you employ the third trick, which is to create a constructor for the class that is
either private or protected. When you change the constructor’s access, following
suit with a destructor is a good idea. Make the destructor private or protected, too.
Even if the constructor and destructor don’t do anything, making them private or
protected prevents others from creating an instance of the class — others, that is,
except any friends to the class. So here’s yet one more version of the class:

class EthicalCompetition::Connection {
protected:
 friend class EthicalCompetition;
 void Connect();
 Connection() {}
 ~Connection() {}
};

This third trick completes the process. When someone tries to make an instance of
the class outside EthicalCompetition (such as in main()), as in this:

EthicalCompetition::Connection myconnect;

you see the following message:

EthicalCompetition::Connection::~Connection()' is protected

You can still create an instance from within the methods of EthicalCompeti-
tion. The ProtectingEmbedded example, shown in Listing 4-5, contains the final
application.

596 BOOK 5 Advanced Programming

LISTING 4-5:	 Protecting Embedded Classes

#include <iostream>

using namespace std;

class EthicalCompetition {
private:
 class Connection;
public:
 void HardWork();
};

class EthicalCompetition::Connection {
protected:
 friend class EthicalCompetition;
 void Connect();
 Connection() {}
 ~Connection() {}
};

void EthicalCompetition::HardWork() {
 Connection c;
 c.Connect();
 cout << "Connected" << endl;
}

void EthicalCompetition::Connection::Connect() {
 cout << "Connecting..." << endl;
}

int main(int argc, char *argv[]) {
 // Uncomment this line to see the access error.
 // EthicalCompetition::Connection myconnect;
 EthicalCompetition comp;
 comp.HardWork();
 return 0;
}

Here’s the output from this example:

Connecting...
Connected

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 597

Types within classes
When you declare a type, such as an enum, associating it with a class can be con-
venient. For example, you may have a class called Cheesecake. In this class, you
may have the SelectedFlavor property, which can be an enumerated type, such
as Flavor:

enum Flavor {
 ChocolateSuicide,
 SquishyStrawberry,
 BrokenBanana,
 PrettyPlainVanilla,
 CoolLuah,
 BizarrePurple
};

Use this code to associate Flavor with a class:

class Cheesecake {
public:
 enum Flavor
 {
 ChocolateSuicide, SquishyStrawberry, BrokenBanana,
 PrettyPlainVanilla, CoolLuah, BizarrePurple
 };
 Flavor SelectedFlavor;

 int AmountLeft;
 void Eat() {
 AmountLeft = 0;
 }
};

You can use the Flavor type anywhere in your application, but to use it outside the
Cheesecake class, you must fully qualify its name by lining up the class name, two
colons, and then the type name, like this:

Cheesecake::Flavor myflavor = Cheesecake::CoolLuah;

An enum requires that you also fully qualify the enumeration. Using just Cool-
Luah on the right side of the equals sign will cause the compiler to complain and
say that CoolLuah is undeclared. The Cheesecake example, shown in Listing 4-6,
demonstrates how we can use the Cheesecake class.

598 BOOK 5 Advanced Programming

LISTING 4-6:	 Using Types within a Class

#include <iostream>

using namespace std;

class Cheesecake {
public:
 enum Flavor {
 ChocolateSuicide, SquishyStrawberry, BrokenBanana,
 PrettyPlainVanilla, CoolLuah, BizarrePurple
 };
 Flavor SelectedFlavor;

 int AmountLeft;
 void Eat() {
 AmountLeft = 0;
 }
};

int main() {
 Cheesecake yum;
 yum.SelectedFlavor = Cheesecake::SquishyStrawberry;
 yum.AmountLeft = 100;
 yum.Eat();
 cout << yum.AmountLeft << endl;
 return 0;
}

When you declare a type (using a typedef or an enum) inside a class, you don’t
need an instance of the class present to use the type. But you must fully qualify
the name when you are using it from outside of the class. Thus, you can set up a
variable of type Cheesecake::Flavor and use it in your application without creat-
ing an instance of Cheesecake.

In contrast to nested classes, you can make a type within a class private or
protected. If you do so, you can use the type only within the class members. If
you try to use the type outside the class (including setting a property, as in yum.
SelectedFlavor = Cheesecake::SquishyStrawberry;), you get a compiler
error.

You can also put a typedef inside your class in the same way you’d put an enum
inside the class, as in the following example:

A
dv

an
ce

d
Cl

as
s

U
sa

ge

CHAPTER 4 Advanced Class Usage 599

class Spongecake {
public:
 typedef int SpongeNumber;
 SpongeNumber weight;
 SpongeNumber diameter;
};

int main() {
 Spongecake::SpongeNumber myweight = 30;
 Spongecake fluff;
 fluff.weight = myweight;
 return 0;
}

CHAPTER 5 Creating Classes with Templates 601

Creating Classes
with Templates

If C++ programming has any big secret, it would have to be templates, which are
entities that define either a family of functions or a family of classes. Templates
seem to be the topic that beginning programmers strive to understand because

they’ve heard about them and seem to think that templates are the big wall over
which they must climb to ultimately become The C++ Guru. This chapter begins by
showing you that creating and using basic templates need not be difficult.

The one thing you can be certain of is that knowing how to work with templates
will open your abilities to a whole new world, primarily because the entire Stan-
dard C++ Library is built around templates. Further, understanding templates can
help you understand all that cryptic code that you see other people posting on the
Internet. This chapter also helps you understand how to access, use, and extend
standard templates.

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookV\Chapter05 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Chapter 5

IN THIS CHAPTER

»» Creating class templates

»» Using parameters in templates

»» Deriving with templates

»» Creating function templates

602 BOOK 5 Advanced Programming

Templatizing a Class
This section begins by showing you just how simple templates are to understand.
It begins with a discussion of type, which you can skip if you already understand
the concept fully. The next section deals with the need for creating templates
based on a type.

Considering types
This section begins with the OldGasStation class. Remember, a class is a type.
You can declare variables of the type. Thus you can declare a variable of type
OldGasStation called, for example HanksGetGas. You can also create another
variable of type OldGasStation; maybe this one would be called FillerUp. And,
of course, you can create a third one; this one might be called GotGasWeCanFil-
lIt. Each of these variables, HanksGetGas, FillerUp, and GotGasWeCanFillIt,
are each instances of the type (or class) OldGasStation.

In the same way, you can make some instances of an existing type, say int. You
can name one CheckingAccountBalance and another BuriedTreasuresFound.
Each of these is an instance of the type int Although int isn’t a class, it is a type.

Think about this so far: You have the two different types available to you. One
is called OldGasStation and the other is called int. One of these is a type you
make; the other is built into C++.

Focus on the one you create, OldGasStation. This is a type that you create by
declaring it in your application when you write the code. The compiler takes your
declaration and builds some data inside the resulting application that represents
this type. After the application starts, the type is created, and it doesn’t change
throughout the course of the application.

The variables in your application may change at runtime; you can create new
instances of a type and delete them and change their contents. But the type itself
is created at compile time and doesn’t change at runtime. Remember this as one
property of types in general. You need to keep this in mind when dealing with
templates.

Defining the need for templates
Suppose that you have a class called MyHolder. This class will hold some integers.
Nothing special, but it looks like this:

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 603

class MyHolder {
public:
 int first;
 int second;
 int third;
 int sum() {
 return first + second + third;
 }
};

This class is easy to use; you just create an instance of it and set the values of its
members. But remember: After the application is running, the class is a done deal.
But at runtime, you’re free to create new instances of this class. For example, the
following code creates ten instances of the class, calls sum(), and prints the return
value of sum():

MyHolder *hold;
int loop;
for (loop = 0; loop < 10; loop++) {
 hold = new MyHolder;
 hold->first = loop * 100;
 hold->second = loop * 110;
 hold->third = loop * 120;
 cout << hold->sum() << endl;
 delete hold;
}

This code creates an instance at runtime, does some work with it, and then deletes
the instance. It then repeats this process for a total of ten times. Instances (or
variables) are created, changed, and deleted — all at runtime. But the class is cre-
ated at compile time.

Suppose you’re coding away and you discover that this class MyHolder is handy,
except it would be nice if you had a version of it that holds floats instead of ints.
You could create a second class just like the first that uses the word float instead
of int, like this:

class AnotherHolder {
public:
 float first;
 float second;

604 BOOK 5 Advanced Programming

 float third;
 float sum() {
 return first + second + third;
 }
};

This class works the same way as the previous class, but it stores three float
types instead of int types. But you can see, if you have a really big class, that this
method would essentially require a lot of copying and pasting followed by some
search-and-replacing — in other words, busywork. But you can minimize this
busywork by using templates. Instead of typing two different versions of the class,
type one version of the class that you can, effectively, modify when you need dif-
ferent versions of the class. Look at this code:

template <typename T>
class CoolHolder {
public:
 T first;
 T second;
 T third;
 T sum() {
 return first + second + third;
 }
};

Think of this templated class as a rule for a single class that does exactly
what the previous two classes did. (Ignore the template declaration, template
<typename T>, for now; it’s explained in the “Understanding the template
keyword” section of the chapter.) In this rule is a placeholder called T that is a
placeholder for a type. Imagine this set of code; then remove the first line and
replace all the remaining T’s with the word int. If you did that, you would end
up with this:

class CoolHolder {
public:
 int first;
 int second;
 int third;
 int sum() {
 return first + second + third;
 }
};

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 605

This is, of course, the same as the earlier class called MyHolder, just with a differ-
ent name. Now imagine doing the same thing but replacing each T with the word
float. You can probably see where we’re going with this. Here it is:

class CoolHolder {
public:
 float first;
 float second;
 float third;
 float sum() {
 return first + second + third;
 }
};

Again, this is the same as the earlier class called AnotherHolder, but with a dif-
ferent name. That’s what a template does: It specifies a placeholder for a class.
But it doesn’t actually create a class . . . yet. You have to do one more thing to tell
the compiler to use this template to create a class. You accomplish this task by
writing code to create a variable or by using the class somehow. Look at this code:

CoolHolder<int> IntHolder;
IntHolder.first = 10;
IntHolder.second = 20;
IntHolder.third = 30;

This code tells the compiler to create a class by replacing every instance of T
with int in the CoolHolder template. In other words, the compiler creates a
class named CoolHolder<int>. These four lines of code create an instance of
CoolHolder<int> called IntHolder and set its properties. The computer creates
this class at compile time. Remember, types are created at compile time, and this
example code is no exception to this rule.

Here’s an easy way to look at a template. When you see a line like CoolHolder<int>
IntHolder; you can think of it as being like CoolHolderint IntHolder. Although
that’s not really what the template is called, you are telling the compiler to create
a new class. In your mind, you may think of the class as being called CoolHold-
erint, that is, a name without the angle brackets. (But remember that the name
really isn’t CoolHolderint. It’s CoolHolder<int>.)

Creating and using a template
The previous section tells how to put a template together based on your require-
ments, so now it’s time to put that template into action. The CoolHolder example,
shown in Listing 5-1, contains a complete application that uses the CoolHolder
template.

606 BOOK 5 Advanced Programming

LISTING 5-1:	 Using Templates to Create Several Versions of a Class

#include <iostream>

using namespace std;

template <typename T>
class CoolHolder {
public:
 T first;
 T second;
 T third;
 T sum() {
 return first + second + third;
 }
};

int main() {
 CoolHolder<int> IntHolder;
 IntHolder.first = 10;
 IntHolder.second = 20;
 IntHolder.third = 30;

 CoolHolder<int> AnotherIntHolder;
 AnotherIntHolder.first = 100;
 AnotherIntHolder.second = 200;
 AnotherIntHolder.third = 300;

 CoolHolder<float> FloatHolder;
 FloatHolder.first = 3.1415;
 FloatHolder.second = 4.1415;
 FloatHolder.third = 5.1415;

 cout << IntHolder.first << endl;
 cout << AnotherIntHolder.first << endl;
 cout << FloatHolder.first << endl;

 CoolHolder<int> *hold;
 for (int loop = 0; loop < 10; loop++) {
 hold = new CoolHolder<int>;
 hold->first = loop * 100;
 hold->second = loop * 110;
 hold->third = loop * 120;

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 607

 cout << hold->sum() << endl;
 delete hold;
 }
 return 0;
}

When you run this application, you see a bunch of results from calls to sum():

10
100
3.1415
0
330
660
990
1320
1650
1980
2310
2640
2970

Look closely at the code. Near the beginning is the same template shown previ-
ously. Remember that the compiler doesn’t create a type for this template. Instead,
the compiler uses it as a rule to follow to create additional types. That is, the code
indeed serves as a template for other types, thus its name.

Understanding the template keyword
It’s time to consider the template keyword in the template definition. Here’s the
first line of the template shown in Listing 5-1:

template <typename T>

All this means is that a template class follows and it has a type with a placeholder
called T. Inside the class, anywhere a T appears, the compiler replaces it with the
typename defined by T, such as int or float.

The T is stand-alone; if you have it as part of a word, it won’t be replaced. The
standard practice is for people to use T for the placeholder, but you can use any
identifier (starting with a letter or underscore, followed by any combination of
letters, numbers, or underscores). In some cases, templates have more than one
replaceable placeholder, each of which is unique.

608 BOOK 5 Advanced Programming

To use the template, you declare several variables of types based on this template.
Here’s one such line:

CoolHolder<int> IntHolder;

This line declares a variable called IntHolder. For this variable, the compiler cre-
ates a type called CoolHolder<int>, which is a type based on the CoolHolder
template, where T is replaced by int. Here’s another line where the code declares
a variable:

CoolHolder<int> AnotherIntHolder;

This time, the compiler doesn’t have to create another type because it just created
the CoolHolder<int> type earlier. But again, this line uses the same type based
on the template, where T is replaced by int.

The example in Listing 5-1 creates another class based on the CoolHolder
template. It’s instantiated at FloatHolder:

CoolHolder<float> FloatHolder;

When the compiler sees this line, it creates another type by using the template,
and it replaces T with the word float. So in this case, the first, second, and
third properties of FloatHolder each hold a floating-point number. Also, the
sum() method returns a floating-point number.

The following line uses the CoolHolder<int> type created earlier to declare a
pointer to CoolHolder<int>, hold. Yes, you can do that; pointers are allowed:

CoolHolder<int> *hold;

Then the code that follows cycles through a loop to create new instances of type
CoolHolder<int> by using the line

hold = new CoolHolder<int>;

The code accesses the members using the pointer notation, ->, like so:

hold->first = loop * 100;

These are the basics of templates. They’re really not as bad as people make them
out to be. Just remember that when you see an identifier followed by angle brack-
ets containing a type or class, it’s a template.

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 609

Going Beyond the Basics
The previous section discusses template basics. However, templates are more
flexible and powerful than you might imagine. The following sections discuss how
you can move beyond the basics to add flexibility to your code.

Separating a template from
the function code
In the earlier days of templates and C++, the rule was that you had to put the
method code for a class template inside the template itself; you couldn’t put a
forward declaration in the template and then put the function code outside the
template, as you could do with classes. However, the ANSI standard changed this
situation and made putting the code outside the template legal. (It’s important
to know this fact because you may encounter convoluted-looking code that puts
everything inside.) The ImFree example, shown in Listing 5-2, shows you how to
separate the methods from the template.

LISTING 5-2:	 Separating a Template from Function Code

#include <iostream>

using namespace std;

template <typename T>
class ImFree {
protected:
 T x;
public:
 T& getx();
 void setx(T);
};

template <typename T>
T &ImFree<T>::getx() {
 return x;
}

template <typename T>
void ImFree<T>::setx(T newx) {
 x = newx;
}
 (continued)

610 BOOK 5 Advanced Programming

int main() {
 ImFree<int> separate;
 separate.setx(10);
 cout << separate.getx() << endl;
 return 0;
}

Look closely at one of the methods:

template <typename T>
T &ImFree<T>::getx() {
 return x;
}

The first line is the same as the first line of the template definition. It’s just the
word template followed by the parameter in angle brackets.

The next line looks almost like you might expect it to. With classes, you put the
function prototype, adding the class name and two colons before the function
name itself, but after the return type. Here you do that, too; the sticky part is
how you write the template name. You don’t just give the name; instead, you
follow the name with two angle brackets, with the parameter inside, like this:
T &ImFree<T>::getx(). Note the <T> part.

Note that the getx() method returns a reference instead of a variable of type T.
There’s a good reason for doing it. In the main() function of Listing 5-2, you cre-
ate the class based on the template with an integer parameter:

ImFree<int> separate;

However, you can create the class with some other class:

ImFree<SomeOtherClass> separate;

When you do that, you don’t really want to return just an instance from the func-
tion, as in

T& getx() {
 return x;
}

LISTING 5-2:	 (continued)

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 611

Returning an instance copies the existing instance rather than return the existing
instance. Using a reference means that the class user doesn’t have to do any bizarre
coding. For example, displaying the output using a cout is rather straightforward:

cout << separate.getx() << endl;

Including static members in a template
You can include static members in a template, but you need to be careful when
you do so. Remember that all instances of a class share a single static member of
the class. You can think of the static member as being a member of the class itself,
whereas the nonstatic members are members of the instances.

Now, from a single template, you can potentially create multiple classes. This
means that to maintain the notion of static members, you need to either get crea-
tive with your rules or make life easy by just assuming that each class based on the
template gets its own static members. The easy way is exactly how this process
works.

When you include a static member in a template, each class that you create based
on the template gets its own static member. Further, you need to tell the compiler
how to store the static member just as you do with static members of classes that
aren’t created from templates. The StaticMembers example, shown in Listing 5-3,
contains an example of static members in a template.

LISTING 5-3:	 Using Static Members in a Template

#include <iostream>

using namespace std;

template <typename T>
class Electricity {
public:
 static T charge;
};

template <typename T>
T Electricity<T>::charge;

int main() {
 Electricity<int>::charge = 10;
 Electricity<float>::charge = 98.6;

(continued)

612 BOOK 5 Advanced Programming

 Electricity<int> inst;
 inst.charge = 22;

 cout << Electricity<int>::charge << endl;
 cout << Electricity<float>::charge << endl;
 cout << inst.charge << endl;

 return 0;
}

Note how you declare storage for the static member; it’s the two lines in between
the template and main(). You supply the same template header you would for
the class and then specify the static member type (in this case, T, which is the
template parameter). Next, you refer to the static member by using the usual
classname::member name syntax. But remember that the class name gets the
template parameter in angle brackets after it.

This code creates two classes based on the templates Electricity <int> and
Electricity <float>. Each of these classes has its own instance of the static
member; the <int> version contains 10 and the <float> version contains 98.6.
Then, just to show that there’s only a single static member per class, the code
creates an instance of Electricity<int> and sets its static member to 22. Using
a cout statement, you can see that the output for the two Electricity<int> lines
are the same and the Electricity<float> output is different.

Parameterizing a Template
A template consists of a template name followed by one or more parameters inside
angle brackets. Then comes the class definition. When you create a new class
based on this template, the compiler obliges by making a substitution for what-
ever you supply as the parameter. Focus your eyes on this template:

template <typename T>
class SomethingForEveryone {
public:
 T member;
};

LISTING 5-3:	 (continued)

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 613

Not much to it: It’s just a simple template with one member called, conveniently
enough, member. However, notice in particular what’s inside the angle brackets.
This is the parameter: typename T. As with parameters in a function, the first is
the type of the parameter (typename), and the second is the name of the parame-
ter (T). Previous sections have illustrated how this all works. However, you don’t
always use typename; you can use other types, as described in the sections that
follow.

Putting different types in the parameter
It turns out there’s more to using parameters than meets the computer screen.
You can put many more keywords inside the parameter beyond just the boring
word typename. For example, suppose you have a class that does some compari-
sons to make sure that a product isn’t too expensive for a person’s budget. Each
person would have several instances of this class, one for each product. This class
would have a constant in it that represents the maximum price the person is will-
ing to spend.

But there’s a twist: Although you would have multiple instances of this class, one
for each product the person wants to buy, the maximum price would be different
for each person. You can create such a situation with or without templates. Here’s
a way you can do it with a template:

template <int MaxPrice>
class PriceController {
public:
 int Price;
 void TestPrice()
 {
 if (Price > MaxPrice)
 {
 cout << "Too expensive" << endl;
 }
 }
};

In this case, the template parameter isn’t a type at all — it’s an integer value,
an actual number. Then, inside the class, you use that number as a constant. As
you can see in the TestPrice function, the code compares Price to the MaxPrice
constant. So this time, instead of using T for the name of the template parameter,
the code views it as a value, not a type. The PriceController example, shown in
Listing 5-4, contains a complete example that uses this template.

614 BOOK 5 Advanced Programming

LISTING 5-4:	 Using Different Types for a Template Parameter

#include <iostream>

using namespace std;

template <typename T>
class SomethingForEveryone {
public:
 T member;
};

template <int MaxPrice>
class PriceController {
public:
 int Price;
 void TestPrice(string Name)
 {
 if (Price > MaxPrice)
 {
 cout << Name << " too expensive!" << endl;
 }
 }
};

int main() {
 SomethingForEveryone<int> JustForMe;
 JustForMe.member = 2;
 cout << JustForMe.member << endl;

 const int FredMaxPrice = 30;
 PriceController<FredMaxPrice> FredsToaster;
 FredsToaster.Price = 15;
 FredsToaster.TestPrice("Toaster");
 PriceController<FredMaxPrice> FredsDrawingSet;
 FredsDrawingSet.Price = 45;
 FredsDrawingSet.TestPrice("Drawing set");

 const int JulieMaxPrice = 60;
 PriceController<JulieMaxPrice> JuliesCar;
 JuliesCar.Price = 80;
 JuliesCar.TestPrice("Car");
 return 0;
}

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 615

Each person gets a different class that reflects the maximum price they’re
willing to pay. You can see that Fred gets a class called PriceController
<FredMaxPrice>. Julie, however, gets a class called PriceController <JulieMax
Price>. And remember, these really are different classes. The compiler created
two different classes, one for each item passed in as a template parameter. Also
notice that the parameters are constant integer values. FredMaxPrice is a con-
stant integer holding 30. JulieMaxPrice is a constant integer holding 60.

For the first one, PriceController <FredMaxPrice>, the code creates two
instances. For the second one, PriceController <JulieMaxPrice>, the code
creates one instance. In all instances, the code sets the price of the item and
then calls TestPrice() with the item name. If the item is too expensive, the
PriceController outputs a special message. Here’s the output from this example:

2
Drawing set too expensive!
Car too expensive!

When working with some older versions of C++, you can’t use certain types, such
as float, for your template. Doing so can cause the build process to fail with all
sorts of odd messages. However, you also see the following message, which tells
you precisely where the problem lies:

error: 'float' is not a valid type for a template non-type
parameter

Starting with C++ 11, you can use std::nullptr_t; as a parameter type, as in
template <std::nullptr_t N>. When working with C++ 20, you gain access to
these types as well:

»» Floating-point type

»» Literal class type with the following properties:

•	 All base classes and nonstatic data members are public and non-mutable.

•	 The types of all base classes and non-static data members are structural
types. Depending on the compiler, you might also be able to use a
multidimensional array of the structural type.

A null pointer represents a special case that differentiates between 0 and an
actual null (missing) value. Its actual representation is (void *)0, which makes
it different from the C/C++ NULL value. You can see the null pointer discussed
at https://hackernoon.com/what-exactly-is-nullptr-in-c-94d63y6t and
https://stackoverflow.com/questions/13665349/what-is-a-proper-use-
case-of-stdnullptr-t-template-parameters.

https://hackernoon.com/what-exactly-is-nullptr-in-c-94d63y6t
https://stackoverflow.com/questions/13665349/what-is-a-proper-use-case-of-stdnullptr-t-template-parameters
https://stackoverflow.com/questions/13665349/what-is-a-proper-use-case-of-stdnullptr-t-template-parameters

616 BOOK 5 Advanced Programming

Including multiple parameters
You’re not limited to only one parameter when you create a template. For exam-
ple, the Standard C++ Library has a template called map. The map template works
like an array, but instead of storing things based on an index as you would in an
array, you store them based on a key and value pair. To retrieve an item from map,
you specify the key, and you get back the value. When you create a class based on
the map template, you specify the two types map will hold, one for the key and one
for the value. These are types, rather than objects or instances. After you spec-
ify the types, the compiler creates a class, and inside that class you can put the
instances.

To show how this works, instead of using the actual map template, the fol-
lowing example creates a template that works similarly to a map. Instances of
classes based on this template will hold only as many items as you specify when
you create the class, whereas a real map doesn’t have any limitations beyond the
size of the computer’s memory. The MultipleParameters example, shown in
Listing 5-5, demonstrates an alternative map template.

LISTING 5-5:	 Using Multiple Parameters with Templates

#include <iostream>

using namespace std;

template<typename K, typename V, int S>
class MyMap {

PARAMETERIZING WITH A CLASS
When your template is expecting a class for its parameter (remember, a class, not an
instance of a class), you can use the word typename in the template parameter. You
then instruct the compiler to create a class based on the template by passing a class
name into the template, as in MyContainer<MyClass>inst;. Typically, you use a
container class as a template parameter if you have a template that you intend to hold
instances of a class. However, instead of using typename, you use class, like so:

template <class T>
class MyContainer {
public:
 T member;
};

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 617

protected:
 K key[S];
 V value[S];
 bool used[S];
 int Count;

 int Find(K akey) {
 int i;
 for (i=0; i<S; i++) {
 if (used[i] == false)
 continue;
 if (key[i] == akey) {
 return i;
 }
 }
 return -1;
 }

 int FindNextAvailable() {
 int i;
 for (i=0; i<S; i++) {
 if (used[i] == false)
 return i;
 }
 return -1;
 }

public:
 MyMap() {
 int i;
 for (i=0; i<S; i++) {
 used[i] = false;
 }
 }

 void Set(K akey, V avalue) {
 int i = Find(akey);

 if (i > -1) {
 value[i] = avalue;
 }
 else {
 i = FindNextAvailable();
 (continued)

618 BOOK 5 Advanced Programming

 if (i > -1) {
 key[i] = akey;
 value[i] = avalue;
 used[i] = true;
 }
 else
 cout << "Sorry, full!" << endl;
 }
 }

 V Get(K akey) {
 int i = Find(akey);

 if (i == -1)
 return 0;
 else
 return value[i];
 }
};

int main() {
 MyMap<char,int,10> mymap;

 mymap.Set('X',5);
 mymap.Set('Q',6);
 mymap.Set('X',10);

 cout << mymap.Get('X') << endl;
 cout << mymap.Get('Q') << endl;
 return 0;
}

When you run this application, you see this output:

10
6

This listing is a good exercise — not just for your fingers as you type it in, but for
understanding templates. Notice the first line of the template definition:

template<typename K, typename V, int S>

LISTING 5-5:	 (continued)

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 619

This template takes three parameters. The first is a type, K, used as the key for
map. The second is a type, V, used as the value for map. The final is S, and it’s not
a type. Instead, S is an integer value; it represents the maximum number of pairs
that map can hold.

The methods that follow allow the user of any class based on this map to add
items to map and retrieve items from map. The example currently lacks functions
for removing items; you might think about ways you could add such functions.
You might even look at the header files for the map template in the Standard C++
Library to see how the designers of the library implemented a removal system.

Working with non-type parameters
Starting with C++ 11, you can use non-type parameters to define a template. The
use of non-type parameters makes it possible to create templates that accept
some interesting types of input, yet are more specific in some ways than general
template types. Previous sections have shown how to use types for templates; here
are some common non-types used for templates:

»» lvalue reference

»» nullptr

»» pointer

»» enumeration

»» integral

»» auto (some functionality provided starting with C++ 17 and enhanced with
deduction of the class type in C++ 20)

One of the more interesting non-type parameters is an enumeration. You can use
the enumeration to enforce things like kind selection or for verifying that a par-
ticular kind is in use. It also comes in handy for comparisons. The NonTypeParm
example, shown in Listing 5-6, demonstrates techniques you can use when work-
ing with templates that rely on an enumeration.

LISTING 5-6:	 Using an Enumeration in a Template

#include <iostream>

using namespace std;

enum StoreType {

(continued)

620 BOOK 5 Advanced Programming

 Red,
 Blue,
 Green
};

template <typename V>
struct StoreOut {
 V Value;
 StoreType Kind;
};

template <StoreType K, typename V>
class StoreIt {
protected:
 V Value;
 StoreType Kind = K;
public:
 StoreIt() {
 Value = 0;
 }

 StoreIt(V value) {
 Value = value;
 }

 StoreOut<V>& getx();
 void setx(StoreType, V);
 string KindToString();
};

template <StoreType K, typename V>
StoreOut<V>& StoreIt<K, V>::getx() {
 StoreOut<V>* Out = new StoreOut<V>();
 Out->Value = Value;
 Out->Kind = Kind;
 return *Out;
}

template <StoreType K, typename V>
void StoreIt<K, V>::setx(StoreType newT, V newV) {
 Value = newV;
 Kind = newT;
}

LISTING 5-6:	 (continued)

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 621

template <StoreType K, typename V>
string StoreIt<K, V>::KindToString(){
 switch (Kind) {
 case Blue: return "Blue";
 case Green: return "Green";
 case Red: return "Red";
 }
 return "Not Found";
}

int main() {
 StoreIt<StoreType::Blue, int> Test;
 Test.setx(StoreType::Red, 5);

 StoreIt<StoreType::Red, int> Test2(6);

 cout << Test1.KindToString() << "\t" <<
 Test1.getx().Value << endl;
 if (Test1.KindToString() != "Blue")
 cout << "Test1 storage type changed." << endl;
 if (Test1.KindToString() == Test2.KindToString())
 cout << "Test1 and Test2 are of equal types." << endl;
 return 0;
}

This example stores two values: a storage type and a value. The StoreType enu-
meration contains the only values you can use as input: Red, Blue, and Green. You
provide one of these values when creating the initial object and again when set-
ting a value using setx(). Using this approach limits the number of object types
that a caller can create to those that you expect.

The type could be anything. For example, if you create a car object and your com-
pany only supports certain paint colors, you could limit selection to those colors
programmatically. This example simplifies the enumeration selection so that you
can more easily see how it works.

Because the example stores two values, it needs a method for returning two val-
ues, which is the purpose of the StoreOut structure. The getx() method uses it to
return data to the caller.

The actual StoreIt class declaration protects the two variables: Value, which
can be of any type; and Kind, which must be a StoreType enumeration value.
It also provides three methods: getx(), which returns a StoreOut structure;,
setx(), which accepts the StoreType and value used to set the object values;

622 BOOK 5 Advanced Programming

and KindToString(), which provides the utility service of changing a StoreType
value to a string for output. The setx() and getx() methods work much the same
as their counterparts in Listing 5-2. The KindToString() method uses a simple
switch statement to perform the required translation.

The code in main() creates a StoreIt object, Test1, stores data in it, and then
displays the values onscreen. The main() code also demonstrates some of the
ways in which you might use this template class. For example, you could deter-
mine whether the Kind of Test1 has changed. You could also determine whether
Test1 and Test2 are the same Kind of object. Notice that Test1 and Test2 use
different constructor types so that the Kind is created as part of the template, but
Value is either a default value of 0 or a specific value of 6 in this case. Here’s what
you see as output:

Red 5
Test1 storage type changed.
Test1 and Test2 are of equal types.

Typedefing a Template
If there’s a template that you use with particular parameters repeatedly, often
just using typedef is the easiest way to go. For example, if you have a template
like this

template <typename T>
class Cluck {
public:
 T Chicken;
};

and you use Cluck <int> repeatedly, employ the following:

typedef Cluck<int> CluckNum;

Then, anytime you need to use Cluck<int>, you can use CluckNum instead.
Here’s how:

int main() {
 CluckNum foghorn;
 foghorn.Chicken = 1;
 return 0;
}

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 623

Using typedef for templates makes the resulting class name look like a regu-
lar old class name, rather than a template name. In the preceding example, you
use CluckNum instead of the somewhat cryptic Cluck<int>. And interestingly, if
you’re working as part of a team of programmers and the other programmers
aren’t as knowledgeable about templates as you are, they tend to be less intimi-
dated if you typedef the template.

When the compiler creates a class based on a template, people say that the com-
piler is instantiating the template. Even though most people use the word instanti-
ate to mean creating an object based on a class, you can see how the template itself
is a type from which you can create other types. Thus, a class based on a template
is actually an instance of a template, and the process of creating a class based on
a template is called template instantiation.

Deriving Templates
If you think about it, you can involve a class template in a derivation in at least
three ways. You can:

»» Derive a class from a class template

»» Derive a class template from a class

»» Derive a class template from a class template

If you want to find out about these techniques, read the following sections.

Deriving classes from a class template
You can derive a class from a template, and in doing so, specify the parameters for
the template. In other words, think of the process like this:

1.	 From a template, you create a class.

2.	 From that created class, you derive your final class.

Suppose you have a template called MediaHolder, and the first two lines of its
declaration look like this:

template <typename T>
class MediaHolder

624 BOOK 5 Advanced Programming

Then you could derive a class from a particular case of this template, as in this
header for a class:

class BookHolder : public MediaHolder<Book>

Here you create a new class (based on MediaHolder) called MediaHolder<Book>.
From that class, you derive a final class, BookHolder. The ClassFromTemplate
example, shown in Listing 5-7, is an example of the class MediaHolder.

LISTING 5-7:	 Deriving a Class from a Class Template

#include <iostream>

using namespace std;

class Book {
public:
 string Name;
 string Author;
 string Publisher;
 Book(string aname, string anauthor, string apublisher) :
 Name(aname), Author(anauthor), Publisher(apublisher){}
};

class Magazine {
public:
 string Name;
 string Issue;
 string Publisher;
 Magazine(string aname, string anissue,
 string apublisher) :
 Name(aname), Issue(anissue), Publisher(apublisher){}
};

template <typename T>
class MediaHolder {
public:
 T *array[100];
 int Count;
 void Add(T *item)
 {
 array[Count] = item;
 Count++;
 }

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 625

 MediaHolder() : Count(0) {}
};

class BookHolder : public MediaHolder<Book> {
public:
 enum GenreEnum
 {childrens, scifi, romance,
 horror, mainstream, hownotto};
 GenreEnum GenreOfAllBooks;
};

class MagazineHolder : public MediaHolder<Magazine> {
public:
 bool CompleteSet;
};

int main() {
 MagazineHolder dl;
 dl.Add(new Magazine(
 "Dummies Life", "Vol 1 No 1", "Wile E."));
 dl.Add(new Magazine(
 "Dummies Life", "Vol 1 No 2", "Wile E."));
 dl.Add(new Magazine(
 "Dummies Life", "Vol 1 No 3", "Wile E."));
 dl.CompleteSet = false;
 cout << dl.Count << endl;

 BookHolder bh;
 bh.Add(new Book(
 "Yellow Rose", "Sandy Shore", "Wile E."));
 bh.Add(new Book(
 "Bluebells", "Sandy Shore", "Wile E."));
 bh.Add(new Book(
 "Red Tulip", "Sandy Shore", "Wile E."));
 bh.GenreOfAllBooks = BookHolder::childrens;
 cout << bh.Count << endl;
 return 0;
}

When you run this example, you see the magazine count of 3 first, and the book
count of 3 second.

626 BOOK 5 Advanced Programming

Deriving a class template from a class
A template doesn’t have to be at the absolute top of your hierarchy; a template can
be derived from another class that’s not a template. When you have a template
and the compiler creates a class based on this template, the resulting class will be
derived from another class. For example, suppose you have a class called Super-
Math that isn’t a template. You could derive a class template from SuperMath. The
TemplateFromClass example, shown in Listing 5-8, demonstrates how you can
do this.

LISTING 5-8:	 Deriving a Class Template from a Class

#include <iostream>

using namespace std;

class SuperMath {
public:
 int IQ;
};

template <typename T>
class SuperNumber : public SuperMath {
public:
 T value;

 T &AddTo(T another) {
 value += another;
 return value;
 }

 T &SubtractFrom(T another) {
 value -= another;
 return value;
 }
};

void IncreaseIQ(SuperMath &inst) {
 inst.IQ++;
}

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 627

int main() {
 SuperNumber<int> First;
 First.value = 10;
 First.IQ = 206;
 cout << First.AddTo(20) << endl;

 SuperNumber<float> Second;
 Second.value = 20.5;
 Second.IQ = 201;
 cout << Second.SubtractFrom(1.3) << endl;

 IncreaseIQ(First);
 IncreaseIQ(Second);
 cout << First.IQ << endl;
 cout << Second.IQ << endl;
 return 0;
}

The base class is called SuperMath, and it has a member called IQ. From Super-
Math, the example derives a class template called SuperNumber that does some
arithmetic. Later, the example adds an Incredible IQ-Inflating Polymorphism to
use in this function:

void IncreaseIQ(SuperMath &inst) {
 inst.IQ++;
}

Note what this function takes as a parameter: A reference to SuperMath. Because
the SuperNumber class template is derived from SuperMath, any class you create
based on the template is, in turn, derived from SuperMath. That means that if you
create an instance of a class based on the template, you can pass the instance into
the IncreaseIQ() function. (Remember, when a function takes a pointer or refer-
ence to a class, you can instead pass an instance of a derived class.)

Deriving a class template from
a class template
If you have a class template and you want to derive another class template from
it, first you need to think about exactly what you’re doing; the process takes place
when you attempt to derive a class template from another class template. Remem-
ber that a class template isn’t a class: A class template is a cookie-cutter that the

628 BOOK 5 Advanced Programming

compiler uses to build a class. If, in a derivation, the base class and the derived
classes are both templates, what you really have is the following:

1.	 The first class is a template from which the compiler builds classes.

2.	 The second class is a template from which the compiler will build classes that
are derived from classes built from the first template.

Now think about this: You create a class based on the base class template. Then
you create a second class based on the second template. This process doesn’t
automatically mean that the second class derives from the first class. Here’s why:
From the first template, you can create many classes. When you create a class
from the second template, which of those classes will it derive from?

To understand what’s happening here, look at the TemplateFromTemplate exam-
ple, shown in Listing 5-9. To keep the code simple, the example uses basic names
for the identifiers. (Notice that we commented out one of the lines. If you’re typ-
ing this, type that line in, too, with the comment slashes, because you’ll try some-
thing in a moment.)

LISTING 5-9:	 Deriving a Class Template from a Class Template

#include <iostream>

using namespace std;

template <typename T>
class Base {
public:
 T a;
};

template <typename T>
class Derived : public Base<T> {
public:
 T b;
};

void TestInt(Base<int> *inst) {
 cout << inst->a << endl;
}

void TestDouble(Base<double> *inst) {
 cout << inst->a << endl;
}

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 629

int main() {
 Base<int> base_int;
 Base<double> base_double;

 Derived<int> derived_int;
 Derived<double> derived_double;

 TestInt(&base_int);
 TestInt(&derived_int);
 TestDouble(&base_double);
 TestDouble(&derived_double);

 //TestDouble(&derived_int);
 return 0;
}

The example has two functions, each taking a different class — and each class
based on the first template, called Base. The first takes Base<int> * as a param-
eter, and the second takes Base<double> * as a parameter. When a function,
such as TestInt() or TestDouble(), takes a pointer to a class, it can legally pass
a pointer to an instance of a derived class, which means that you can create this
variable:

Derived<int> derived_int;

You pass this variable to the function that takes a Base<int> and it compiles.
That means that Derived<int> is derived from Base<int>. In the same way,
Derived<double> is derived from Base<double>. When you run this code, it out-
puts four numbers: two int values and two double values.

To see how Derived<int> relies on Base<int>, uncomment the line
TestDouble(&derived_int). When you do this, and you try to compile the list-
ing, you see this message:

error: cannot convert 'Derived<int>*' to 'Base<double>*' for
argument '1' to 'void TestDouble(Base<double>*)'

The error message says you can’t pass a pointer to Derived<int> to a function
that takes a pointer to Base<double>. That’s because Derived<int> isn’t derived
from Base<double>.

630 BOOK 5 Advanced Programming

Templates aren’t derived from other templates. You can’t derive from templates
because templates aren’t classes. Rather, templates are cookie cutters for classes,
and the class resulting from a template can be derived from a class resulting from
another template. Look closely at the declaration of the second template class. Its
header looks like this:

template <typename T>
class Derived : public Base<T>

The clue here is that the Derived template takes a template parameter called T.
Then the class based on the template is derived from a class called Base<T>. But
in this case, T is the parameter for the Derived template. See what happens if you
create a class based on Derived, such as this one:

Derived<int> x;

This line creates a class called Derived<int>; then, in this case, the parameter
is int. Thus the compiler replaces the Ts so that Base<T> in this case becomes
Base<int>. So Derived<int> is derived from Base<int>.

Templatizing a Function
A function template is a function that allows the user to essentially modify the types
used by a function as needed. For example, look at these two functions:

int AbsoluteValueInt(int x) {
 if (x >= 0)
 return x;
 else
 return -x;
}

float AbsoluteValueFloat(float x) {
 if (x >= 0)
 return x;
 else
 return -x;
}

To take the absolute value of an integer, you use the AbsoluteValueInt() func-
tion. But to take the absolute value of a float, you instead use the AbsoluteVal-
ueFloat() function. Of course, you need yet another function to support double

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 631

or other types. Instead of having a separate function for double and a separate
function for every other type, you can use a template like this:

template <typename T> T AbsoluteValue(T x) {
 if (x >= 0)
 return x;
 else
 return -x;
}

Now you need only one version of the function, which handles any numeric type,
including double. The users of the function can, effectively, create their own ver-
sions of the function as needed. For example, to use an integer version of this
function, you put the typename, int, inside angle brackets after the function
name when calling the function:

int n = -3;
cout << AbsoluteValue<int>(n) << endl;

If you want to use the function for a float, you do this:

float x = -4.5;
cout << AbsoluteValue<float>(x) << endl;

Note the function template declaration. The real difference between the function
template and a standard function is in the header:

template <typename T> T AbsoluteValue(T x)

Begin with the word template, a space, and an open angle bracket (that is, a less-
than sign). These characters are followed by the word typename, a closing angle
bracket (that is, a greater-than sign), and then an identifier name. Most people
like to use the name T (because it’s the first letter in type). At this point, you add
the rest of the function header, which, taken by itself, looks like this:

T AbsoluteValue(T x)

T represents a type. Therefore, this portion of the function header shows a func-
tion called AbsoluteValue that takes T as a parameter and returns T. Creating a
function based on this template by using an integer, means that the function takes
an integer parameter and returns an integer. When the compiler encounters a line
like this:

cout << AbsoluteValue<float>(x) << endl;

632 BOOK 5 Advanced Programming

it creates a function based on the template, substituting float anywhere it sees T.
However, if you have two lines that use the same type, as in this:

cout << AbsoluteValue<float>(x) << endl;
cout << AbsoluteValue<float>(10.0) << endl;

the compiler creates only a single function for both lines.

Overloading and function templates
If you really want to go out on a limb and create flexibility in your application, you
can use overloading with a function template. Remember, overloading a function
means that you create two different versions of a single function. What you’re
doing is creating two separate functions that have different parameters (that is,
either a different number of parameters or different types of parameters), but they
share the same name. Look at these two functions found in the FunctionOver-
loadingAndTemplates example:

int AbsoluteValue(int x) {
 if (x >= 0)
 return x;
 else
 return -x;
}

float AbsoluteValue(float x) {
 if (x >= 0)
 return x;
 else
 return -x;
}

These functions are an example of overloading. They take different types as
parameters. (One takes an int; the other takes a float.) Of course, you could
combine these functions into a template:

template <typename T> T AbsoluteValue(T x) {
 if (x >= 0)
 return x;
 else
 return -x;
}

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 633

There really isn’t any difference between the two examples. After all, you can use
the following two lines of code either after the overloaded functions (without the
type parameters) or after the function template:

cout << AbsoluteValue<int>(n) << endl;
cout << AbsoluteValue<float>(x) << endl;

In this case, n is an int and x is a float. However, the template is a better choice.
If you use the overloaded form and try this code, you see an error:

cout << AbsoluteValue(10.5) << endl;

Even though 10.5 is a float you see an error message like this:

error: call of overloaded 'AbsoluteValue(double)' is ambiguous

The message contains AbsoluteValue(double), which means that the compiler
thinks that 10.5 is a double, not a float. You can pass a double into either a
function that takes an int or a function that takes a float. The compiler will just
convert it to an int or a float, whichever it needs. Because the compiler thinks
that 10.5 is a double, it can pass the value to either overloaded function version.
So that leaves you with a choice: You can cast it to a float using (float)10.5;
declare it a float using 10.5f; or create a third overloaded version of the func-
tion, one that takes a double.

Creating a template is easier than overcoming these sorts of errors. The second
reason the template version is better: If you want a new type of the function, you
don’t need to write another version of the function.

However, you can also overload a function template. The OverloadedFunction-
Template example, shown in Listing 5-10, contains an overloaded function
template.

LISTING 5-10:	 Overloading a Function Template

#include <iostream>

using namespace std;

template <typename T> T AbsoluteValue(T x) {
 cout << "(using first)" << endl;

(continued)

634 BOOK 5 Advanced Programming

 if (x >= 0)
 return x;
 else
 return -x;
}

template <typename T> T AbsoluteValue(T *x) {
 cout << "(using second)" << endl;
 if (*x >= 0)
 return *x;
 else
 return -(*x);
}

int main() {
 int n = -3;
 cout << AbsoluteValue<int>(n) << endl;

 float *xptr = new float(-4.5);
 cout << AbsoluteValue<float>(xptr) << endl;
 cout << AbsoluteValue<float>(10.5) << endl;
 return 0;
}

Passing a pointer (as in the second call to AbsoluteValue() in main()), uses the
second version of the template. And just to be sure which version gets used and at
what time during application execution, the example contains a cout line at the
beginning of each function template. Here’s what you see as output:

(using first)
3
(using second)
4.5
(using first)
10.5

From the middle two lines, you can see that the computer did indeed call the sec-
ond version of the template.

LISTING 5-10:	 (continued)

Cr
ea

ti
ng

 C
la

ss
es

 w
it

h
Te

m
pl

at
es

CHAPTER 5 Creating Classes with Templates 635

You can make life a little easier by using a small trick. Most compilers let you leave
out the type in angle brackets in the function template call itself. The compiler
deduces what type of function to build from the template, based on the types that
you pass into the function call. Here’s an example main() that you can substitute
for the main() in Listing 5-10:

int main() {
 int n = -3;
 cout << AbsoluteValue(n) << endl;
 float *xptr = new float(-4.5);
 cout << AbsoluteValue(xptr) << endl;
 cout << AbsoluteValue(10.5) << endl;
 return 0;
}

This code replaces AbsoluteValue<int>(n) with AbsoluteValue(n). When you
run the modified code, you see the same output as when you run Listing 5-10.

Templatizing a method
When you write a template for a class, you can put function templates inside the
class template. You simply declare a function template inside a class, as in the
following found in the MemberFunctionTemplate example:

class MyMath {
public:
 string name;
 MyMath(string aname) : name(aname) {}

 template <typename T> void WriteAbsoluteValue(T x) {
 cout << "Hello " << name << endl;
 if (x >= 0)
 cout << x << endl;
 else
 cout << -x << endl;
 }
};

The WriteAbsoluteValue() method is a template. It’s preceded by the word tem-
plate and a template parameter in angle brackets. Then it has a return type,
void, the function name, and the function parameter.

636 BOOK 5 Advanced Programming

When you create an instance of the class, you can call the method, providing a
type as need be, as in the following:

int main() {
 MyMath inst = string("George");
 inst.WriteAbsoluteValue(-50.5);
 inst.WriteAbsoluteValue(-35);
 return 0;
}

In the first call, the function takes a double (because, by default, the C++ com-
piler considers -50.5 a double). In the second call, the function takes an integer.
The compiler then generates two different forms of the function, and they both
become members of the class.

Although you can use function templates as class members, you cannot make
them virtual. The compiler won’t allow it, and the ANSI standard forbids you from
doing it. If you try to make the function template virtual, you get an error message
that looks similar to this one:

'virtual' can only be specified for functions

CHAPTER 6 Programming with the Standard Library 637

Programming with the
Standard Library

When you get around in the world of C++ programming, you encounter
two different libraries that people use to make their lives easier. These
two libraries are:

»» Standard C++ Library

»» Standard Template Library (STL)

In this case, library means a set of classes that you can use in your applications.
These libraries include handy classes, such as string and vector (which is like an
array — it’s a list you use to store objects).

The difference between the Standard C++ Library and STL is that STL came first.
STL was used by so many developers that the American National Standards Insti-
tute (ANSI) decided to standardize it. The result is the similar Standard C++ Library
that is part of the official ANSI standard and now part of most modern C++ com-
pilers. This chapter uses the Standard C++ Library, or simply the Standard Library.
The concepts presented here also apply to STL, so if you’re using STL, you can use
this chapter.

Chapter 6

IN THIS CHAPTER

»» Architecting the Standard C++ Library

»» Managing data in vector, map, list,
or set

»» Stacking and queuing

»» Interacting with dynamic arrays and
unordered data

638 BOOK 5 Advanced Programming

You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookV\Chapter06 folder of the downloadable source. See the Intro-
duction for details on how to find these source files.

Architecting the Standard Library
When people start using the Standard Library, they often ask about the source
code. They see the header files, but no .cpp files. There are no .cpp files. ANSI
architected the Standard Library for ease of use and reliability.

The classes contain their functions inside the class definitions; there are no for-
ward declarations. You don’t add source files to your project or link in compiled
libraries. Just add an include line for the libraries you want.

To see how this works for yourself, open any project file you’re worked on to date
that has #include <iostream> and relies on a cout/endl combination to output
text. Right-click endl and choose Find Implementation of: ’endl’ from the context
menu. Code::Blocks will open the ostream file and take you to the implementa-
tion of endl, which basically outputs '\n' to the output stream, amid some other
confusing code. When you scroll to the beginning of that file, you see:

/** @file include/ostream
 * This is a Standard C++ Library header.
 */

There is no .cpp file involved. All of the code appears in the header.

Containing Your Classes
Computers need a place to store objects, so the Standard Library includes con-
tainers in which you can put objects. These special containers are called container
classes, and the Standard Library implements them as templates. When you create
an instance of a container class, you specify what class it holds.

When you specify the class in a container, you are saying that the container will
contain instances of your specified class or of classes derived from your speci-
fied class. You must decide whether the container will hold instances of the class,
pointers to the instances, or references to the instances.

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 639

Storing in a vector
The Vectors example, shown in Listing 6-1, demonstrates how to use a container
class. This particular container is a data type called a vector, and it works much
like an array.

LISTING 6-1:	 Using Vectors as Examples of Container Classes

#include <iostream>
#include <vector>

using namespace std;

int main() {
 vector<string> names;

 names.push_back("Tom");
 names.push_back("Dick");
 names.push_back("Harry");
 names.push_back("April");
 names.push_back("May");
 names.push_back("June");

 cout << names[0] << endl;
 cout << names[5] << endl;
 return 0;
}

You use vector as a template. That means that it’s going to have a template param-
eter, which is string in this case. Note also the included header files. Among them
are <vector> (with no .h after the filename). In general, you include the header
file that matches the name of the container you are using. Thus, if there were such
a thing as a container called rimbucklebock, you would type #include <rimbuck-
lebock>. Or, if you use the container called set, you type #include <set>. When
you run this example, you see two names as output:

Tom
June

There are a number of advantages to using a vector instead of a regular, plain
old, no-frills array:

»» You don’t need to know up front how many items will be going in it. With an
array, you need to know the size when you declare it.

640 BOOK 5 Advanced Programming

»» You don’t need to specifically deallocate a vector, as you do with a dynami-
cally defined array.

»» You can obtain the precise size of a vector, so you don’t need to pass the size
of the vector to a function.

»» When a vector is filled, the underlying code allocates additional memory
automatically.

»» You can return a vector from a function. To return an array, you must
dynamically define it first.

»» You can add and remove items from the middle of a vector, something that
you can’t easily do with an array.

»» You can copy or assign a vector directly.

Here are some things you can do with vector:

»» Add items to the end of it.

»» Access its members by using bracket notation.

»» Iterate through it, either from beginning to end or from the end back to the
beginning.

The Vectors2 example, shown in Listing 6-2, demonstrates how to use multiple
vectors in a single application. You can see that each one holds a different type,
specified in the template parameter. This example requires C++ 11 or above to use.

LISTING 6-2:	 Creating More Advanced Vectors

#include <iostream>
#include <vector>

using namespace std;

class Employee {
public:
 string Name;
 string FireDate;
 int GoofoffDays;
 Employee(string aname, string afiredate,
 int agoofdays) : Name(aname), FireDate(afiredate),
 GoofoffDays(agoofdays) {}
};

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 641

int main() {
 // A vector that holds strings
 vector<string> MyAliases;
 MyAliases.push_back(string("Bud The Sailor"));
 MyAliases.push_back(string("Rick Fixit"));
 MyAliases.push_back(string("Bobalou Billow"));
 for (auto entry : MyAliases)
 cout << entry << endl;

 // A vector that holds integers
 vector<int> LuckyNumbers;
 LuckyNumbers.push_back(13);
 LuckyNumbers.push_back(26);
 LuckyNumbers.push_back(52);
 for (auto entry : LuckyNumbers)
 cout << entry << endl;

 // A vector of default constructed ints.
 vector<int> Default(5);
 int i = 0;
 vector<int>::reverse_iterator rentry = Default.rbegin();
 for (; rentry != Default.rend(); rentry++)
 *rentry = ++i;
 for (auto entry : Default)
 cout << entry << endl;

 // A vector that holds Employee instances
 vector<Employee> GreatWorkers;
 GreatWorkers.push_back(Employee("George","123100", 50));
 GreatWorkers.push_back(Employee("Tom","052002", 40));
 for (auto entry : GreatWorkers)
 cout << entry.Name << endl;
 return 0;
}

After you compile and run this application, you see the following output from the
cout statements:

Bud The Sailor
Rick Fixit
Bobalou Billow
13
26

642 BOOK 5 Advanced Programming

52
5
4
3
2
1
George
Tom

Notice that this example relies on an iterated for loop for each of the vectors.
Using an iterated for loop greatly reduces the amount of code you write. Plus, you
don’t have to worry about the size of the vector you’re processing. All you con-
cern yourself with are the individual entries.

The Default portion of the example is also interesting in that it declares a vector
of a specific size and reverse-fills the vector from the end to the beginning. Con-
sequently, Default[0] contains the value 5, rather than 1, as you might expect.
To work backward, you must use a standard for loop.

Working with std::array
Sometimes you need a fixed-size array, but without the limitations of the built-
in array. In this case, std::array may do the trick for you. It provides built-in
functionality, such as knowing its own size, supporting assignment, and provid-
ing random access iterators. The StdArray example, shown in Listing 6-3, dem-
onstrates two interesting ways that you can use std::array. You need C++ 17 or
above to use this example.

LISTING 6-3:	 Working with std::array to Overcome array Limitations

#include <iostream>
#include <array>
#include <algorithm>
#include <iterator>

using namespace std;

int main() {
 array<char, 5> Letters = {'a', 'b', 'c', 'd', 'e'};

 for (entry: Letters)
 cout << entry << endl;

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 643

 reverse_copy(Letters.begin(), Letters.end(),
 ostream_iterator<char>(cout, " "));
 return 0;
}

Notice that the declaration begins by providing the array type, char, and the num-
ber of array elements, 5, as template parameters. Letters contains five char val-
ues from 'a' through 'e'.

As shown in the example, you can use a standard iterated for loop to display
the individual entries. However, you can also output the Letter content in other
ways, such as by performing a reverse_copy() to the console with the ostream_
iterator<char>(). The point is to avoid limiting yourself to one coding style
when another will do the job better with fewer lines. Here’s the output you see
from the example:

a
b
c
d
e
e d c b a

Mapping your data
The Maps example, shown in Listing 6-4, demonstrates a type of container called
a map. A map works much the same as a vector, except for one main difference:
You look up items in vector by putting a number inside brackets, like this:

cout << names[0] << endl;

But with a map, you can use any class or type you want for the index (called a key),
not just numbers. To create an entry, you use a key (the index) and a value (the
data) as a pair.

LISTING 6-4:	 Associating Objects with map

#include <iostream>
#include <map>

using namespace std;
 (continued)

644 BOOK 5 Advanced Programming

int main() {
 map<string, string> marriages;
 marriages["Tom"] = "Suzy";
 marriages["Harry"] = "Harriet";

 cout << marriages["Tom"] << endl;
 cout << marriages["Harry"] << endl;
 return 0;
}

To use map, you declare a variable of class map, supplying two template param-
eters, the key class and the value class, which are both string in the example. To
store a map value, you place a key inside brackets and set it equal to a value:

marriages["Tom"] = "Suzy";

To retrieve that particular item, you supply the key in brackets:

cout << marriages["Tom"] << endl;

When you run this example, you see the following two strings as output:

Suzy
Harriet

Even though the keys can be any type or class, you must specify the type or class
you’re using when you set up map. After you do that, you can use only that type for
the particular map. Thus, if you say that the keys will be strings, you cannot then
use an integer for a key, as in marriages[3] = "Suzy";.

Containing instances, pointers,
or references
One of the most common discussions you encounter when people start talking
about how to use the container templates is whether to put instances in the con-
tainers, pointers, or references. For example, which of the following should you
type?

vector<MyClass>
vector<MyClass *>
vector<MyClass &>

LISTING 6-4:	 (continued)

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 645

In other words, do you want your container to store the actual instance (whatever
that might mean), a reference to the actual instance, or a pointer to the instance?
To explore this idea, look at the Maps2 example in Listing 6-5. Here, you’re trying
out the different ways of storing things in map: instances, pointers, and references.

LISTING 6-5:	 Making Decisions: Oh, What to Store?

#include <iostream>
#include <map>

using namespace std;

class StoreMe {
public:
 int Item;
};

bool operator < (const StoreMe & first,
const StoreMe & second) {
 return first.Item < second.Item;
}

int main() {
 // First try storing the instances
 map<StoreMe, StoreMe> instances;
 StoreMe key1 = {10}; // braces notation!
 StoreMe value1 = {20};
 StoreMe key2 = {30};
 StoreMe value2 = {40};
 instances[key1] = value1;
 instances[key2] = value2;

 value1.Item = 12345;
 cout << instances[key1].Item << endl;
 instances[key1].Item = 34567;
 cout << instances[key1].Item << endl;

 // Next try storing pointers to the instances
 map<StoreMe*, StoreMe*> pointers;
 StoreMe key10 = {10};
 StoreMe value10 = {20};
 StoreMe key11 = {30};
 StoreMe value11 = {40};

(continued)

646 BOOK 5 Advanced Programming

 pointers[&key10] = &value10;
 pointers[&key11] = &value11;

 value10.Item = 12345;
 cout << (*pointers[&key10]).Item << endl;

 // Finally try storing references to the instances.
 // Commented out because it causes an error.)
// map<StoreMe&, StoreMe&> pointers;
 return 0;
}

To create the instances of StoreMe, you use the braces notation. You can do that
when you have no constructors. So the line

StoreMe key1 = {10};

creates an instance of StoreMe and puts 10 in the Item property. To create an indi-
vidual instances entry, you need both a key and a value instance of StoreMe. You
then use the key to provide a name for the value stored in the map. Consequently,
instances contains two entries consisting of two StoreMe objects each. Here’s
what you see when you run the application:

20
34567
12345

This output doesn’t precisely match expectations because the code changes the
Item property in value1:

value1.Item = 12345;

When the code outputs the value of instances[key1].Item, you see an output of
20, not 12345. That means that the value stored in map is a copy, not the original.
However, when the code changes the value in instances like this:

instances[key1].Item = 34567;

the value portion of the instances entry does change. You see 34567 as output.
Consequently, when working with map instances, you must modify the map entry
directly.

LISTING 6-5:	 (continued)

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 647

Now that you’ve figured out that map is storing copies of what you put in it, the
idea of storing a pointer should be clear: If you have a pointer variable and then
you make a copy of it, although you have a separate pointer variable, the original
and the copy both point to the same memory location. That’s the idea behind the
second part of Listing 6-5. You create pointers like this:

map<StoreMe*, StoreMe*> pointers;

Now this map stores pointer variables. Remember that a pointer variable just holds
a number that represents an address. If two separate pointer variables hold the
same number, it means that they point to the same object at the same address.
Furthermore, because this map is holding pointers, it’s holding numbers, not
instances — something to think about. To store a value when using pointers, you
need to use code like this:

pointers[&key10] = &value10;

Note the use of the ampersand (&) used as a reference operator to store addresses
in map. It’s now possible to change the Item member of one the value objects:

value10.Item = 12345;

that you print using this carefully parenthesized line:

cout << (*pointers[&key10]).Item << endl;

and you see this:

12345

When working with map pointers, you modify the original variable to make a
change because the map entries point to the original variable, rather than make
a copy of it. However, as you can see, using map pointers also makes your code
harder to read.

Don’t worry just now about the bool operator < (const StoreMe & first,
const StoreMe & second) function. This function is explained in the “Perform-
ing comparisons” section, later in this chapter.

Note that the following line is commented out:

// map<StoreMe&, StoreMe&> pointers;

648 BOOK 5 Advanced Programming

It attempts to declare a map that holds references, but the code generates a com-
piler error instead. Try uncommenting the commented line and see the error mes-
sage. Here’s an example of what you might see (make sure to add the comment
back in when you’re done):

error: conflicting declaration 'std::map<StoreMe&,
 StoreMe&> pointers'
error: 'pointers' has a previous declaration as
 'std::map<StoreMe*, StoreMe*> pointers'

References are out of the question because the map is making a copy of everything
you put in it.

Working with copies
All C++ containers, not just maps, generally make copies of whatever you stick
inside them as shown in the previous section. The Vectors3 example, shown in
Listing 6-6, replicates the essential functionality of the Maps2 example shown in
Listing 6-5.

LISTING 6-6:	 The vector Version of the Maps2 Example

#include <iostream>
#include <vector>

using namespace std;

class StoreMe {
public:
 int Item;
};

int main() {
 vector<StoreMe> instances;
 StoreMe value1 = {20};
 StoreMe value2 = {40};
 instances.push_back(value1);
 instances.push_back(value2);

 value1.Item = 12345;
 cout << instances[0].Item << endl;
 instances[0].Item = 34567;
 cout << instances[0].Item << endl;

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 649

 vector<StoreMe*> pointers;
 StoreMe value10 = {20};
 StoreMe value11 = {40};
 pointers.push_back(& value10);
 pointers.push_back(& value11);

 value10.Item = 12345;
 cout << (*pointers[0]).Item << endl;
 return 0;
}

Oddly enough, the output from this example is precisely the same as the Maps2
example and for the same reason. Whether the container is a vector or a map
doesn’t matter; both of them hold copies of the objects or pointers you provide.
Consequently, you can remember these two rules about deleting your original
objects:

»» When the container holds instances: If you’re putting instances in the
container, you can delete the original instances after they’re added. This is
okay because the container has its own copies of the instances.

»» When the container holds pointers: If you’re putting pointers in the
container, you don’t want to delete the original instances because the pointers
in the container still point to these instances.

It’s up to you to decide which method is better. But here are a couple of things to
consider:

»» Keeping instances around: If you don’t want to keep instances lying around,
you can put the instances in the container, and it will make copies.

»» Copyability: Some classes, such as classes filled with pointers to other classes
or classes that are enormous, don’t copy well. In that case, you may want to
put pointers in the container.

Comparing instances
When you work with classes that contain other classes (such as vector), you need
to provide the class with a way to compare two things. The following sections
describe how to provide comparison capability when working with containers.

650 BOOK 5 Advanced Programming

Considering comparison issues
For humans comparing is easy, but it’s not that easy for a computer. For example,
suppose you have two pointers to string objects. The first points to a string con-
taining abc. The second points to another string containing abc. When writing
code, you must consider whether the two variables are equal:

»» Value: When considering the value alone, the two string objects are equal.

»» Memory location: When considering the pointer instead of the value, the two
string objects aren’t equal.

Now look at this code:

string *pointer3 = new string("abc");
string *pointer4 = pointer3;

These two pointers point to the same object, which means that the memory loca-
tions are equal. Because they point to the same object, they also contain the same
string of characters. So, from a value perspective, they’re also equal.

You need to know this distinction because when you create a container class that
holds instances of your object, often the class needs to know how to compare
objects. This is particularly true in the case of map, which holds pairs of items,
and you locate the items based on the first element of the pair — the key element.
When you tell map to find an item based on a key, map must search through its list
of pairs until it finds one such that the key in the pair is equal to the search term
(key) you passed in to the search. However, you need to consider these essentials
when working with the keys:

»» When using the pointer approach, two keys could contain the same value but
point to different memory locations. So, you must consider whether the key
search is based on value or memory location.

»» When sorting the keys to make them easier to access in order, you must consider
whether value is the only criterion by which to make the sort order correct.

Here’s an example. You create a class called Employee that contains these proper-
ties: FirstName, LastName, and SocialSecurityNumber. Next, you create a Salary
class that contains payroll information for an employee. This class has properties
MonthlySalary and Deductions.

With these two objects in place, you create a map instance, where each key/value
pair contains an Employee instance for the key and a Salary instance for the
value. To look up an employee, you would make an instance of Employee and

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 651

fill in the FirstName, LastName, and SocialSecurityNumber properties. You then
retrieve the value based on this key. There are two issues here:

»» You’d create an instance and allow map to find the key that matches the
instance. It’s essential to know whether map is looking for the exact same
instance or one identical to it. When looking for the exact same instance, you
need a pointer to the original object, not a new object that you fill in
with values.

»» If map is looking for an instance identical to the object you create, the search
will fail if the employee changed names (such as during a marriage). In this
case, your code needs logic to tell map to make the match based on the
SocialSecurityNumber, without worrying about the other properties.

The bottom line is that you need code within your classes to determine how to
make comparisons. The comparisons are made based on what you see as essential
data traits. These traits vary by dataset because how you use the dataset varies.
Consequently, you can’t create a one-size-fits-all solution; you must consider
each dataset individually.

Performing comparisons
The previous section provides details on two issues you must resolve when com-
paring objects. Here’s how to resolve these two issues: If you’re dealing with your
own classes, in addition to setting up a container class, you also provide a func-
tion that compares two instances of your own class. Your comparison function can
determine whether two classes are equal, the first is less than the second, or the
first is greater than the second.

At first, how less than and greater than can apply to things like an Employee
class may not seem apparent. But the idea behind less than and greater than is to
give the container class a way to determine a sort order. For example, you might
choose to sort an Employee class in one of these ways:

»» Social Security number

»» Last name, first name

»» First name, last name

»» Employee ID

»» Address

»» Organizational department

652 BOOK 5 Advanced Programming

The point is that the computer can’t make this decision; you need to choose how
you want the data to appear. After you decide how you want them sorted, you’d
create a function that determines when one record is less than, equal to, or greater
than the other. If you want the list to sort by name, you would make your func-
tion look strictly at the names. But if you want your list to sort by Social Security
number, you would write your function to compare the Social Security numbers.

The Maps3 example, shown in Listing 6-7, contains a map class with a comparison
function that determines whether two keys are equal.

LISTING 6-7:	 Containing Instances and Needing Functions That Compare Them

#include <iostream>
#include <map>

using namespace std;

class Emp {
public:
 string Nickname;
 string SSN;

 Emp(string anickname, string asocial) :
 Nickname(anickname),
 SSN(asocial) {}

 Emp() : Nickname(""), SSN("") {}
};

class Salary {
public:
 int YearlyInc;
 int Taxes;

 Salary(int aannual, int adeductions) :
 YearlyInc(aannual),
 Taxes(adeductions) {}

 Salary() : YearlyInc(0), Taxes(0) {}
};

bool operator < (const Emp& first, const Emp& second) {
 return first.Nickname < second.Nickname;
}

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 653

int main() {
 map<Emp, Salary> employees;

 Emp emp1("sparky", "123-22-8572");
 Salary sal1(135000, 18);
 employees[emp1] = sal1;

 Emp emp2("buzz", "234-33-5784");
 Salary sal2(150000, 23);
 employees[emp2] = sal2;

 // Now test it out!
 Emp emptest("sparky", "");
 cout << employees[emptest].YearlyInc << endl;
 return 0;
}

When you run this application, you see the YearlyInc member of the Salary
value, where the key is an Employee with the name sparky:

135000

Now notice a couple things about this code. First, to locate the salary for Sparky,
you don’t need the Employee instance for Sparky. Instead, you create an instance
of Employee and set up the Nickname member without worrying about the SSN
member. Then you retrieve the value by using the bracket notation for map:

cout << employees[emptest].YearlyInc << endl;

The map code uses the less-than function to perform this task. The < function
compares only the Nickname members, not the SSN member. Notice that this
function must return a bool value and that you precede the < with the operator
keyword, defining this as an operator function — one that defines an operation
between operands. You could change things around a bit by comparing the SSN
members like so:

bool operator < (const Emp& first, const Emp& second) {
 return first.SSN < second.SSN;
}

Then you can locate Sparky’s salary based on the SSN:

Employee emptest("", "123-22-8572");
cout << employees[emptest].SSN << endl;

654 BOOK 5 Advanced Programming

A single < function may not seem like enough to perform all the required com-
parisons, such as equality. However, the code calls the less-than function twice,
the second time flip-flopping the order of the parameters; and if the function
returns false both times, the computer determines that they are equal. Using this
approach makes life easier because you need to provide only a single comparison
function.

UNDERSTANDING THE DEFAULT <
FUNCTION
Containers in the Standard Library have a default < function. If you don’t supply a <
function of your own, the container supplies this default < function for you. This default
function relies on a template class called less. This template is simple: It includes a
single method that returns the Boolean value:

x < y

For most basic types, the default works fine. For example, the compiler can easily use
the default when you’re working with integers. However, the compiler doesn’t under-
stand the < operator when working with custom classes unless you provide your own
< operator function, as you see everywhere else in this chapter. However, because the
container takes a class in its parameter that defaults to the class less, you can put
together your own class and use that instead of writing your own < operator function.
Here’s a sample:

class MyLess {
public:
 bool operator()(const MyClass &x, const MyClass &y) const {
 return x.Name < y.Name;
 }
};

Then when you create, for example, a map, you pass this class as a third parameter,
rather than relying on the default:

map<MyClass, MyClass, MyLess> mymap;

Then you don’t need your own less-than function. The advantage of this approach is
that you now have a standardized < function implementation to use everywhere, and
it’s especially helpful when working within a team environment.

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 655

Iterating through a container
Containers in the Standard Library provide an overview of the container’s content.
If you have a container filled with objects ,you normally get an overview of what’s
there, but being able to drill down into the details would be nice. You use an itera-
tor to drill down into the container. An iterator works with a container to let you
step object by object through the container. The following sections tell you about
iterators and how to work with them.

Working with iterators
Each container class contains an embedded type called iterator. You use the
fully qualified name to create an iterator instance. For example, if you have a map
that holds integers and strings, as in map<int, string>, you create an iterator
instance like this:

map<string, int>::iterator loopy

Although loopy is an instance of iterator, some serious typedefing is going on,
and, in fact, loopy is a pointer to an item stored inside the container. To initialize
loopy to point to the first item in the container, you call the container’s begin()
method, storing the results in loopy. Then loopy will point to the first item in the
container. You can access the item by dereferencing loopy; then, when you’re fin-
ished, you can move to the next item by incrementing loopy like this:

loopy++;

You can use this technique in various ways, such as by using the call to reverse_
copy() shown previously in Listing 6-3. You can tell whether you’re finished by
checking to see whether loopy points to the last item in the container. To do this,
you call the container’s end() method and compare loopy to the end() value. If
it’s equal, you’re done. The following few lines of code perform these steps:

vector<string>::iterator vectorloop = Words.begin();
while (vectorloop != Words.end())
{
 cout << *vectorloop << endl;
 vectorloop++;
}

You can see the type used for the iterator, in this case called vectorloop, which
is initialized by calling begin(). vectorloop is dereferenced to access the data,
and is then incremented to get to the next item. The while loop tests vectorloop

656 BOOK 5 Advanced Programming

against the results of end() to determine when the processing is complete. The
Iterators example code, shown in Listing 6-8, shows a more complete example
of how to use an iterator.

LISTING 6-8:	 Iterating

#include <iostream>
#include <map>
#include <vector>

using namespace std;

int main() {
 // Iterating through a map
 map<string, int> NumberWords;
 NumberWords["ten"] = 10;
 NumberWords["twenty"] = 20;
 NumberWords["thirty"] = 30;

 map<string, int>::iterator loopy = NumberWords.begin();
 while (loopy != NumberWords.end()) {
 cout << loopy->first << " ";
 cout << loopy->second << endl;
 loopy++;
 }

 // Iterating through a vector
 vector<string> Words;
 Words.push_back("hello");
 Words.push_back("there");
 Words.push_back("ladies");
 Words.push_back("and");
 Words.push_back("aliens");

 vector<string>::iterator vectorloop = Words.begin();
 while (vectorloop != Words.end()) {
 cout << *vectorloop << endl;
 vectorloop++;
 }
 return 0;
}

When you compile and run this application, you see the following output:

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 657

ten 10
thirty 30
twenty 20
hello
there
ladies
and
aliens

Avoiding pointer problems
When you create a vector, it allocates some space for the data you put in it. When
the memory fills with data, the vector resizes itself, adding more space. To per-
form this task, vector uses the old memory-shuffle trick where it first allocates
a bigger chunk of memory; then it copies the existing data into the beginning of
that bigger chunk of memory, and finally it frees the original chunk of memory.

Saving the pointer you receive when you use the various iterator functions
to access a certain vector item (giving you a pointer to the item) is a bad idea
because, after vector allocates more memory, that pointer will no longer be valid.
It will point to somewhere in the original memory block that’s no longer being
used. The IteratorPointer example, shown in Listing 6-9, helps you understand
the ramifications of this problem.

LISTING 6-9:	 Seeing the Pointer Problem in Action

#include <iostream>
#include <vector>

using namespace std;

int main() {
 vector<int> test{1, 2, 3};

 vector<int>::iterator i1 = test.begin();
 i1++;
 cout << &i1 << endl;

 test.push_back(4);

 vector<int>::iterator i2 = test.begin();
 i2++;
 cout << &i2 << endl;
}

658 BOOK 5 Advanced Programming

When you run this example, the code creates test with space for three items.
The code then prints the address of the second item. Adding just one item means
that test has to resize. The code then prints the address for the second item. The
outputs won’t match because the pointer to the second item changed during the
resizing process.

A map of pairs in your hand
When you iterate through map, you get back not just the value of each item nor do
you get just the key of each item. Instead, you get back a pair of things — the key
and the value together. These objects live inside an instance of a template class
called Pair, which has two properties, first and second.

The first member refers to the key in the pair, and the second member refers
to the value in the pair. When you iterate through map, the iterator points to an
instance of Pair, so you can grab the key by looking at first and the value by
looking at second. Be careful: Pair is the internal storage bin inside map. You’re
not looking at copies; you’re looking at the actual data in map. If you change the
data, as in this code

while (loopy != NumberWords.end())
{
 loopy->second = loopy->second * 2;
 loopy++;
}

you change the value stored in map — not a copy of it.

The Great Container Showdown
The sections that follow provide a rundown of containers available in the Standard
Library. Each container has a different purpose. In the following sections, you see
where you can use each of them.

Associating and storing with a set
First things first: set is not a mathematical set. If you have any background in
mathematics, you’ve likely come across the notion of a set. In math, a set does-
n’t have an order to it. It’s a group of well-defined distinct objects stored in a
collection.

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 659

In the Standard Library, set has an order to it. However, like a math set, set
doesn’t allow duplicates. If you try to put an item in set that’s already there,
set will ignore your attempt to do so. The Sets example, shown in Listing 6-10,
demonstrates how to use set.

LISTING 6-10:	 Using set to Look up Items

#include <iostream>
#include <set>

using namespace std;

class Emp {
public:
 string Nickname;
 string SSN;

 Emp(string anickname, string asocial) :
 Nickname(anickname),
 SSN(asocial) {}

 Emp() : Nickname(""), SSN("") {}
};

bool operator < (const Emp& first, const Emp& second) {
 return first.SSN < second.SSN;
}

ostream& operator << (ostream &out, const Emp &emp) {
 cout << "(" << emp.Nickname;
 cout << "," << emp.SSN;
 cout << ")";
 return out;
}

int main() {
 set<Emp> employees;

 Emp emp1("sparky", "123-22-8572");
 employees.insert(emp1);
 Emp emp2("buzz", "234-33-5784");
 employees.insert(emp2);
 Emp emp3("albert", "123-22-8572");
 employees.insert(emp3);

(continued)

660 BOOK 5 Advanced Programming

 Emp emp4("sputz", "199-19-0000");
 employees.insert(emp4);

 // List the items
 set<Emp>::iterator iter = employees.begin();
 while (iter != employees.end())
 {
 cout << *iter << endl;
 iter++;
 }

 // Find an item
 cout << "Finding..." << endl;
 Emp findemp("", "123-22-8572");
 iter = employees.find(findemp);
 cout << *iter << endl;
 return 0;
}

When you compile and run this example, you see the following output:

(sparky,123-22-8572)
(sputz,199-19-0000)
(buzz,234-33-5784)
Finding...
(sparky,123-22-8572)

Listing 6-10 includes an Employee class along with a < operator that compares the
SSN member of two Employee instances. This comparison results in two things:

»» Ordering: The items in set are in Social Security number order. This isn’t true
with all containers, but it’s the way a set works.

»» Duplicates: The set ignores any attempt to add two employees with match-
ing SSN values (even if other properties differ).

You can see in this listing that the code tries to add two employees with the same
SSN values:

Employee emp1("sparky", "123-22-8572");
employees.insert(emp1);

LISTING 6-10:	 (continued)

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 661

and

Employee emp3("albert", "123-22-8572");
employees.insert(emp3);

Later, when the code prints all the items in set, you see only the one for "sparky",
not the one for "albert". set ignored the second employee.

Finding an item in set is interesting. You create an instance of Employee and fill
in only the SSN value, because that’s the only property that the < function looks
at. Call find() to perform the search. The find() function returns an iterator
because the iterator type is really a typedef for a pointer to an item inside set.
To access the item, you dereference the pointer.

Listing 6-7 shows a handy function that lets you use the Employee instance with
cout by overloading the insertion (<<) operator function. This function’s header
looks like this:

ostream& operator << (ostream &out, const Employee &emp) {

The first parameter represents cout, and the second is the output value. Inside
this function, you write to cout the individual members of the Employee. It also
helps to know that you can perform map comparisons as needed using the same
technique found in the “Understanding the default < function” sidebar. This same
technique works with a class, but it requires more coding to implement.

SHOWDOWN: MAPS VERSUS SETS
It’s important to realize the difference between map and set. map lets you store infor-
mation based on a key, through which you can retrieve a value. Listing 6-7, presented
earlier in the “Performing comparisons” section, shows an example in which the key
is an Emp instance and the value is a Salary instance. But with set, you can achieve
something similar: Listing 6-10 could use a single class containing both Emp and Salary
information. Also, you can see in Listing 6-10 that it’s possible to look up the Emp
instance based on nothing but a Social Security number. So in this sense, the Listing 6-
10 example shows a map in which the key is a Social Security number and the value is
the rest of the employee information. The fact is, you can often accomplish associations
with set, as you can with map. The advantage to set is that you need to store only one
instance for each item, whereas with map, you must have two instances, both a key and
a value. The advantage to map is that you can use the nice bracket notation. The choice
is yours.

662 BOOK 5 Advanced Programming

Unionizing and intersecting sets
When you work with sets, you commonly do the following:

»» Combine two sets to get the union (all the elements in both sets without any
duplicates).

»» Find the common elements to get the intersection (those unique elements
that appear in both sets).

When you #include <set>, you automatically get a couple of handy functions
for finding the union and intersection of some sets. The Sets2 example, shown
in Listing 6-11, demonstrates how you can find the intersection and union of two
sets.

LISTING 6-11:	 Finding an Intersection and a Union Is Easy!

#include <iostream>
#include <set>
#include <algorithm>

using namespace std;

void DumpClass(set<string> *myset) {
 set<string>::iterator iter = myset->begin();
 while (iter != myset->end())
 {
 cout << *iter << endl;
 iter++;
 }
}

int main() {
 set<string> English;
 English.insert("Zeus");
 English.insert("Magellan");
 English.insert("Vulcan");
 English.insert("Ulysses");
 English.insert("Columbus");

 set<string> History;
 History.insert("Vulcan");
 History.insert("Ulysses");
 History.insert("Ra");
 History.insert("Odin");

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 663

 set<string> Intersect;
 insert_iterator<set<string> >
 IntersectIterate(Intersect, Intersect.begin());
 set_intersection(English.begin(), English.end(),
 History.begin(), History.end(), IntersectIterate);
 cout << "===Intersection===" << endl;
 DumpClass(&Intersect);

 set<string> Union;
 insert_iterator<set<string> >
 UnionIterate(Union, Union.begin());
 set_union(English.begin(), English.end(),
 History.begin(), History.end(), UnionIterate);
 cout << endl << "===Union===" << endl;
 DumpClass(&Union);
 return 0;
}

When you run the code in Listing 6-11, you see this output:

===Intersection===
Ulysses
Vulcan

===Union===
Columbus
Magellan
Odin
Ra
Ulysses
Vulcan
Zeus

But as you can see, something a little bizarre is in the code. Specifically, this part
isn’t exactly simple:

insert_iterator<set<string> >
 IntersectIterate(Intersect, Intersect.begin());

This code is used in the call to set_intersection(). It’s a variable declaration.
The first line is the type of the variable, a template called insert_iterator. The
template parameter is the type of set, in this case set<string>.

664 BOOK 5 Advanced Programming

The next line is the instance name, IntersectIterate, and the constructor
requires two things: the set that will hold the intersection (called Intersect) and
an iterator pointing to the beginning of the set, which is Intersect.begin().

The variable that these two lines create is an iterator, which is a helper object
that another function can use to insert multiple items into a list. In this case, the
function is set_intersection(). The set_intersection() function doesn’t take
the sets as input; instead, it takes the beginning and ending iterators of the two
sets, along with the IntersectIterate iterator declared earlier. You can see in
Listing 6-11 that those are the five items passed to the set_intersection()
function. After calling set_intersection(), the Intersect object contains
the intersection of the two sets. set_union() works precisely the same way as
set_intersection(), except it figures out the union of the two sets, not the
intersection.

To use set_intersection() and set_union(), you need to add #include <algo-
rithm> to the top of your listing. This is one of the header files in the Standard
Library.

If you find the code in Listing 6-11 particularly ugly, a slightly easier way to call
set_intersection(), one that doesn’t require you to directly create an instance
of insert_iterator, is available. It turns out that a function exists that will do
it for you. To use this function, you can remove the declarations for IntersectI-
terate and UnionIterate, and then instead call set_intersection(), like this:

set_intersection(English.begin(), English.end(),
 History.begin(), History.end(),
 inserter(Intersect, Intersect.begin()));

The third line simply calls inserter(), which creates an instance of insert_
iterator for you. Then you can do the same for set_union():

set_union(English.begin(), English.end(),
 History.begin(), History.end(),
 inserter(Union, Union.begin()));

Listing with list
A list is a simple container similar to an array, except you can’t access the mem-
bers of list by using a bracket notation as you can in vector or with an array. You
don’t use list when you need to access only one item in the list; you use it when
you plan to traverse through the list, item by item.

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 665

To add items to a list, use the list’s push_front() method or its push_back()
method. The push_front() function inserts the item in the beginning of the list,
in front of all the others that are presently in the list. If you use push_front()
several times in a row, the items will be in the reverse order from which you put
them in. The push_back() function adds the item to the end of the list. So if you
put items in a list by using push_back(), their order will be the same as the order
in which you added them. Using insert() and splice() enables you to place
items in other locations in the list. You use an iterator to find the location you
want and then splice the new item at that location.

For operations in which you need a pointer to an item in the list, you need to use
an iterator. An iterator is simply a typedef for a pointer to an item in the list;
however, it points to the item in the list, not the original item you added to the
list. Remember, the containers hold copies. Thus, if you do an insert() into a list
and point to an original item, that item won’t be a member of the list, and the
insert() won’t work.

Although the list template includes an insert() function, this function has only
very special uses. To use insert(), you must have a pointer to an item in the
list — that is, you need to have an iterator that you obtain by traversing the list.
It has no find() function, and so really the only time you would use the insert()
function is if you’re already working your way through the list. But if you do need
to do an insert and you’re willing to use iterators to move through the list to find
the location where you want to put the new item, insert() will do the job.

The Lists example, shown in Listing 6-12, demonstrates lists by using a duck
metaphor (as in, getting all your ducks in a row). This example creates a list, adds
ducks, and then reverses it. Next, the code creates a second list and splices its
members into the first list.

LISTING 6-12:	 Handling Items in a List Template

#include <iostream>
#include <list>

using namespace std;

class Duck {
public:
 string name;
 int weight;
 int length;
};
 (continued)

666 BOOK 5 Advanced Programming

ostream& operator << (ostream &out, const Duck &duck) {
 cout << "(" << duck.name;
 cout << "," << duck.weight;
 cout << "," << duck.length;
 cout << ")";
 return out;
}

void Dump(list<Duck> *mylist) {
 list<Duck>::iterator iter = mylist->begin();
 while (iter != mylist->end())
 {
 cout << *iter << endl;
 iter++;
 }
}

list<Duck>::iterator Move(list<Duck> *mylist, int pos) {
 list<Duck>::iterator res = mylist->begin();
 for (int loop = 1; loop <= pos; loop++)
 {
 res++;
 }
 return res;
}

bool operator < (const Duck& first, const Duck& second) {
 return first.name < second.name;
}

int main() {
 list<Duck> Inarow;

 // Push some at the beginning
 Duck d1 = {"Jim", 20, 15}; // Braces notation!
 Inarow.push_front(d1);
 Duck d2 = {"Sally", 15, 12};
 Inarow.push_front(d2);

 // Push some at the end
 Duck d3 = {"Betty", 18, 25};
 Inarow.push_front(d3);
 Duck d4 = {"Arnold", 19, 26};
 Inarow.push_front(d4);

LISTING 6-12:	 (continued)

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 667

 // Display the ducks
 cout << "===Ducks===" << endl;
 Dump(&Inarow);

 // Reverse
 Inarow.reverse();
 cout << "\n==Reversed==" << endl;
 Dump(&Inarow);

 // Create the second list.
 list<Duck> extras;
 Duck d5 = {"Grumpy", 8, 8};
 extras.push_back(d5);
 Duck d6 = {"Sleepy", 8, 8};
 extras.push_back(d6);

 // Display the extras list.
 cout << "\n===Extras===" << endl;
 Dump(&extras);

 // Determine the positions.
 list<Duck>::iterator first = Move(&extras, 0);
 list<Duck>::iterator last = Move(&extras, 2);
 list<Duck>::iterator into = Move(&Inarow, 2);

 // Perform the splicing.
 Inarow.splice(into, extras, first, last);
 cout << "\n==Extras After Splice==" << endl;
 Dump(&extras);
 cout << "\n==Inarow After Splice==" << endl;
 Dump(&Inarow);

 // Sort the list.
 Inarow.sort();
 cout << "\n===Sorted===" << endl;
 Dump(&Inarow);
 return 0;
}

Move() moves to a position in the list. This function may seem counterproductive
because the list template doesn’t allow random access. But you need three itera-
tors to perform the splice: two to target the start and end position of the second

668 BOOK 5 Advanced Programming

list (the source list) and one to target the position in the first list used to hold the
spliced members. Move() locates the target position.

Move() is a template function. However, when calling the function, you don’t pro-
vide the type name in angle brackets; the compiler determines which class version
to use based on the object type passed into the function as a parameter.

To use sort(), you must provide a < operator function, as described in earlier
examples. Here’s the application output:

===Ducks===
(Arnold,19,26)
(Betty,18,25)
(Sally,15,12)
(Jim,20,15)

==Reversed==
(Jim,20,15)
(Sally,15,12)
(Betty,18,25)
(Arnold,19,26)

===Extras===
(Grumpy,8,8)
(Sleepy,8,8)

==Extras After Splice==

==Inarow After Splice==
(Jim,20,15)
(Sally,15,12)
(Grumpy,8,8)
(Sleepy,8,8)
(Betty,18,25)
(Arnold,19,26)

===Sorted===
(Arnold,19,26)
(Betty,18,25)
(Grumpy,8,8)
(Jim,20,15)
(Sally,15,12)
(Sleepy,8,8)

You can see the elements that were inside the two lists before and after the splice;
the ducks moved from one list to another.

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 669

Stacking the deque
A double-ended queue, deque (pronounced “deck”), container is a sequential list
of items like vector and list. Like vectors and unlike lists, deques allow ran-
dom access using bracket notation. Unlike vector, deque lets you push (insert)
items at the beginning or end and pop (remove) items off the beginning or end. To
create a deque that holds integers, do something like this:

deque<int> mydek;
mydek.push_front(10);
mydek.push_front(20);
mydek.push_back(30);
mydek.push_back(40);

Then you can loop through the deque, accessing its members with a bracket, as if
it’s an array:

int loop;
for (loop = 0; loop < mydek.size(); loop++) {
 cout << mydek[loop] << endl;
}

You can also grab items off the front or back of the deque. Here’s an example from
the front:

while (mydek.size() > 0) {
 cout << mydek.front() << endl;
 mydek.pop_front();
}

SHOWDOWN: LISTS VERSUS VECTORS
Lists provide sequential access, which means that you can’t drop into the middle of the
list and look at whatever item is stored there (as you can with a vector). If you want to
look at the items in the list, you must start at the beginning or the end and work your
way through it one item at a time. A vector allows random access using brackets, as
in MyVector[3]. This requirement may seem like a disadvantage for the list, but the
ANSI document says that “many algorithms only need sequential access anyway.” Lists
have definite advantages. The list template allows you to splice together multiple lists,
and it has good support for sorting the list, for splicing members out of one list and into
another, and for merging multiple lists.

670 BOOK 5 Advanced Programming

Two functions show up here, front() and pop_front(). The front() function
returns a reference to the item at the front of the deque. The pop_front() func-
tion removes the item that’s at the front of the deque.

Waiting in line with stacks and queues
Two common programming data structures are in the Standard Library:

»» Stack: You put items on top of a stack one by one — and you take items off
the top of the stack one by one. You can add several items, one after the
other, before taking an item off the top. This process is sometimes called a
Last In, First Out (LIFO) algorithm.

»» Queue: A queue is like waiting in line at the post office — the line gets longer
as people arrive. Each new person goes to the back of the line. People leave
from the front of the line. Like the stack, the queue also has an alternate
name: it’s a First In, First Out (FIFO) algorithm.

To use the Standard Library to make a stack, you can use a deque, a list, or a
vector as the underlying storage bin. Then you declare the stack, as in the fol-
lowing example:

stack<int, vector<int> > MyStack;

Or you can optionally use the default, which is deque:

stack<int> MyStack;

SHOWDOWN: DEQUES VERSUS VECTORS
If you go online to any discussion board and use a search phrase like C++ deque vector,
you see a lot of discussion, arguments, and confusion over when to use deque and
when to use vector. To know which to use when, you need to understand the differ-
ences between the two. Under the hood, vector usually stores all its data in a regular
array, making it easy to directly access the members. But that also means that, to insert
items, vector must slide everything over to make room for the inserted items. deque
doesn’t use the contiguous approach that vector does. Inserting is easier for deque
because it doesn’t need to shuffle things around. Also, deque doesn’t have to add new
elements to perform a resize, whereas vector does when it runs out of space. And
finally, deque includes a push_front() method that allows adding an item at the
beginning.

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 671

For a queue, you can’t use vector because vectors don’t include operations for
dealing with the front of an item list. So, you can use either deque or list. Here’s
a line of code that uses list:

queue<int, list<int> > MyQueue;

Or here’s a line of code that uses deque by default:

queue<int> MyQueue;

You normally perform three operations with a stack and a queue:

»» push: When you add an item to a stack or queue, you push the item. This
action puts the item on top of the stack or at the back of the queue.

»» peek: When you look at the top of the stack or the front of the queue, you
peek. The peek operation doesn’t remove the item.

»» pop: When you remove an item from the top of a stack or from the front of
the queue, you pop it off.

To peek at the front of a queue, you call the front() method. For a stack, you call
the top() method. For pushing and popping, the queue and stack each include
a push() function and a pop() function. The StackAndQueue example, shown in
Listing 6-13, demonstrates both a stack and a queue.

LISTING 6-13:	 Creating a Stack and a Queue

#include <iostream>
#include <stack>
#include <queue>

using namespace std;

void StackDemo() {
 cout << "===Stack Demo===" << endl;
 stack<int, vector<int> > MyStack;
 MyStack.push(5);
 MyStack.push(10);
 MyStack.push(15);

 cout << MyStack.top() << endl;
 MyStack.pop();

(continued)

672 BOOK 5 Advanced Programming

 cout << MyStack.top() << endl;
 MyStack.pop();

 MyStack.push(40);
 cout << MyStack.top() << endl;
 MyStack.pop();
}

void QueueDemo() {
 cout << "===Queue Demo===" << endl;
 queue<int> MyQueue;
 MyQueue.push(5);
 MyQueue.push(10);
 MyQueue.push(15);

 cout << MyQueue.front() << endl;
 MyQueue.pop();
 cout << MyQueue.front() << endl;
 MyQueue.pop();

 MyQueue.push(40);
 cout << MyQueue.front() << endl;
 MyQueue.pop();
}

int main() {
 StackDemo();
 QueueDemo();
 return 0;
}

When you specify a container to use inside the stack or queue, remember to put a
space between the closing angle brackets. Otherwise, the compiler reads it as a sin-
gle insertion operator, >>, and gets confused. Here is the output from this example:

===Stack Demo===
15
10
40
===Queue Demo===
5
10
15

LISTING 6-13:	 (continued)

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 673

Copying Containers
Structures are easy to copy when using well-designed class libraries — meaning
that each container class contains both a copy constructor and an equal operator.
To copy a container, you either set one equal to the other or pass the first con-
tainer into the constructor of the second. The CopyContainer example shown in
Listing 6-14 demonstrates how to perform this task.

LISTING 6-14:	 Copying Containers Couldn’t Be Easier

#include <iostream>
#include <map>

using namespace std;

class Tasty {
public:
 string Dessert;
};

bool operator < (const Tasty & One, const Tasty & Two) {
 return One.Dessert < Two.Dessert;
}

class Nutrition {
public:
 int VitaminC;
 int Potassium;
};

int main() {
 map<Tasty, Nutrition> ItsGoodForMe;
 Tasty ap = {"Apple Pie"}; // Braces notation!
 Nutrition apn = {7249, 9722};
 Tasty ic = {"Ice Cream"};
 Nutrition icn = {2459, 19754};
 Tasty cc = {"Chocolate Cake"};
 Nutrition ccn = {9653, 24905};
 Tasty ms = {"Milk Shake"};
 Nutrition msn = {46022, 5425};

 ItsGoodForMe[ap] = apn;
 ItsGoodForMe[ic] = icn;

(continued)

674 BOOK 5 Advanced Programming

 ItsGoodForMe[cc] = ccn;
 ItsGoodForMe[ms] = msn;

 map<Tasty,Nutrition> Duplicate1 = ItsGoodForMe;
 map<Tasty,Nutrition> Duplicate2(ItsGoodForMe);
 ItsGoodForMe[ap].Potassium = 20;
 Duplicate1[ap].Potassium =40;

 cout << ItsGoodForMe[ap].Potassium << endl;
 cout << Duplicate1[ap].Potassium << endl;
 cout << Duplicate2[ap].Potassium << endl;
 return 0;
}

You can see that Listing 11-14 contains two classes, Tasty and Nutrition. A map
called ItsGoodForMe associates Tasty instances with Nutrition instances. The
code copies map twice, using both an equals sign and a copy constructor:

map<Tasty,Nutrition> Duplicate1 = ItsGoodForMe;
map<Tasty,Nutrition> Duplicate2(ItsGoodForMe);

The code changes one of the elements in the original map to see what happens and
prints that element, as well as the corresponding element in the two copies (one
of which is also changed). Here’s the output:

20
40
9722

The output implies that the maps each have their own copies of the instances —
that there’s no sharing of instances between the maps.

Containers hold copies, not originals. That’s true when you copy containers, too.
If you put a structure in a container and copy the container, the latter container
has its own copy of the structure. To change the structure, you must change all
copies of it. The way around this is to put pointers inside the containers. Then
each container has its own copy of the pointer, but all these pointers point to the
same one-and-only object.

LISTING 6-14:	 (continued)

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 675

Creating and Using Dynamic Arrays
Sometimes you don’t know the array size you need until runtime. The default
arrays provided with C++ rely on static sizes. In other words, you need to know
what size array you need at the time you write the code. Unfortunately, the real
world is dynamic — it changes. The earlier sections of this chapter discuss a num-
ber of array alternatives, such as stacks, queues, and deques. However, these solu-
tions all require that you use a library. They also tend to increase the memory
requirements of your application and slow it down as well. You have another alter-
native in the form of dynamic arrays. The following sections describe dynamic
arrays and show how to use them. You need a minimum of C++ 11 to use these
examples.

A dynamic array relies on the heap, the common area of memory that your appli-
cation allocates for use by your application’s functions. (See the “Heaping and
Stacking the Variables” section of Book 1 Chapter 8 for more details.) You create a
pointer to a variable of the correct type and then allocate memory for the resulting
array. The functionality for performing this task is found in the new header file,
so you need to include it as part of your application. The DynamicArray example,
shown in Listing 6-15, demonstrates the use of a dynamic array.

LISTING 6-15:	 Creating and Using Dynamic Arrays

#include <iostream>
#include <new>

using namespace std;

int main() {
 int HowMany;
 int* DynArray;
 cout << "How many numbers would you like?" << endl;
 cin >> HowMany;
 DynArray = new (nothrow) int[HowMany];

 if (DynArray == nullptr)
 cout << "Error: Could not allocate memory!";
 else {
 for(int i = 0; i < HowMany; i++)
 DynArray[i] = i;
 (continued)

676 BOOK 5 Advanced Programming

 cout << "Displaying entries:" << endl;
 for (int i = 0; i < HowMany; i++)
 cout << DynArray[i] << endl;

 delete[] DynArray;
 }
 return 0;
}

The example begins by creating variables to hold the number of array elements
and the array itself, which is a pointer to an array of int elements. The applica-
tion asks you how many array elements to create. It then uses the new operator
to create the dynamic array, DynArray. Notice the technique used to do this. The
new operator is followed by (nothrow). This tells the application that if there isn’t
enough memory to create the array, it should return a nullptr value, which is
simply a pointer that doesn’t point to anything.

The (nothrow) method may not work with certain compiler versions, especially
when using the GNU Compiler Collection (GCC). The (nothrow) still works for low
memory conditions, but it doesn’t work for conditions created explicitly as part
of the application execution. In this case, you see a std::bad_array_new_length
exception under these conditions:

»» The array length is negative

»» The total size of the new array would exceed implementation-defined
maximum value

»» The number of initializer-clauses exceeds the number of elements to initialize

Normally, the application would display an incomprehensible error message
that only geeks could love if there wasn’t enough memory. Using the (nothrow)
approach gives you the opportunity to handle the error differently. The applica-
tion handles the error by displaying a human-readable error message if (DynAr-
ray == nullptr).

You work with a dynamic array just as you do any other array. The example shows
how to fill the array with data and to display the data onscreen. The array has
the same capabilities, advantages, and disadvantages of any other array. How-
ever, when you get done using the array, you need to use the delete[] operator

LISTING 6-15:	 (continued)

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 677

to delete the dynamic array and free the memory it uses for some other purpose.
The output from this example looks like this if you request four array elements:

How many numbers would you like?
4
Displaying entries:
0
1
2
3

Working with Unordered Data
Creating data that has a particular order is appealing because it’s a) easier to
search and b) it makes certain tasks, such as removing old elements, easier. How-
ever, creating an ordered set of information is also problematic because you need
to spend time keeping it in order. Newer versions of C++ provide access to an
unordered set that is both searchable and easy to maintain. It has the advantage
of adding the data in any order in which it comes. Minimal overhead is associated
with trying to keep the data in a particular order. The following sections provide
an overview of using unordered data. You need a minimum of C++ 11 to use these
examples.

Using std::unordered_set to
create an unordered set
Like the other containers discussed in this chapter, an unordered_set provides a
particular method for storing data in a manner that makes it easy to access later.
In this case, you have access to functions that insert() and erase() elements
from the container. A special function, emplace() enables you to add new ele-
ments only if the element doesn’t exist. Otherwise, the unordered set will allow as
many duplicates as you want (and you can easily count them using count()). You
can also use the find() function to track down elements that you want. Special
functions tell you when you’re at the beginning or end of the set.

Manipulating unordered sets
The easiest way to see how an unordered set works is to create one. The Unor-
deredSet example, shown in Listing 6-16, demonstrates how to use the various
unordered_set features to maintain a listing of colors.

678 BOOK 5 Advanced Programming

LISTING 6-16:	 Creating and Using Dynamic Arrays

#include <iostream>
#include <unordered_set>

using namespace std;

int main() {
 unordered_set<string> Colors;
 Colors.insert("Red");
 Colors.insert("Green");
 Colors.insert("Blue");

 if(Colors.find("Red")!= Colors.end())
 cout << "Found Red!" << endl;

 auto ReturnValue = Colors.emplace("Red");
 if(!ReturnValue.second)
 cout << "Red is Already in Set!" << endl;

 cout << "There are " << Colors.count("Red")
 << " Red entries." << endl;

 ReturnValue = Colors.emplace("Orange");
 if(!ReturnValue.second)
 cout << "Orange is Already in Set!" << endl;
 else
 cout << "Orange Added to Set!" << endl;

 Colors.erase("Red");
 if(Colors.find("Red")!= Colors.end())
 cout << "Found Red!" << endl;
 else
 cout << "Red Missing!" << endl;
 return 0;
}

The example begins by creating a new unordered_set, Colors. Notice that this is
a template, so you need to provide a type for the information that the set will hold.
The code uses the insert() function to add three colors to the set.

The find() function enables you to look for a particular value in the set. When the
value is missing, the find() function returns end(), which means that the cur-
rent position within the set is at the end.

Pr
og

ra
m

m
in

g
w

it
h

th
e

St
an

da
rd

 L
ib

ra
ry

CHAPTER 6 Programming with the Standard Library 679

This example uses the auto data type. ReturnValue is used to detect when a value
that you want to add to the set using emplace() already exists. If the value already
exists, unordered_set refuses to add it when you call emplace(). On the other
hand, if you call insert(), unordered_set will add duplicate entries.

To remove entries from a set, you call erase() with the value you want to remove.
In this case, the example removes the color Red. It then searches for Red using
find(). As you might expect, Red isn’t found this time. The output from this
example is as follows:

Found Red!
Red is Already in Set!
There are 1 Red entries.
Orange Added to Set!
Red Missing!

Working with Ranges
C++ now offers support for ranges, which you can read about at https://
en.cppreference.com/w/cpp/ranges. A range is the set of objects between a
beginning point and an ending point. The concept of ranges depends on iterators.
A view is an iteration that manages data in some manner, and a range acts on this
iteration. The example in this section requires C++ 20. As mentioned elsewhere in
the book, such as Book 1 Chapter 5, if your compiler doesn’t offer C++ 20 support,
you can use Wandbox (https://wandbox.org/).

The Ranges example, shown in Listing 6-17, gives you a starting point for working
with both ranges and views in C++ 20. In this example, the code creates a vector,
MyList, fills it with data, and then uses the ranges::size() method to determine
the size MyList. The code then creates a view that filters MyList and places the
result in Filtered. A for loop prints the result.

LISTING 6-17:	 Working with Ranges and Views

#include <iostream>
#include <vector>
#include <ranges>

using namespace std;
 (continued)

https://en.cppreference.com/w/cpp/ranges
https://en.cppreference.com/w/cpp/ranges
https://wandbox.org/

680 BOOK 5 Advanced Programming

int main() {
 vector<int> MyList {9, 2, 1, 6, 3, 8, 4};
 cout << "There are " << ranges::size(MyList) <<
 " items in MyList" << endl;

 auto Filtered = MyList | views::filter([](int n){
 return n % 3 == 0; });
 cout << "Items divisible by 3: " << endl;
 for (int i : Filtered)
 cout << i << endl;
 return 0;
}

Filtered is a range adapter, which is an iterable range. To create this variable,
you specify the list you want to use, such as MyList, a pipe symbol (|), and the
view or views you want to create. This example uses views::filter(). When you
want to create multiple views, you separate them with addition pipes. You can also
find views that will transform your data, drop certain elements, split ranges, join
ranges, and so on. Whatever the range adapter creates appears in Filtered. As the
code shows, you iterate over the view using a standard for loop.

LISTING 6-17:	 (continued)

6Reading and
Writing Files

Contents at a Glance
CHAPTER 1:	 Filing Information with the Streams Library 683

Seeing a Need for Streams. 684
Programming with the Streams Library. . 686
Handling Errors When Opening a File . . 693
Flagging the ios Flags . . 695

CHAPTER 2:	 Writing with Output Streams. . 697
Inserting with the << Operator. . 698
Formatting Your Output. . 699

CHAPTER 3:	 Reading with Input Streams. . 711
Extracting with Operators . . 712
Encountering the End of File. . 715
Reading Various Types. . 720

CHAPTER 4:	 Building Directories and Contents. 727
Manipulating Directories. . 728
Getting the Contents of a Directory. . 731
Copying Files . . 733
Moving and Renaming Files and Directories. 735

CHAPTER 5:	 Streaming Your Own Classes . . 737
Streaming a Class for Text Formatting. . 738
Manipulating a Stream. . 742

CHAPTER 1 Filing Information with the Streams Library 683

Filing Information with
the Streams Library

You’ve heard of rivers, lakes, and streams, and it’s interesting just how
many common words are used in computer programming. That’s handy,
because it lets programmers use words they already know with similar

meaning. Using common terms makes it easier to visualize abstract concepts in a
concrete way.

Most programmers think of a stream as a file — the type stored on a hard drive,
Universal Serial Bus (USB) flash drive, or Secure Digital (SD) card. But streams go
beyond just files. A stream is any type of data structure that you can access as a
flow of data, essentially a sequence of bytes. Streams are used to access all sorts
of devices, such as smart speakers. Rather than just fill a 500MB data structure
and then drop it onto the hard drive, you write your data piece after piece; the
information goes into the file.

Streams go further than a wide variety of devices, however. Opening an Internet
connection and putting data on a remote computer usually requires a stream-
based data structure. You write the data in sequence, one byte after another, as the
data goes over the Internet like a stream of water, reaching the remote computer.
The data you write first gets there first, followed by the next set of data you write,
and so on.

Chapter 1

IN THIS CHAPTER

»» Seeing the need for a streams library

»» Opening a file

»» Dealing with errors

»» Working with flags to customize your
file opening

684 BOOK 6 Reading and Writing Files

This chapter discusses different kinds of streams available to you, the C++ pro-
grammer. In addition, you discover how to handle errors and use flags to modify
how you open files.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVI\Chapter01 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Seeing a Need for Streams
When you write an application that deals with files, you must use a specific order:

1.	 Open the file.

Before you can use a file, you must open it. In doing so, you specify a filename.

2.	 Access the file.

After you open a file, you either store data into it (this is called writing data to
the file) or get data out of it (this is called reading data from the file).

3.	 Close the file.

After you have finished reading from and writing to a file, you must close the
file.

For example, an application that tracks your stocks and writes your portfolio to a
file at the end of the day might do these steps:

1.	 Ask the user for a name of a file.

2.	 Open the file.

3.	 For each stock object, write the stock data to the file.

4.	 Close the file.

The next morning, when the application starts, it might want to read the infor-
mation back in. Here’s what it might do:

1.	 Ask the user for the name of the file.

2.	 Open the file.

3.	 While there’s more data in the file, create a new Stock object.

Fi
lin

g
In

fo
rm

at
io

n
w

it
h

th
e

St
re

am
s

Li
br

ar
y

CHAPTER 1 Filing Information with the Streams Library 685

4.	 Read an individual stock entry from the file.

5.	 Put the data into the Stock object.

6.	 Close the file.

Here are a couple of reasons to close a file after you’ve finished using it:

»» Other applications might be waiting to use the file. Some operating
systems allow an application to lock a file, meaning that no other applications
can open the file while the application that locked the file is using it. In such
situations, another application can use the file after you close it, but not
until then.

»» When you write to a file, the operating system decides whether to
immediately write the information onto the hard drive or flash drive/SD
card or to hold on to it and gather more information, finally writing it all
as a single batch. When you close a file, the operating system puts all your
remaining data into the file. This is called flushing the file.

You have two ways to write to a file:

»» Sequential access: In sequential access, you write to a file or read from a file
from beginning to end. With this approach, when you open the file, you
normally specify whether you plan to read from or write to the file, but not
both at the same time. After you open the file, if you’re writing to the file, the
data you write gets added continually to the end of the file. Or if you’re
reading from the file, you read the data at the beginning, and then you read
the data that follows, and so on, up to the end.

»» Random access: With random access, you can read and write to any byte in a
file, regardless of which byte you previously read or wrote. In other words,
you can skip around. You can read some bytes and then move to another
portion of the file and write some bytes, and then move elsewhere and write
some more.

Back in the days of the C programming language, several library functions let you
work with files. However, they stunk. They were cumbersome and made life dif-
ficult. So, when C++ came along, people quickly created a set of classes that made
life with files much easier. These people used the stream metaphor we’ve been
raving about. In the sections that follow, you discover how to open files, write to
them, read from them, and close them.

686 BOOK 6 Reading and Writing Files

Programming with the Streams Library
The libraries you use to work with streams are divided into various groups, each
of which requires its own header. The libraries divide input and output into sep-
arate classes, as shown in Figure 1-1. In addition, the kind of input and output
determines which header you use. The libraries also support specific commands
that include cin and cout — the commands you have used for so many purposes
so far.

Now that you have a basic overview of how these various headers and commands
work with the streams library to provide stream output, it’s time to get the details.
The following sections help you understand how to use code to create streams of
data that could go to a file, Internet connection, or some other location, such as a
smart speaker.

Getting the right header file
The streams library includes several classes that make your life much easier.
It also has several classes that can make your life more complicated, mainly

FIGURE 1-1:
Working

with streams
requires use of

the appropriate
headers and
commands.

Fi
lin

g
In

fo
rm

at
io

n
w

it
h

th
e

St
re

am
s

Li
br

ar
y

CHAPTER 1 Filing Information with the Streams Library 687

auxiliary classes that you rarely use. Here are three of the more common classes
that you use:

»» ifstream: This is a stream you instantiate if you want to read from a file. The
if part of the name stands for input file.

»» ofstream: This is a stream you instantiate if you want to write to a file. The of
part of the name stands for output file.

»» fstream: This is a stream you instantiate if you want to both read and write to
a file. The f part of the name stands for file (in a general sense, rather than
specifically for input or output).

Before you can use the ifstream, ofstream, or fstream classes, you #include
<fstream>. As with many C++ classes and objects, you find these classes inside
the std namespace. Thus, when you want to use an item from the streams library,
you must either

»» Prepend its name with std, as in this example:

std::ofstream outfile("MyFile.txt");

»» Include a using directive before the lines where you use the stream classes,
as in this example:

using namespace std;

ofstream outfile("MyFile.txt");

Opening a file
Opening a file means to obtain access to a file on disk. The process of opening a
file returns a variable that allows you to do things with that file, such as read or
write it. You have two options for opening a file:

»» Create a new file: The file doesn’t currently exist, so you must create
a new one.

»» Open an existing file: The file does exist, so you open the existing one
on disk.

Some operating systems treat these two methods as a single entity. The reason is
that when you create a new file, normally you want to immediately start using it,
which means that you want to create a new file and then open it. So the process of
creating a file is often embedded right into the process of opening a file.

688 BOOK 6 Reading and Writing Files

When you open an existing file that you want to write to, you have several choices:

»» Erase the current contents; then write to the file.

»» Keep the existing contents:

•	 Write your information to the end of the file. This is called appending
information to a file.

•	 Write your information to the beginning of the file. This is called prepending
information to a file.

•	 Search for a particular location in the file and then add data at that point.

»» Overwrite all or part of the existing contents by replacing existing information
with new information.

SEPARATING A PATHNAME
Everybody wants to be different and unique. The people who wrote Microsoft’s MS-DOS
operating system, instead of following in the tradition of using Unix’s / for a pathname
separator, decided to use \, thus adding the word backslash to the vocabularies of mil-
lions of people. So today, on Windows, you see such pathnames as C:\MyDataFolder\
MyMessyPath\DifficultToType\LetterToEditor.doc. But on Unix, you see for-
ward slashes, as in /usr/something/LetterToEditor.doc. In case you don’t find
this difference bad enough, think about what the backslash means in a string in C++. It
means that another character follows, and the compiler interprets the two characters
together as something else — a process called escaping the character. For example, \t
means a tab, and \n means a newline character. To create a single backslash, you put
two backslashes, which means that the earlier MS-DOS-style string must look like this if
you use it in a C++ application:

"C:\\MyDataFolder\\MyMessyPath\\DifficultToType\\LetterToEditor.doc"

Yes, you must type every backslash twice if you want the compiler to get the correct
string. But instead of doing this, you have a much better solution. Don’t use backslashes
at all, even if you’re programming for Windows. When you write a C++ application on
Windows, the libraries are smart enough to know that a forward slash works instead of
a backslash. Therefore, you can use this string:

"C:/MyDataFolder/MyMessyPath/DifficultToType/LetterToEditor.doc"

In this book, you see the examples use the forward slash so that they work on both Unix
and Windows.

Fi
lin

g
In

fo
rm

at
io

n
w

it
h

th
e

St
re

am
s

Li
br

ar
y

CHAPTER 1 Filing Information with the Streams Library 689

The FileOutput01 example code, in Listing 1-1, shows you how to open a brand-
new file, write some information to it, and then close it. (But wait, there’s more:
This version works whether you have the newer ANSI-compliant compilers or the
older ones!)

LISTING 1-1:	 Using Code That Opens a File and Writes to It

#include <iostream>
#include <fstream>

using namespace std;

int main() {
 ofstream outfile("../MyFile.txt");
 outfile << "Hi" << endl;
 outfile.close();
 cout << "File Written!" << endl;
 return 0;
}

The short application in Listing 1-1 opens a file called MyFile.txt. (The ../ part
of the file path places the file in the parent directory for the example, which is
the Chapter01 folder; see the “Finding your files” sidebar, in this chapter, for
details.) The application opens the MyFile.txt file by creating a new instance of
ofstream, which is a class for writing to a file. The next line of code writes the
string "Hi" to the file. It uses the insertion operator, <<, just as cout does. In fact,
ofstream is derived from the same class as cout, as shown in Figure 1-1, so any-
thing you can do with cout you can also do with your file. When you finish writing
to the file, you close it by calling the close() method.

If you want to open an existing file and append to it, you can modify Listing 1-1
slightly. All you do is change the arguments passed to the constructor, as follows:

ofstream outfile("MyFile.txt", ios_base::app);

The ios::app item is an enumeration inside a class called ios, and the ios_
base::app item is an enumeration in the class called ios_base. The ios class is
the base class from which the ofstream class is derived. The ios class also serves
as a base class for ifstream, which is for reading files.

690 BOOK 6 Reading and Writing Files

Reading from a file
You can read from an existing file. You perform this task in a manner similar to
using the cin object to read from the keyboard. The FileRead01 example, shown
in Listing 1-2, opens the file created by Listing 1-1 and reads the string back in.

FINDING YOUR FILES
Whenever you open a new file, you must know where the file is, not just what the file
is called. In other words, you need to supply both a path and a filename, not just a file-
name. You can obtain a path for your file in different ways, depending on your appli-
cation. For example, you may be saving all your files in a particular directory; if so, you
would then precede your filenames with that directory (that is, path) name. The string
class makes this easy, as in this code:

const string MyPath = "c:\\GreatSoftwareInc";
string Filename = MyPath + "\\" + "MyFile.txt";
ofstream outfile(Filename);

Also, when you use a constant path, as shown in this example, you may, instead, store
the pathname in an initialization file that lives on your user’s computer, rather than
hardcode it in your application as in this example. You may also include an Options win-
dow where your users can change the value of this path.

Paths can take on other forms. You don’t need to create a full path to your file, which
begins at the root directory of the hard drive and provides a complete description of
every folder needed to access files. It’s also possible to create a relative path to your file,
which means using the current location as a starting point, using one or two periods
as the starting point. Using one period (.) refers to the current directory and using two
periods (..) refers to the parent directory. You can also combine periods.

•	 If you use .\MyData\MyFile.txt (with one period) as a path and the current
directory is C:\GreatSoftwareInc\MyApp, the operating system looks for
MyFile.txt in the C:\GreatSoftwareInc\MyApp\MyData folder.

•	 If you use ..\MyData\MyFile.txt (with two periods) as the path and the current
directory is C:\GreatSoftwareInc\MyApp, the operating system looks for
MyFile.txt in the C:\GreatSoftwareInc\MyData folder.

•	 If you use ..\..\MyData\MyFile.txt (with two sets of two periods) as the path
and the current directory is C:\GreatSoftwareInc\MyApp, the operating system
looks for MyFile.txt in the C:\MyData folder because now you’re moving up two
parent positions in the directory hierarchy.

Fi
lin

g
In

fo
rm

at
io

n
w

it
h

th
e

St
re

am
s

Li
br

ar
y

CHAPTER 1 Filing Information with the Streams Library 691

This example uses the parent directory again as a common place to create, update,
and read files.

LISTING 1-2:	 Using Code to Open a File and Read from It

#include <iostream>
#include <fstream>

using namespace std;

int main() {
 string word;
 ifstream infile("../MyFile.txt");
 infile >> word;
 cout << word << endl;
 infile.close();
 return 0;
}

When you run this application, the string written earlier to the file in
Listing 1-1 — Hi — appears onscreen.

Reading and writing a file
You may notice in Figure 1-1 that there is an fstream class that derives from
iostream, which itself derives from both istream and ostream. Using the fstream
class can save a lot of effort when you need to both read and write a file. The
FileReadWrite01 example, shown in Listing 1-3, demonstrates how to both read
and write the same file without closing the file handle first.

LISTING 1-3:	 Reading and Writing a File Using a Single Handle

#include <iostream>
#include <fstream>

using namespace std;

int main() {
 fstream outfile("../MyFile.txt",
 ios::in | ios::out | ios::trunc);
 outfile << "Hi" << endl;
 outfile.flush();
 (continued)

692 BOOK 6 Reading and Writing Files

 string Data;
 outfile.seekg(0, ios::beg);
 outfile >> Data;
 outfile.close();

 cout << "File Written!" << endl;
 cout << Data << endl;
 return 0;
}

The first part of this example works just like the example in Listing 1-1. You add
opening modes to ensure that the handle works as anticipated: ios::in means
that the file is open for input, ios::out means that the file is open for output, and
ios::trunc means that the file is truncated (the old data is removed) before you
add new data. Instead of closing the file, you call flush(), which ensures that the
data actually appears on disk.

The example then creates an input string, Data, to receive information from the
file. Before you can look at the file data, however, you must reposition the file
pointer to point to the beginning of the file by using seekg(). A file pointer tells
you the place where you will either read or write in a file. When you initially write
to the file, the file pointer is at the end of the file, so to read the file you must
reposition it to the beginning of the file. Notice that you now read the data just as
you did in Listing 1-2.

Working with containers
You’re not very likely to write single bits of data to a file in most cases. You usu-
ally want to work with something more complicated, like a container (Book 5,
Chapter 6 tells you about various kinds of containers). The basic idea is to combine
the file techniques in this chapter with the container techniques shown in Book 5,
Chapter 6 to create an application that works with containers. Listing 1-4 shows
the OutputVector example that demonstrates how to perform this task.

LISTING 1-4:	 Saving a Vector to Disk

#include <iostream>
#include <fstream>
#include <vector>

using namespace std;

LISTING 1-3:	 (continued)

Fi
lin

g
In

fo
rm

at
io

n
w

it
h

th
e

St
re

am
s

Li
br

ar
y

CHAPTER 1 Filing Information with the Streams Library 693

int main() {
 vector<string> MyData;
 MyData.push_back("One");
 MyData.push_back("Two");

 ofstream outfile("../MyData.txt");
 for (Element : MyData)
 outfile << Element << endl;
 outfile.close();
 cout << "File Written!" << endl;
 return 0;
}

The example begins by creating a vector, MyData, that stores two strings. It then
opens a file for output and uses a for loop to process the MyData elements one at a
time. Each element appears on a separate line, which allows you to read the input
file one line at a time to recreate the original vector from the disk file.

Handling Errors When Opening a File
When you open a file, all kinds of things can go wrong. A file lives on a physical
device — a fixed disk, for example, or perhaps a flash drive or SD card — and you
can run into problems when working with physical devices. For example:

»» Part of the disk might be damaged, causing an existing file to become
corrupted.

»» You might run out of disk space.

»» The directory doesn’t exist.

»» Your application doesn’t have the right permissions to create a file.

»» Removable media is missing.

»» Network connection is down.

»» File is locked.

»» The filename was invalid — that is, it contained characters that the operating
system doesn’t allow in a filename, such as * or ?.

694 BOOK 6 Reading and Writing Files

If you try to open a file for writing by specifying a full path and filename but
the directory does not exist, the computer responds differently, depending on the
operating system you’re using. If you’re unsure how your particular operating
system will respond, try writing a simple test application that tries to create and
open a nonexistent path like /abc/def/ghi/jkl/abc.txt. Then one of the fol-
lowing will happen:

»» The operating system will generate an error (the default for Windows).

»» The operating system will create the required path and file.

If you want to determine whether the ostream class was unable to create a file,
you can call its fail() method. This method returns true if the object couldn’t
create the file. That’s what happens when a directory doesn’t exist. The Directo-
ryCheck01 example, shown in Listing 1-5, demonstrates an example of using the
fail() method.

LISTING 1-5:	 Returning True When ostream Cannot Create a File

#include <iostream>
#include <fstream>
using namespace std;
int main()
{
 ofstream outfile("/abc/def/ghi/MyFile.txt");
 if (outfile.fail()) {
 cout << "Couldn't open the file!" << endl;
 return 0;
 }
 outfile << "Hi" << endl;
 outfile.close();
 return 0;
}

When you run this code, you should see the message Couldn't open the file!
when your particular operating system doesn’t create a directory. If it does, your
computer will open the file and write Hi to it.

As an alternative to calling the fail() method, you can use an operator available
in various stream classes. This is !, fondly referred to as the bang operator, and
you would use it in place of calling fail(), as in this code:

if (!outfile)
{

Fi
lin

g
In

fo
rm

at
io

n
w

it
h

th
e

St
re

am
s

Li
br

ar
y

CHAPTER 1 Filing Information with the Streams Library 695

 cout << "Couldn't open the file!" << endl;
 return 0;
}

Like any good application, your application should do two things:

1.	 Check whether a file creation succeeded.

2.	 If the file creation failed, handle it appropriately. Don’t just print a horrible
message like Oops! Aborting!. Instead, do something friendlier — such as
presenting a message telling users that there’s a problem and suggesting that
they might free more disk space. (There are other reasons not covered in this
book, such as lack of rights to the area of disk where the file is written — you
need to perform application testing to locate all the possible reasons a file
creation might fail and then provide error handling for each potential issue.)

Flagging the ios Flags
When you open a file by constructing a stream instance, you can modify the way
the file will open by supplying flags. In computer terms, a flag is simply an indica-
tor whose presence or lack of presence tells a function how to do something. The
flag appears in the constructor when working with a stream.

A flag looks like ios_base::app. This particular flag means that you want to write
to a file, but you want to append to any existing data that may already be in a file.
You supply this flag as an argument of the constructor for ofstream, as shown
here:

ofstream outfile("AppendableFile.txt", ios_base::app);

You can see the flag as a second parameter to the constructor. Other flags exist
besides app, and you can combine them by using the or operator, |. Following is
a list of the available flags:

»» ios_base::ate: Use this flag to go to the end of the file after you open it.
Normally, you use this flag when you want to append data to the end
of the file.

»» ios_base::binary: Use this flag to specify that the file you’re opening will
hold binary data — that is, data that does not represent character strings.

»» ios_base::in: Specify this flag when you want to read from a file.

»» ios_base::out: Include this flag when you want to write to a file.

696 BOOK 6 Reading and Writing Files

»» ios_base::trunc: Include this flag if you want to wipe out the contents of a
file before writing to it.

»» ios_base::app: Include this flag if you want to append to the current file
pointer position of the file (which is at the beginning when you first open the
file). It’s the opposite of trunc — that is, the information that’s already in the
file when you open it will stay there.

The FileOutput02 example, shown in Listing 1-6, shows how to use a flag to
append information to the output of Listing 1-1.

LISTING 1-6:	 Appending to an Existing File

#include <iostream>
#include <fstream>

using namespace std;

int main() {
 string filename = "../MyFile.txt";
 ifstream check(filename);
 if (!check) {
 cout << "File doesn't exist.";
 return -1;
 } else {
 check.close();
 }

 fstream datafile(filename, ios_base::app);
 datafile << " There" << endl;
 datafile.close();
 cout << "File Written!" << endl;
 return 0;
}

This example begins by checking for the existence of the file. If the file doesn’t
exist (or you don’t have permission to access it, making the file invisible to the
application), the application won’t create it to write to it. You can use this tech-
nique whenever you want to ensure that a file exists before you attempt to add
data to it.

If the file exists, you want to close the file handle to it before you write to it by
calling check.close(). You can then reopen the file for appending by adding the
ios_base::app flag. The example outputs some additional text and closes the file.

CHAPTER 2 Writing with Output Streams 697

Writing with Output
Streams

Years ago, it was possible to have a personal computer with 3,000 bytes of
memory. (Yes, that’s three thousand bytes, not 3MB.) As an option, this
computer came with a floppy disk drive that sat outside it. It didn’t have

a hard drive. Therefore, if you didn’t have a hard drive but you wanted to use an
application, you had to load the application from a floppy, type its name, and
press Enter!

Nowadays, the notion of a computer without permanent storage is unthinkable.
Not only do your applications appear in permanent storage in the form of files, but
your applications also create files to store in permanent storage. In this chapter,
you see the different ways you can write to a file in any permanent storage loca-
tion: hard drive, removable device, network, online, or wherever else permanent
storage is found.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVI\Chapter02 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Chapter 2

IN THIS CHAPTER

»» Using the insertion operator

»» Formatting your output generally and
with flags

»» Specifying precision and setting field
widths

»» Ensuring data safety with locked
streams

698 BOOK 6 Reading and Writing Files

Inserting with the << Operator
Writing to a file is easy in C++. You’re probably already familiar with how you can
write to the console by using the cout object, like this:

cout << "Hey, I'm on TV!" << endl;

The cout object is a file stream. So, if you want to write to a file, you can do it the
same way you would with cout: You just use the double-less-than symbol, called
the insertion operator, like this: <<.

If you open a file for writing by using the ofstream class, you can write to it by
using the insertion operator. The FileWrite01 example, shown in Listing 2-1,
demonstrates how to perform this task.

LISTING 2-1:	 Using Code to Open a File and Write to It

#include <iostream>
#include <fstream>

using namespace std;

int main() {
 ofstream outfile("../outfile.txt");
 outfile << "Look at me! I'm in a file!" << endl;

 int x = 200;
 outfile << x << endl;

 outfile.close();
 cout << "File Written" << endl;
 return 0;
}

OPERATING THE INSERTION OPERATOR
The insertion operator, <<, is an overloaded operator function. Inside the basic_
ostream class, you can find several overloaded forms of the << operator function. Each
one provides input for a basic type as well as for some of the standard C++ classes, such
as string or one of its base classes. (Most libraries that ship with compilers are written
by compiler vendors — who may implement their code slightly differently but get the
same results.)

W
ri

ti
ng

 w
it

h
O

ut
pu

t
St

re
am

s

CHAPTER 2 Writing with Output Streams 699

The first line inside main() creates an instance of ofstream, passing to it the
name of a file called outfile.txt. The code then writes to the file, first giving it
the string Lookit me! I'm in a file!, then a newline, then the integer 200, and
finally another newline. After that, the code closes the file.

Formatting Your Output
If you’re saving lists of numbers to a file, you may find that the process works
better if the numbers are formatted in various ways. For example, you may want
them all aligned on the right; or you might want your floating-point numbers to

PLACING DATA IN SPECIFIC FOLDERS
Sometimes you want to place data in a specific common folder, such as the current
working directory — the directory used by the application. C++ provides a method to
obtain this information: getcwd(). This method appears in the <direct.h> header.
Using the getcwd() method is relatively straightforward. You create a place to put
the information, called a buffer, and then ask C++ to provide the information. The
GetWorkingDirectory example demonstrates how to perform this task, as shown
here:

#include <iostream>
#include <direct.h>

using namespace std;

int main() {
 char CurrentPath[PATH_MAX];
 getcwd(CurrentPath, PATH_MAX);
 cout << CurrentPath << endl;
 return 0;
}

As output, you should see the name of the directory that contains the application, such
as C:\CPP_AIO4\BookVI\Chapter02\GetWorkingDirectory. The MAX_PATH con-
stant is the maximum size that you can make a path. So, what this code is saying is to
create a char array that is the size of MAX_PATH. Use the resulting buffer to hold the
current working directory (which is where the name of the method getcwd() comes
from). You can then display this directory onscreen or use it as part of the path for your
output stream.

700 BOOK 6 Reading and Writing Files

have a certain number of digits to the right of the decimal point. There are three
elements to setting these formats:

»» Format flags: A format flag is a general style that you want your output to
appear in. For example, you may want floating-point numbers to appear in
scientific mode, or you may want to be able to print the words true and false
for Boolean values rather than their underlying numbers. To do these tasks,
you specify format flags.

»» Precision: This refers to how many digits are on the right of the decimal point
when you print floating-point numbers.

»» Field width: This refers to how much space the numbers take (both floating
point and integer). This feature allows you to align all your numbers.

The following sections discuss each of these elements. You can use format flags,
along with precision and width specifiers, when writing to your files or outputting
to the screen using cout. Because cout is a stream object in the iostream hierar-
chy, it accepts the same specifiers as output files.

Formatting with flags
Format flags enable you to tell the compiler how to output data you provide. To
use the format flags, you call the setf() method for the stream object. (This can
be either your own file object or the cout object.) For example, to turn on scientific
notation, you would do this:

cout.setf(ios_base::scientific);
cout << 987654.321 << endl;

To turn off scientific mode, you call the unsetf() method:

cout.unsetf(ios_base::scientific);
cout << 987654.321 << endl;

If you’re using your own file, you use code similar to that shown in Listing 2-2, as
found in the FileWrite02 example.

LISTING 2-2:	 Writing Formatted Output

#include <iostream>
#include <fstream>

W
ri

ti
ng

 w
it

h
O

ut
pu

t
St

re
am

s

CHAPTER 2 Writing with Output Streams 701

using namespace std;

int main() {
 ofstream myfile("../numbers.txt");
 myfile.setf(ios_base::scientific);
 myfile << 154272.0 << endl;

 myfile << hex << showbase << 154272 << endl;

 myfile.unsetf(ios_base::hex);
 myfile << 154272 << endl;
 myfile.close();

 cout << "File Written" << endl;
 return 0;
}

When you run this code for writing to a file, the numbers.txt file contains the
following output:

1.542720e+005
0x25aa0
154272

Each of the ios_base flags exists both as a format specifier and as a manipula-
tor. (Don’t worry about the precise differences for right now; Book 6, Chapter 5
explains manipulators in detail.)

The example begins by opening the file, setting the ios_base::scientific flag
using setf(), and then outputting a floating-point value. Instead of using setf(),
the next line uses the manipulator form of the hex flag to output an integer value.
To see the hexadecimal value with the required base of 0x, you include the show-
base flag. Finally, the example uses unsetf() to remove the ios_base::hex flag
and outputs the same integer value as before. Whether you use the format speci-
fier or the manipulator form of a flag, the flag remains set until you unset it.

Table 2-1 tells about each of the flags you can use. Note that some flags affect
only text, some affect only integers, and some affect only floating-point values.
Setting a flag that doesn’t affect a particular value type you want to output means
that the value appears in its default form. However, you can or flags together
using the | symbol to configure the output for multiple types.

702 BOOK 6 Reading and Writing Files

TABLE 2-1	 ios_base Formatting Flags
Flag Type Description

boolalpha Independent Setting this flag causes Boolean variables to write with the words true or
false (or the equivalent words for your particular locale). Clearing this flag
causes Boolean variables to write 0 for false or 1 for true. (The default is
for this flag to be cleared.)

dec Numerical Base When you set this flag, your integers will appear as decimal numbers. To
turn this off, you turn on a different base, either hex (for hexadecimal) or
oct (for octal).

fixed Float Format This flag specifies that, when possible, the output of floating-point
numbers will not appear in scientific notation. (Large numbers always
appear as scientific notation, whether you specify scientific or fixed.)

hex Numerical Base With this flag, all your integers appear in hexadecimal format. To turn this
off, choose a different base — dec or oct.

internal Adjustment The text is padded to fill an output field using a specific fill character.

left Adjustment When you turn on this flag, all numbers will be left-aligned with a width
field. (See “Setting the width and creating fields,” later in this chapter, for
information on how to set the width.)

oct Numerical Base When you turn on this flag, your integers will appear in octal format.

right Adjustment With this flag, all your numbers will be right-aligned with a width field.

scientific Float Format When you specify this flag, your floating-point numbers always appear in
scientific notation.

showbase Independent When you turn on this flag and print an integer, the integer will be
preceded with a character that represents the base — decimal,
hexadecimal, or octal. That can be good because the number 153 can
represent 153 in decimal or 153 in hexadecimal (which is equivalent to
339 in decimal) or 153 in octal (which is equivalent to 107 in decimal).

showpoint Independent With this flag, your floating-point numbers have a decimal point, even if
they happen to be whole numbers. (That is, a floating-point variable that
contains 10.0 will print as 10. with a decimal point after it. Without this
flag, it will just print as 10 with no decimal point.)

showpos Independent Normally, a negative number gets a minus sign before it, and a positive
number gets no sign before it. But when you turn on this flag, each of
your positive numbers will get a plus sign before it.

skipws Independent Skips the leading white space in some output operations so that left-
aligned text is actually left aligned.

unitbuf Independent When you turn this on, your output will flush after each output operation.
In other words, the library doesn’t accumulate a certain amount of output
before writing it in batches. Instead, the library writes all the output out
each time you use the insertion operator, <<.

W
ri

ti
ng

 w
it

h
O

ut
pu

t
St

re
am

s

CHAPTER 2 Writing with Output Streams 703

Table 2-2 shows the manipulator forms of some flags. The table shows three
columns: the flag, the manipulator to turn on the flag, and the manipulator to
turn off the flag.

The scientific flag and fixed flag are opposites: fixed turns off scientific,
and scientific turns off fixed. The default if you don’t specify either is fixed.
You don’t use these flags together, such as, cout.setf(ios_base::scientific
| ios_base::fixed);, because doing so can create some unusual and unusable
results.

Six manipulators aren’t in Table 2-2 because they don’t have a demanipulator.
Instead, they are three-way:

»» Bases: dec, hex, and oct. Only one base can be active at a time. Activating a
base automatically switches off the other bases.

»» Alignments: internal, left, and right. Only one alignment can be active at
a time. Activating an alignment automatically switches off the other alignments.

Flag Type Description

uppercase Independent When you write hexadecimal or scientific numbers, the various letters
in the number appear as uppercase. Thus, the letters A, B, C, D, E, and F
will appear in capitals in a hexadecimal number, and the E representing
the exponent in scientific notation prints as a capital E. When this is not
set, you get lowercase letters for hexadecimal numbers and e for the
exponent in scientific notation.

TABLE 2-2	 Using ANSI-Standard Manipulators and Demanipulators
Flag Manipulator Demanipulator

boolalpha boolalpha noboolalpha

showbase showbase noshowbase

showpoint showpoint noshowpoint

showpos showpos noshowpos

skipws skipws noskipws

uppercase uppercase nouppercase

fixed fixed scientific

scientific scientific fixed

704 BOOK 6 Reading and Writing Files

Specifying a precision
When you write floating-point numbers to a file or to cout (that is, numbers
stored in float or double variables), having all the numbers print with the same
number of digits to the right of the decimal point is often handy. This feature is
called the precision.

Don’t confuse this use of the word precision with the idea that double variables
have a greater precision than float variables. This use of precision specifies the
number of digits printed to either the file or cout. The value inside the variable
doesn’t change, nor does the precision of the variable’s type.

To set or read the precision, call the stream’s precision() function. If you call
precision() with no parameters, you can find out the current precision. Or to set
the precision, pass a number specifying how many digits you want to appear to
the right of the decimal point. For example, the following line sets the precision
of an output:

cout.precision(4);

The output of cout << 0.33333333 << endl; would take this rounded off form:

0.3333

If you don’t set the precision, the stream will have a default precision, probably
six, depending on your particular compiler. Precision has an interesting effect
if you use it with the showpoint format flag. In the scientific community, these
three numbers don’t have the same precision, even though the first two have the
same number of digits to the right of the decimal point:

3.5672
8432.2259
0.55292

Scientists consider precision to mean the same number of total digits, not count-
ing leftmost 0’s to the left of the decimal (as in the final of the three). Therefore,
a scientist would consider the three following numbers to have the same precision
because they all have four digits. (Again, for the final one, you don’t count the 0
because it’s to the left of the decimal point.)

3.567
8432.
0.1853

W
ri

ti
ng

 w
it

h
O

ut
pu

t
St

re
am

s

CHAPTER 2 Writing with Output Streams 705

It also doesn’t count rightmost zeros used as placeholders. For example 123,000
normally only has three significant digits: 1, 2, and 3. The three zeros are place-
holders and don’t provide any interesting information. However, 123,000.0 has
seven significant digits because the .0 tells something about the precision of the
number.

Scientific folks call these significant digits. You can accomplish significant digits
with an output stream by combining precision with the showpoint flag. The
PrecisionFunction example, shown in Listing 2-3, contains an example of
showpoint and precision() working together in perfect harmony.

LISTING 2-3:	 Using the Precision Function to Work with the showpoint Format Flag

#include <iostream>

using namespace std;

int main() {
 cout.setf(ios_base::showpoint);
 cout.precision(4);

 for (int i=1; i<=10; i++) {
 cout << 1.0 / i << endl;
 }

 cout << "\n" << 2.0 << endl;
 cout << 12.0 << endl;
 cout << 12.5 << endl;
 cout << 123.5 << endl;
 cout << 1234.9 << endl;
 cout << 12348.8 << endl;
 cout << 123411.5 << endl;
 cout << 1234111.5 << endl;

 // Precision with zeros on the right.
 cout << "\n" << 123000 << endl;
 cout << 123000.0 << endl;
 cout << 123.0e3 << endl;

 // Only available C++ 17 and above
 // Use the -fext-numeric-literals switch.
 cout << 0x1E078p0 << endl;
 return 0;
}

706 BOOK 6 Reading and Writing Files

When you run this application, here’s the output you see:

1.000
0.5000
0.3333
0.2500
0.2000
0.1667
0.1429
0.1250
0.1111
0.1000

2.000
12.00
12.50
123.5
1235.
1.235e+004
1.234e+005
1.234e+006

123000
1.230e+005
1.230e+005
1.230e+005

The preceding output has a couple of interesting cases:

»» The lines that read:

1.235e+004
1.234e+005
1.234e+006

of the preceding output are scientific notation to maintain four significant
digits.

»» The last four lines show how C++ handles int versus float values. The float
values come in three forms: default, scientific notation, and hexadecimal
notation with an exponent (p0). This last form is only available in C++ 17 and
above, and you must include the -fext-numeric-literals switch on the
Other Compiler Options tab of the Global Compiler Settings dialog to use it. If
you wanted to make the int into a float, you’d need to replace 123000 with
(float)123000.

W
ri

ti
ng

 w
it

h
O

ut
pu

t
St

re
am

s

CHAPTER 2 Writing with Output Streams 707

»» The ninth line from the end, 1235., is rounded up from 1234.9 because of
this line:

cout << 1234.9 << endl;

The precision() function has an associated manipulator. Instead of calling
precision() as a function, you can use it as a manipulator. But the manipulator’s
name is slightly different: It’s setprecision(). To use it, you include this header:

#include <iomanip>

These two lines cause the same thing to happen:

cout.precision(4);
cout << setprecision(4);

Setting the width and creating fields
This is where you can start making the numbers and data all nice and neat by
aligning them in columns. To align your data, use the width() method for the
stream or cout, passing the width of the field, like this:

cout.width(10);

Then, when you print a number, think of the number as sitting inside a field 10
spaces wide, with the number wedged against the right side of these 10 spaces.
For example, look at this:

cout.width(10);
cout << 20 << endl;

This code produces this output:

 20

Although seeing this fact in the printed text is hard, this 20 is pushed to the right
of a field of spaces 10 characters wide. That is, because the 20 takes two character
spaces, there are eight spaces to the left of it.

If you prefer, you can have the numbers pushed to the left of the field. To do so,
set the left format flag by using setf() or use the left manipulator.)

708 BOOK 6 Reading and Writing Files

For the width manipulator, setw(), you can alternatively add #include
<iomanip> and then use the manipulator:

cout << setw(10);

Because of some oddities in the libraries, when you set the width, it stays that way
only for the next output operation. Call it forgetful, if you will. Therefore, suppose
you have code that looks like this:

cout.width(10);
cout << 20 << 30 << endl;

Only the first output, 20, has a field width of 10. The 30 just takes as much space
as it needs. Therefore, these lines of code produce this output, which is probably
not what most people would intend:

 2030

This is why it’s preferable to use the manipulator form: You precede each output
item with a width specification. Try this instead:

cout << setw(10) << 20 << setw(10) << 30 << endl;

which writes this to cout:

 20 30

The WidthFunction example in Listing 2-4 shows the great things you can do
when you set the width.

LISTING 2-4:	 Setting the Width of a Field Using the setw Manipulator or Width
Function

#include <iostream>
#include <iomanip>
#include <fstream>

using namespace std;

int main() {
 ofstream sals("../salaries.txt");

W
ri

ti
ng

 w
it

h
O

ut
pu

t
St

re
am

s

CHAPTER 2 Writing with Output Streams 709

 sals << setprecision(2) << fixed << left;
 sals << setw(20) << "Name" << setw(10) << "Salary";
 sals << endl;

 // 19 hyphens, one space
 sals << "------------------- ";

 // 10 hyphens
 sals << "----------" << endl;

 sals << setw(20) << "Hank Williams";
 sals << setw(10) << 28422.82 << endl;
 sals << setw(20) << "Buddy Holly";
 sals << setw(10) << 39292.22 << endl;
 sals << setw(20) << "Otis Redding";
 sals << setw(10) << 43838.55 << endl;
 sals.close();

 cout << "File Written" << endl;
 return 0;
}

When you run Listing 2-3, you get a file called salaries.txt, like this:

Name Salary
------------------- ----------
Hank Williams 28422.82
Buddy Holly 39292.22
Otis Redding 43838.55

The first field, Name is 20 characters wide. You use only 19 hyphens to give the
appearance of a space between the two fields. In fact, the two fields are wedged
against each other with no space between them.

If you wanted to run Listing 2-4 but display each salary in scientific for-
mat, as in 2.8e+04, you need to use sals.setf(ios::scientific); and sals.
setf(ios::left); after removing the fixed modifier.

The example uses the left format flag so that the data in each field is aligned to
the left end of the field. By default, each field is aligned to the right.

710 BOOK 6 Reading and Writing Files

Although you can specify the field width, you’re actually specifying a minimum. If
the characters in the output are less than the field width, the runtime library will
pad them with spaces to make them that minimum size. If they are bigger than
that width, the library doesn’t chop them off to make them fit. If you add letters
to the Hank Williams line in Listing 2-4 (like this: sals << setw(20) << "Hank
WilliamsABCDEFGHIJ";), the output looks like the following example instead. The
Hank Williams line runs beyond the 20 characters into the next field.

Name Salary
------------------- ----------
Hank WilliamsABCDEFGHIJ28422.82
Buddy Holly 39292.22
Otis Redding 43838.55

CHAPTER 3 Reading with Input Streams 711

Reading with Input
Streams

Y
ou have a file that you wrote to, but you need to read from it. After all, what
good is a file if it’s just sitting on your hard drive collecting dust?

In this chapter, you learn how you can read from a file. This task begins by extract-
ing the data. You can perform this task using extraction operators, just as you use
insertion operators in the previous chapter.

Reading a file is tricky because you can run into some formatting issues. For
example, you may have a line of text in a file with a sequence of 50 digits. You
may not know whether those 50 digits correspond to 50 one-digit numbers,
25 two-digit numbers, or some other combination. When you create the file,
you probably know its format, but the fun part is getting your C++ application
to properly read from files you didn’t create. The file might contain 25 two-digit
numbers, in which case you make sure that the C++ code doesn’t just try to read
one enormous 50-digit number.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVI\Chapter03 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Chapter 3

IN THIS CHAPTER

»» Reading with the extraction
operators

»» Dealing with the end of the file

»» Reading various data types

»» Reading data that is formatted
with text

712 BOOK 6 Reading and Writing Files

Extracting with Operators
When you read from a file, you can use the extraction operator, >>. This operator
is easy to use, as long as you understand that using the extraction operator does
come with some caveats. For example, suppose you have a file called Numbers.txt
with the following text on one line (you need the Numbers.txt file to work with
this chapter’s example code):

100 50 30 25

You can easily read these numbers into memory using the FileRead01 example
code shown in Listing 3-1.

LISTING 3-1:	 Reading a File Into Memory Using the Extraction Operator

#include <iostream>
#include <fstream>
#include <string.h>

using namespace std;

int main() {
 string weight;
 string height;
 string width;
 string depth;

 ifstream MyFile("../Numbers.txt");
 if (!MyFile) {
 cerr << "File couldn't be opened!" << endl;
 cerr << "Error Code: " << strerror(errno) << endl;
 return -1;
 }

 MyFile >> weight;
 MyFile >> height;
 MyFile >> width;
 MyFile >> depth;

 cout << "Weight = " << weight << "\r\n";
 cout << "Height = " << height << "\r\n";
 cout << "Width = " << width << "\r\n";
 cout << "Depth = " << depth;

Re
ad

in
g

w
it

h
In

pu
t

St
re

am
s

CHAPTER 3 Reading with Input Streams 713

 MyFile.close();
 return 0;
}

Each of the variables holds just one string element. To read all four numbers, you
need to extract the data four times. The input file, Numbers.txt, has its numbers
separated with spaces. You can also separate them with newline characters, like
this:

100
50
30
25

The application doesn’t care. It looks for white space, which is any number of
spaces, tabs, and newlines. You could format the data so it looks like the following
example, and the application will still read them in correctly.

100 50
 30
 25

When you are dealing with the standard input object, cin, the same rules about
white space apply: If you read in four numbers, as in the following example, the
cin object, like the ifstream object, will separate the numbers based on the white
space.

Users make common mistakes that can cause your application to fail or possibly
display incorrect information:

»» If the user accidentally inserts a space into the input stream, whether from the
console or a file, the computer sees the space as the beginning of a
new string.

»» Sometimes users forget to add white space, which means that two values
mash together and the computer sees them as a single entity.

»» A user might try to separate values using commas, semi-colons, or other
non-white-space characters.

»» Missing values, where the user simply leaves the data out, is also a problem.

Consequently, when you encounter problems with the input data, looking for
additional white space, missing white space, or missing values is a good place to
begin.

714 BOOK 6 Reading and Writing Files

When you read information from a file, make sure that you clearly define the
information order. In other words, make sure that you have agreed upon a proto-
col for the information. Otherwise, you’ll likely end up with errors and mistakes.

This example includes error trapping for opening the file. This error trapping
requires the addition of #include <string.h> (note the inclusion of the .h). After
creating MyFile and opening the file with the constructor, the code checks for a
file handle in MyFile. If MyFile is empty, the code outputs error information to
cerr, the standard error output, and provides a human-readable output error,
such as No such file or directory.

If the file opening process succeeds, the code reads in each of the data values using
the extraction operator. It then outputs the values in a nicely formatted form and
closes the file. When you run the application, you see the result of reading the file:

Weight = 100
Height = 50
Width = 30
Depth = 25

WHAT’S A PROTOCOL?
You have a list of numbers: 1600 20500 1849 20240. No matter how you look at these
numbers, they don’t mean anything. You need a protocol. As defined in this chapter, a
protocol is simply a rule for how to format and order data. It describes the required con-
tent of a data stream. A protocol in general defines rules for exchanging information of
any sort between computers (think of it as a diplomatic role).The two systems negotiate
the exchange of data based on standardized rules.

As it happens, the first number in the set of numbers is the street address of the White
House in Washington, DC, and the second number is the zip code for the White House.
The third number is the street address of the main office for the National Park Service
headquarters, and the fourth is the National Park Service zip code.

Further, a protocol dictates how you respond after receiving data. You may send back a
single number 1, which means that you received the data properly, and the other party
may send a single 0, which means that you won’t receive further information. That’s a
protocol, and protocols are useful when reading data, whether it’s from a file or over
the Internet.

Re
ad

in
g

w
it

h
In

pu
t

St
re

am
s

CHAPTER 3 Reading with Input Streams 715

Encountering the End of File
Files end. The ending creates a condition called the EOF, which stands for End of
File. When you read from a file, you need to know when you reach the end. If you
know the file size, you can write your application so that it knows exactly when to
stop. So here are the cases covered in this section:

»» Read to the end of the file by knowing the file size.

»» Read until the EOF marker without knowing the file size.

You, the programmer, know the format of the file you’re reading. (Perhaps your
application even wrote the file and now you’re writing the part of the application
that reads it.) Your format might start with a size entry. The application begins by
reading this number and configuring itself to read the specified number of entries.
This approach requires the file creator to start by writing the size before the rest
of the data and to agree to this format.

Using the record count approach
The record count approach has the advantage of letting you know from the outset
how many records to read. The FileRead02 example consists of three source code
files (Book 1, Chapter 7 tells you how to employ multiple files in a single project.
You see main.cpp in Listing 3-2. It provides the coordination to write two files
and then read them back into memory. Listing 3-3 shows the writedata.cpp code
used to write data to disk. Listing 3-4 shows the readdata.cpp code used to read
the data from disk.

LISTING 3-2:	 Coordinating the Writing and Reading Process

#include <iostream>

using namespace std;

int WriteFile(string filename, int count, int start);
int ReadFile(string filename);

int main() {
 cout << "Writing the files." << endl;
 if (WriteFile("../nums.txt", 5, 100) == -1)
 return -1;
 cout << "Files written successfully." << endl;

(continued)

716 BOOK 6 Reading and Writing Files

 cout << "\nReading the files.\n" << endl;
 if (ReadFile("../nums.txt") == -1)
 return -1;
 cout << "\nFiles read successfully." << endl;

 return 0;
}

LISTING 3-3:	 Writing the Data to Disk with the Number of Records

#include <iostream>
#include <fstream>
#include <string.h>

using namespace std;

int WriteFile(string filename, int count, int start) {
 ofstream outfile(filename);
 if (!outfile) {
 cerr << "File couldn't be opened!" << endl;
 cerr << "Error Code: " << strerror(errno) << endl;
 return -1;
 }

 outfile << count << endl;

 for (int i=0; i<count; i++) {
 outfile << start + i << endl;
 }

 outfile.close();
 return 0;
}

LISTING 3-4:	 Reading the Data from Disk Using the Number of Records

#include <iostream>
#include <fstream>
#include <string.h>

LISTING 3-2:	 (continued)

Re
ad

in
g

w
it

h
In

pu
t

St
re

am
s

CHAPTER 3 Reading with Input Streams 717

using namespace std;

int ReadFile(string filename) {
 ifstream infile(filename);
 if (!infile) {
 cerr << "File couldn't be opened!" << endl;
 cerr << "Error Code: " << strerror(errno) << endl;
 return -1;
 }

 int count = 0;
 infile >> count;
 cout << "File: " << filename << endl;
 cout << "This file has " << count << " items." << endl;

 int num = 0;
 for (int i=0; i<count; i++) {
 infile >> num;
 cout << num << endl;
 }

 infile.close();
 return 0;
}

All three of the code files include rudimentary error handling. It’s important to
consider what errors might happen (even those that seem impossible) and then
add code to deal with them. The manner in which this application is written
ensures that the data files are at least accessible, but not much else. A production
application would also ensure that the data is in the correct format, order, and
range (among other application-specific checks).

The data writing process begins by writing the number of records as the first entry
in nums.txt. It then uses a for loop to write the specified number of values to
disk. The values start at the point specified by start and end after reaching count.

The data reading process begins by opening the file and reading the first record,
which should be the number of items in the file. The code outputs the filename
and record count for you. This part of the example uses a for loop to read the indi-
vidual values and display them on screen. When you run this application, you’ll
see the following output.

718 BOOK 6 Reading and Writing Files

Writing the files.
Files written successfully.

Reading the files.

File: ../nums.txt
This file has 5 items.
100
101
102
103
104

Files read successfully.

Using the EOF check approach
Another possibility for reading and writing a file is that you continue read-
ing data from the file until you reach the end of the file. You do this by testing
the istream or ifstream object for the EOF. The FileRead03 example uses the
same approach as the one in the previous section for breaking the code into
three parts. Listing 3-2 has main.cpp (yes, this example uses precisely the same
main() as before), Listing 3-5 contains writedata.cpp, and Listing 3-5 contains
readdata.cpp.

LISTING 3-5:	 Writing the Data to Disk without the Number of Records

#include <iostream>
#include <fstream>
#include <string.h>

using namespace std;

int WriteFile(string filename, int count, int start) {
 ofstream outfile(filename);
 if (!outfile) {
 cerr << "File couldn't be opened!" << endl;
 cerr << "Error Code: " << strerror(errno) << endl;
 return -1;
 }

 for (int i=0; i<count; i++) {
 outfile << start + i << endl;

Re
ad

in
g

w
it

h
In

pu
t

St
re

am
s

CHAPTER 3 Reading with Input Streams 719

 }

 outfile.close();
 return 0;
}

By comparing Listing 3-3 with Listing 3-5, and Listing 3-4 with Listing 3-6,
you can see that this approach uses fewer lines of code and is somewhat simpler
to read. Of course, you don’t get the number of records as an immediate output
either. Whether the extra coding needed to accommodate the number of records
is worthwhile depends on how you use the data. For example, you might need the
number of records to create an array to store the data.

LISTING 3-6:	 Reading the Data from Disk Using EOF

#include <iostream>
#include <fstream>
#include <string.h>

using namespace std;

int ReadFile(string filename) {
 ifstream infile(filename);
 if (!infile) {
 cerr << "File couldn't be opened!" << endl;
 cerr << "Error Code: " << strerror(errno) << endl;
 return -1;
 }

 int num;
 cout << "File: " << filename << endl;

 do {
 infile >> num;
 cout << num << endl;
 } while (!infile.eof());

 infile.close();
 return 0;
}

720 BOOK 6 Reading and Writing Files

The data writing process is about the same in both cases. The only thing that
Listing 3-5 is missing is the number of records output, which amounts to two
lines of code.

However, the data reading process is different. When working with a file that
contains the number of records, you can rely on a for loop and extract the data
a precise number of times. Listing 3-6 shows that you use a do...while loop
to accomplish the same thing when you don’t know the number of records. The
reason you use a do...while loop is to allow processing of a record, and then
immediately check for the EOF marker using eof() before attempting to process
the next record.

You often see files processed using a while loop. The problem with this approach
is that you now have to track a logical variable that specifies when the processing
completes. Using a do...while loop is simpler and less error prone.

Reading Various Types
Reading files may not always be as straightforward for the computer as it is
for humans. The computer needs specific rules for reading a file. The following
sections discuss this issue and provide a demonstration for you to consider.

Understanding data reading issues
Reading a file can get complicated when you want to read spaces. Suppose you
have two strings that you want to write to a file:

"I'll have a steak for dinner."
"I will have the Smiths for dinner, too."

Now suppose you wrote these to a file as one big, long, line to get “I’ll have a steak
for dinner. I will have the Smiths for dinner, too.” Later, you want to read back in
these two strings, but you can’t follow this process:

string first, second;
infile >> first;
infile >> second;

If you do this, the variable first will hold I'll, and the variable second will hold
have because, when you read in strings, the ifstream and istream classes use
spaces to break (or delimit) the strings.

Re
ad

in
g

w
it

h
In

pu
t

St
re

am
s

CHAPTER 3 Reading with Input Streams 721

Even if you could somehow use the ifstream class to go past the spaces, it
wouldn’t know when it has reached the end of the first string because it doesn’t
view a period as anything special. You must write your application to follow this
protocol: A string ends with a period. That protocol is fine, because ending with a
period is the case with these two strings. However, you may need to process just
sequences of words, like this:

"poodle steak eat puddle"
"dinner Smiths yummy"

And then, when you write these two strings to a file, you end up with this text
inside the file:

poodle steak eat puddle dinner Smiths yummy

Or worse, you may get this text, which contains no space between the two strings:

poodle steak eat puddledinner Smiths yummy

When working with data that doesn’t form sentences, you may not be limited to
strings. You could be processing numbers, vectors, special classes, and so on. So,
even though you see words strung together here, you need to think outside the
box. Here’s what you need to do to solve the problem of reading complex data in
various forms:

1.	 Create a protocol. Here are some choices for your protocols:

•	 You can write each string on a separate line, and when you read the file,
you will know that each line is a separate string.

•	 You can delimit each data element with a particular character. Then you
would split your strings based on those delimiters.

2.	 Develop code to implement the same protocol for both reading and writing.

Writing and reading string-type data
When working with strings that form sentences or that you can separate into
groups, your best bet is to work with them as strings separated by newline char-
acters. The WriteReadString example, shown in Listings 3-7 (main.cpp), 3-8
(WriteString.cpp), and 3-9 (ReadString.cpp), writes and reads data (not just
sentences) as elements separated by newline characters and read back in the same
way. This represents the easiest method for writing complex data to disk.

722 BOOK 6 Reading and Writing Files

LISTING 3-7:	 Coordinating the Writing and Reading of Complex Data

#include <iostream>

using namespace std;

void ClearFile(string Filename);
int WriteData(string Filename, string Text);
int ReadData(string Filename);

int main() {
 string const file = "../strings.txt";

 ClearFile(file);
 cout << "Data file cleared." << endl;

 int Result = WriteData(file, "Some data to write.");
 Result = WriteData(file, "Some more data to write.");
 Result = WriteData(file, "Third time's a charm.");
 if (Result == 0)
 cout << "Data written successfully!\n" << endl;

 if (ReadData(file) == 0)
 cout << "\nData read successfully!" << endl;

 return 0;
}

LISTING 3-8:	 Clearing the Data File and Writing Complex Data to It

#include <iostream>
#include <fstream>

using namespace std;

void ClearFile(string Filename) {
 ofstream DataFile;
 DataFile.open(Filename, ios_base::trunc);
 DataFile.close();
}

int WriteData(string Filename, string Text) {
 ofstream DataFile(Filename, ios_base::app);

Re
ad

in
g

w
it

h
In

pu
t

St
re

am
s

CHAPTER 3 Reading with Input Streams 723

 if (DataFile.is_open()) {
 DataFile << Text << endl;
 } else {
 cerr << "Unable to open file." << endl;
 return -1;
 }

 DataFile.close();
 return 0;
}

LISTING 3-9:	 Reading the Complex Data

#include <iostream>
#include <fstream>
#include <string.h>

using namespace std;

int ReadData(string Filename) {
 ifstream DataFile(Filename);
 if (!DataFile) {
 cerr << "File couldn't be opened!" << endl;
 cerr << "Error Code: " << strerror(errno) << endl;
 return -1;
 }

 string Data = "";
 while (getline(DataFile, Data)) {
 cout << Data << endl;
 }

 DataFile.close();
 return 0;
}

Many of the techniques you see in these code listings also appear in the previ-
ous examples of this chapter. However, instead of treating the data as separate
elements, this example works with strings. This difference in data complexity
requires a few changes.

Because the WriteData() function writes data and closes the file each time,
appending the new data to the end of the file (using ios_base::app), you need a

724 BOOK 6 Reading and Writing Files

method of clearing the data file as needed. The ClearFile() function performs
this task by opening the file, truncating it using ios_base::trunc, and closing it
without writing anything to it.

The ReadData() function can’t depend on an EOF check as was used in previous
examples to determine the end of file. This example uses a while loop that checks
the return value from the getline() function. When getline() reaches the EOF,
the eof bit is set (meaning that getline() returns false) and the while loop
ends. Compare this approach to the do...while loop used in Listing 3-6.

Writing and reading structured data
Structured data can appear in quite a few forms, but most of these structured
forms require use of delimiters. A common type of delimited data file is the Comma
Separated Value (CSV). It has a number of protocols to consider, but for the pur-
pose of the example, the data file uses commas between fields and newline char-
acters between rows. The WriteReadStucture example, shown in Listing 3-10,
provides you with a simple view of how to work with this type of data.

LISTING 3-10:	 Writing and Reading Structured Data

#include <iostream>
#include <fstream>
#include <sstream>

using namespace std;

struct Box {
 string Name;
 int Height;
 int Width;
 int Depth;
 double Weight;

 friend ostream& operator << (ostream& Out, Box Data);
};

ostream& operator << (ostream& Out, Box Data) {
 Out << Data.Name << ",";
 Out << Data.Height << ",";
 Out << Data.Width << ",";
 Out << Data.Depth << ",";
 Out << Data.Weight << "\n";

Re
ad

in
g

w
it

h
In

pu
t

St
re

am
s

CHAPTER 3 Reading with Input Streams 725

 return Out;
}

int main() {
 string const file = "../boxes.txt";

 Box SamBox;
 SamBox.Name = "Sam's Box";
 SamBox.Height = 4;
 SamBox.Width = 5;
 SamBox.Depth = 6;
 SamBox.Weight = 7.8;

 ofstream OutFile(file, ios_base::app);
 OutFile << SamBox << endl;
 OutFile.close();

 Box InData;
 int Field = 0;
 string InString;
 stringstream ISS;
 ifstream InFile(file);

 while(getline(InFile, InString, ',')){
 switch (Field) {
 case 0:
 InData.Name = InString;
 break;
 case 1:
 ISS << InString;
 break;
 default:
 ISS << " " << InString;
 break;
 }

 Field++;
 }
 InFile.close();

 ISS >> InData.Height >> InData.Width >> InData.Depth
 >> InData.Weight;

 cout << "Name: " << InData.Name << endl;

(continued)

726 BOOK 6 Reading and Writing Files

 cout << "Height: " << InData.Height << endl;
 cout << "Width: " << InData.Width << endl;
 cout << "Depth: " << InData.Depth << endl;
 cout << "Weight: " << InData.Weight << endl;

 return 0;
}

This example begins by creating a Box structure that contains a number of data
types (making it harder to work with). It then defines an << operator function
to allow easy output of the data to a file. You may see other methods of creating
output for structured data, but this is the simplest approach in most cases. The
main() code begins by opening the file and using the << operator to output the
data to it.

Getting the data read back into a new Box structure, InData, is a little more diffi-
cult. This example makes use of a stringstream, ISS, to allow for easy conversion
from string form to numeric form.

The magic in the approach used in this example is that it relies on getline() to
use a delimited approach to reading the file. Each read stops at either a comma or
a newline. Consequently, each read represents a single field within the data file,
whether that field is part of a new row or not.

When the field is a Name, you can input the data directly into the InData structure.
However, for other fields, the InString input data is actually placed within ISS.
Spaces between entries make it possible for ISS to keep each of the data values
separate. Field keeps track of the current field number so that the switch pro-
cesses each field properly.

After the processing is complete (there is only one record, in this case), the code
uses another form of streaming to send the numeric values from ISS to each of the
InData numeric fields in the correct type. Now that InData contains the original
information, the code produces this output:

Name: Sam's Box
Height: 4
Width: 5
Depth: 6
Weight: 7.8

LISTING 3-10:	 (continued)

CHAPTER 4 Building Directories and Contents 727

Building Directories
and Contents

Native C++ versions before version 17 provide no functions for creating
directories and getting the contents of a directory. (C++ 17 and above pro-
vides access to the filesystem library, but it isn’t implemented in most

compilers yet.)You need to know two points about this situation:

»» There really is a good reason for this lack. C++ is a general-purpose language.
Issues that deal with directories are specific to individual operating systems.
Thus it doesn’t make sense to include such features in C++.

»» Some brave rebels have added some functions — and these functions exist in
most C++ implementations. These additions are important; otherwise, you’d
have to call in to the operating system to create or modify a directory.

C++ has a holdover from the C programming language in the header file stdio.h
that includes functions for renaming and removing files and directories. In addi-
tion, it supports a function used to create a temporary file.

This chapter presents you with ways to manipulate directories and files. (I tested
these routines only for the GNU GCC compiler that comes with the Code::Blocks
product for OS X, Linux, and Windows. If you’re working with a different compiler
or operating system, try the examples out. They probably will work.)

Chapter 4

IN THIS CHAPTER

»» Creating and deleting directories

»» Getting the contents of a directory

»» Copying and moving, and why they
are related

»» Moving and renaming files and why
they are similar

728 BOOK 6 Reading and Writing Files

For the examples in this chapter, you need to add both #include <stdio.h> and
#include <io.h> to the beginning of the source code file. (Please don’t confuse
this file with ios.h. That’s not the right one to use just now.) If you’re working
with a compiler other than Code::Blocks, you’re not guaranteed to find io.h in
your include directory, but you should look for it.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVI\Chapter04 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Manipulating Directories
You have a couple functions to use for creating and deleting directories. These
functions are in the io.h header file.

Creating a directory
If you want to create a directory, you can call the mkdir() function. If the func-
tion can create the directory for you, it returns a 0. Otherwise, it returns a nonzero
value, such as 1. Here’s some sample code (found in the MakeDirectory example)
that uses this function:

#include <iostream>
#include <stdio.h>
#include <io.h>

using namespace std;

int main() {
 if (mkdir("../abc") != 0)
 cout << "Directory not created." << endl;
 else
 cout << "Directory created." << endl;

 return 0;
}

Bu
ild

in
g

D
ir

ec
to

ri
es

 a
nd

Co

nt
en

ts

CHAPTER 4 Building Directories and Contents 729

This example uses a forward slash (/) in the call to mkdir() for compatibility
reasons. In Windows, you can use either a forward slash or a backslash. After
you run this example the first time, you should see a new directory named abc
added to the /CPP_AIO4/BookVI/Chapter04 directory on your system. If you run
the example a second time, you receive the "Directory not created." message
because the directory already exists.

USING THE FILESYSTEM LIBRARY
Most compilers today don’t support the filesystem library, even if you have C++ 17 or
above installed. However, Wandbox (https://wandbox.org/) does provide marginal
support for the filesystem library, so you can begin experimenting with it using the
documentation found at https://en.cppreference.com/w/cpp/filesystem. The
filesystem::path (https://en.cppreference.com/w/cpp/filesystem/path)
support is essential to making the library work. The problem with working on Wandbox
is that you don’t have access to an actual directory. Consequently, you end up experi-
menting with code like this (found in the FileSystem example):

#include <iostream>
#include <filesystem>

using namespace std;
namespace fs = std::filesystem;

int main() {
 fs::path APath(".");
 cout << "Exists: " << fs::exists(APath) << endl
 << "Root Name: " << APath.root_name() << endl
 << "Root Path: " << APath.root_path() << endl
 << "Relative Path: " << APath.relative_path() << endl;
 return 0;
}

Notice that this code simplifies typing the information by creating a namespace variable,
fs, to access the filesystem library. The code begins by creating a path (the example
uses the current path to avoid problems). It then starts querying the path for informa-
tion, such as whether that path exists and the relative path. Unfortunately, the output is
a little disappointing (but at least the current path exists):

Exists: 1
Root Name: ""
Root Path: ""
Relative Path: "."

https://wandbox.org/
https://en.cppreference.com/w/cpp/filesystem
https://en.cppreference.com/w/cpp/filesystem/path

730 BOOK 6 Reading and Writing Files

It would be nice to create an entire directory-tree structure in one fell swoop —
doing a call such as mkdir("/abc/def/ghi/jkl") without having any of the abc,
def, or ghi directories already existing — but each parent directory must exist
before you attempt to create a child directory. The function won’t create a jkl
directory unless the /abc/def/ghi directory exists. That means you have to break
this call into multiple calls: First create /abc. Then create /abc/def, and so on.

If you do want to make all the directories simultaneously, you can use the
system() function, as described in “Using the quick-and-dirty method” section,
later in this chapter. If you execute system("mkdir \\abc\\def\\ghi\\jkl");,
you can make the directory in one fell swoop.

Deleting a directory
To delete a directory, you call the rmdir() function, passing the name of the
directory. If you want to find out whether it worked, test its results against 0.
Here’s some sample code as found in the DeleteDirectory example:

#include <iostream>
#include <stdio.h>
#include <io.h>

using namespace std;

int main() {
 if (rmdir("../abc") != 0)
 cout << "Directory not deleted." << endl;
 else
 cout << "Directory deleted." << endl;

 return 0;
}

After you run this example, the /CPP_AIO4/BookVI/Chapter04/abc directory that
you created in the previous section goes away. Make sure you verify that the direc-
tory is added and removed as expected. If you run this example a second time, you
see the "Directory not deleted." message because you can’t delete a directory
that doesn’t exist.

This approach works only if the directory is empty. If the directory has at least
one file or directory in it, the function can’t remove the directory — and returns
a nonzero result.

Bu
ild

in
g

D
ir

ec
to

ri
es

 a
nd

Co

nt
en

ts

CHAPTER 4 Building Directories and Contents 731

Getting the Contents of a Directory
A directory usually contains multiple files as well as other directories. Getting a
list of contents can be complicated. You don’t just call a single function and get
something back. The following procedure tells how the process of getting direc-
tory content works:

1.	 Call _findfirst(), passing it a pathname and a pattern for the files whose
names you want to find.

For example, pass *.* to get all files in the directory, or *.txt to get all files
ending in .txt. Also pass it a pointer to a _finddata_t structure.

2.	 Check the results of _findfirst().

If _findfirst() returned –1, it didn’t find any files (which means you’re
finished). Otherwise it fills the _finddata_t structure with the first file it found,
and it will return a number that you use in subsequent calls to the various find
functions.

3.	 Look at the _finddata_t structure to determine the name of the file, and
other information such as create date, last access date, and size.

4.	 Call _findnext() and pass it the following values: the number returned from
_findfirst() and the address of a _finddata_t structure

If _findnext() returns –1, it found no more files; you can go to Step 5.
Otherwise look at the _finddata_t structure to get the information for the
next file found. Then repeat Step 4.

5.	 Call _findclose() and pass it the number returned from _findfirst().

You’re all finished.

This is the process used in the days of programming with older languages. Most
languages today hide these details from view, but you still follow this process
when using an older version of C++. The GetDirectoryContents example in
Listing 4-1 shows how to implement a directory listing.

LISTING 4-1:	 Using Code to Read the Contents of a Directory

#include <iostream>
#include <io.h>
#include <time.h>

using namespace std;
 (continued)

732 BOOK 6 Reading and Writing Files

string Chop(string &str) {
 string res = str;

 int len = str.length();
 if (str[len - 1] == '\r')
 res.replace(len - 1, 1, "");

 len = str.length();
 if (str[len - 1] == '\n')
 res.replace(len - 1, 1, "");

 return res;
}

void DumpEntry(_finddata_t &data) {
 string createtime(ctime(&data.time_create));
 cout << Chop(createtime) << "\t";
 cout << data.size << "\t";

 if ((data.attrib & _A_SUBDIR) == _A_SUBDIR)
 cout << "[" << data.name << "]" << endl;
 else
 cout << data.name << endl;
}

int main() {
 _finddata_t data;
 int ff = _findfirst ("../*.*", &data);

 if (ff != -1) {
 int res = 0;

 while (res != -1) {
 DumpEntry(data);
 res = _findnext(ff, &data);
 }

 _findclose(ff);
 }
 return 0;
}

LISTING 4-1:	 (continued)

Bu
ild

in
g

D
ir

ec
to

ri
es

 a
nd

Co

nt
en

ts

CHAPTER 4 Building Directories and Contents 733

You can see how main() follows the previously outlined steps. Each data
structure uses its own function called DumpEntry(). The DumpEntry() function
prints the file information. Here’s what you should see when you run the appli-
cation (the current directory entry, the parent directory entry, and directories
containing the examples for this chapter; your list may vary slightly):

Sun Jul 26 15:04:51 2020 0 [.]
Sun Jul 26 15:04:51 2020 0 [..]
Sun Jul 26 16:12:09 2020 0 [DeleteDirectory]
Sun Jul 26 15:04:51 2020 0 [FileSystem]
Sun Jul 26 16:24:47 2020 0 [GetDirectoryContents]
Sun Jul 26 16:03:32 2020 0 [MakeDirectory]

The DumpEntry() function tests whether the item is a directory. This is another
old (but reliable) way to program: You check for the presence of a particular bit in
the middle of the attrib member of the structure, like this:

if ((data.attrib & _A_SUBDIR) == _A_SUBDIR)
 cout << "[" << data.name << "]" << endl;
else
 cout << data.name << endl;

The Chop() function removes an extraneous carriage return that the ctime()
function adds to the end of the string it creates. Otherwise, the information after
the date has to start on the next line of text, which isn’t what the example needs.

Copying Files
When you copy a file from one location to another, you actually create a new file
and fill it with the same contents as the original file. To perform this task, you
have to read each byte from the first file and write it to the second. To make mat-
ters worse, copying a file means you have to make sure that you copy it exactly
the same, that you don’t accidentally tack an extra 0 or two at the end of the file,
or an extra carriage return or linefeed at the end of the file (which could happen
when you copy a text file). The two files should be identical — not only contain
the same information, but also be the same size.

These are the basics, but most good copy routines do more. They give the new file
a date that matches the date of the original file, and they set all the attributes,
such as read-only, the same. There are a few ways to perform a copying task, but
the following sections provide two of them.

734 BOOK 6 Reading and Writing Files

Copying with windows
If you’re programming in Windows, you can use an easy method to perform
copying tasks: the CopyFile function. To use it, you include the line #include
<windows.h> in your application. Then you just do the following:

CopyFile("c:/dog.txt", "c:/dog2.txt", TRUE);

This code copies from c:/dog.txt to c:/dog2.txt. The final parameter, TRUE
in all capitals, is a preprocessor macro defined somewhere in the bowels of the
Windows header files. You have to use either TRUE or FALSE when calling any of
the Windows functions. When the early versions of Windows were around, no
bool type existed, so resourceful developers defined their own TRUE and FALSE as
integers. That final parameter in CopyFile() tells the function what to do if the
file you’re copying to already exists: TRUE means don’t overwrite the existing file;
just abort. FALSE means overwrite it.

Using the quick-and-dirty method
There’s another way you can copy a file, and you can use this to also move, delete,
and rename files. However, this method isn’t portable: The code is operating-
system specific, which means that a Windows application won’t run on Linux
and vice versa. You can execute any DOS or Unix-shell commands by using the
system() function. For example, this code pauses the display:

system("PAUSE");

This code runs the pause command, which prints the message

Press any key to continue . . .

and waits for you to press a key. Because the system() function can run any shell
command, you can use it to call the copy command, like this:

system("copy c:\\abc.txt c:\\def.txt");

Note that the command uses the backslash, not a forward slash due to limitations
in the Windows command processor. If you’re using some other platform, you
need to consider the needs of the platform when formatting commands.

Bu
ild

in
g

D
ir

ec
to

ri
es

 a
nd

Co

nt
en

ts

CHAPTER 4 Building Directories and Contents 735

Moving and Renaming Files
and Directories

You may have a file called

dog1.txt

and need to rename it to

temp\dog1.txt

This doesn’t look like a valid way to rename a file. Notice that the file started out
being called dog1.txt, and afterward it’s still called dog1.txt. Rather than being
renamed, the file appears to have moved to a new location — the temp subdirec-
tory. The reason this is called a rename is that the file’s real name is the entire
pathname and filename together. For this reason, you can move and rename by
files and directories using the same function. Of course, the path must exist. If you
try to rename c:\dog1.txt to c:\temp\dog1.txt and there’s no c:\temp direc-
tory, the rename fails and you get an error message.

The RenameFile example renames a file. Note that you must create a dog1.txt file
and a temp directory in the \CPP_AIO4\BookVI\Chapter04\RenameFile folder for
this example to work.

#include <iostream>
#include <stdio.h>

using namespace std;

int main() {
 if (rename("dog1.txt", "dog2.txt") == 0)
 cout << "Renaming dog1.txt to dog2.txt." << endl;

 if (rename("dog2.txt","dog1.txt") == 0)
 cout << "Renaming dog2.txt to dog1.txt." << endl;

 if (rename("dog1.txt","temp/dog2.txt") == 0)
 cout << "Renaming dog1.txt to temp/dog2.txt." << endl;

736 BOOK 6 Reading and Writing Files

 if (rename("temp/dog2.txt","dog1.txt") == 0)
 cout << "Getting back to start with dog1.txt."
 << endl;

 return 0;
}

The example uses the rename() function, passing first the old filename and then
the new filename. The first call renames the file from dog1.txt to dog2.txt. The
second call renames it from dog2.txt to dog1.txt. Finally, the code moves the
file to the temp directory, but only if you created it. When you run this example,
you see the following output:

Renaming dog1.txt to dog2.txt.
Renaming dog2.txt to dog1.txt.
Renaming dog1.txt to temp/dog2.txt.
Getting back to start with dog1.txt.

You can also give the file a new filename when you move it, as in this code:

rename("dog1.txt","temp/cat.txt")

There are conditions under which the rename operation won’t work:

»» You’re renaming the file to move it to a new directory, but that directory does
not exist. In this case, create the directory before you move the file.

»» You’re renaming a file but some other file in the current directory already
exists under that name. In this case, either delete the other file or (better yet)
make your application ask its users what they want it to do: Delete the old file
(that is, “overwrite it”)? Abort the operation?

»» You’re renaming a file to move it to a new directory, but there’s already a file
by that name in that directory. In this case, as in the previous example, get
your application to ask the users what to do — overwrite or abort?

»» The file is locked by another application, such as when you open the file for
editing.

Renaming also works with directories. You can move directory names around
just as if they were files. But there’s a catch: If any application has a file open
within that directory, the rename() function won’t work. The operating system
lets you move or rename a directory only if you’re not accessing any files inside
the directory.

CHAPTER 5 Streaming Your Own Classes 737

Streaming Your
Own Classes

The C++ stream classes can read and write all sorts of goodies, such as inte-
gers, characters, strings, floating-point numbers, and Boolean variables.
But sooner or later, being able to stream one of your own classes (like the

following) would be nice:

MyClass x;

cout << x << endl;

C++ has a good reason not to have done this already: The compiler and library
can’t predict on their own how you want to stream your class using cout. (The
example in the “Writing and reading structured data” section of Chapter 3 of this
minibook shows one technique for accomplishing this task by overriding the <<
operator.) Here are some examples:

»» The name of the class followed by the values of the public properties.

»» The private properties.

»» Derived values or some other information related to the class.

Chapter 5

IN THIS CHAPTER

»» Streaming a class to a text file

»» Getting the most out of manipulators

»» Writing your own manipulators

738 BOOK 6 Reading and Writing Files

Therefore, you should make the class streamable. This chapter shows you how to
do it. But keep in mind that you have (at least) two separate reasons why you may
want to make a class streamable:

»» To provide a format for writing the object to a text stream.

»» To save the information in an object so that you can read it back in at a later
date, thereby reconstructing the object. A class with this feature is called a
persistent class.

This chapter covers both. You also discover how you can create your own manipu-
lators. Remember, a manipulator is this kind of code:

cout << endl;

That is, the endl is the manipulator that adds a newline to the end of a stream.
You can make your own manipulators that manipulate the stream in various ways,
as you see later in this chapter.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVI\Chapter05 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Streaming a Class for Text Formatting
When dealing with instances of one of your classes, the ability to use the insertion
(<<) and extraction operators (>>) is nice. To use these operators, you overload
them to work with your class properties. However, when people first find out
about overloading the insertion and extraction operators, the process often seems
so much harder than it really is.

When working with streams, you might hear that converting data or an object to
a stream is called serialization, while converting a stream back to data or an object
is called deserialization. (Note that the information from the following sections is
combined with the CustomManipulator example in Listing 5-1 to provide a more
complete example.)

St
re

am
in

g
Yo

ur
 O

w
n

Cl
as

se
s

CHAPTER 5 Streaming Your Own Classes 739

Understanding the process
If you have a class, say, Microwave, and you have an instance of this class, say,
myoven, all you do to accomplish the overloading of an operator is code a func-
tion that takes a stream parameter and an instance of your class, and writes the
property values of the object to the stream. Then you can code one of the following
lines:

cout << myoven;
outfile << myoven;

You can also code an operator that reads from a stream. All you do is write a func-
tion that reads the property values from a stream if you want to code one of the
following lines:

cin >> myoven;
infile >> myoven;

Remember that cout << myoven actually calls a function called <<. Here’s the
function header:

ostream &operator <<(ostream &out, Microwave &oven)

Overriding the insertion and extraction operators isn’t as hard to remember as
you may think when you consider these issues:

»» Every type you use for the operator override is a reference, which makes
sense when you look at cout << myoven. The second parameter, myoven,
isn’t a pointer. In addition, you normally don’t want to pass objects around
directly, so that leaves only one possibility: passing it by reference.

»» The function must return the stream that it’s working with. Returning the
stream allows you to chain operators together, like this:

cout << "hi" << myoven << 123 << endl;

»» The operator function takes two parameters. You can see their order when
you look at the order of cout << myoven. The first is the stream; the second
is your class. Thus, when you put this all together, you get the function header
described earlier.

Considering the insertion implementation
To create a new insertion function, you write to the stream passed into it. In gen-
eral, you write class properties to the stream. However, you can add formatting or

740 BOOK 6 Reading and Writing Files

other values as needed. You decide how the output looks when you write the object
to a stream. So if this is your Microwave class:

class Microwave {
public:
 int HighVoltageRadiation;
 int RadioactiveFoodCount;
 int LeakLevel;
 string OvenName;
};

Then your insertion function may look like this:

ostream &operator <<(ostream &out, Microwave &oven)
{
 out << "High Voltage Radiation: ";
 out << oven.HighVoltageRadiation << endl;
 out << "Radioactive Food Count: ";
 out << oven.RadioactiveFoodCount << endl;
 out << "Leak Level: ";
 out << oven.LeakLevel << endl;
 out << "Oven Name: ";
 out << oven.OvenName << endl;
 return out;
}

Here are some points to consider about the preceding code:

»» The example takes complete liberty with how the object looks on the stream.
Each property provides a description, a colon, a space, and then a value. Then
entries use endl so that each property appears on a separate line. The point
is that the output can appear however you need it to appear.

»» The code returns the same output stream that came in as the first parameter
(modified with the class data, of course).

»» When writing to the stream, the code writes to out, not to cout. Writing to
cout would cause the function to fail when used with a file. When coding
myfile << myoven, the information would go to cout, not into the file.

This function accesses only the public properties of the myoven instance. As it
stands, the function can’t access the private properties because it isn’t a member

St
re

am
in

g
Yo

ur
 O

w
n

Cl
as

se
s

CHAPTER 5 Streaming Your Own Classes 741

of Microwave. To access the private properties, make this function a friend of
Microwave by adding this code inside the Microwave class:

friend ostream &operator <<(ostream &out,Microwave &oven);

Considering the extraction implementation
The previous section tells you how to override the insertion operator. Here’s a
similar function for using the extraction operator to read from a stream (this
function doesn’t match the earlier insertion code, so it can’t read text that was
written by the earlier code):

istream &operator >>(istream &in, Microwave &oven)
{
 in >> oven.HighVoltageRadiation;
 in >> oven.RadioactiveFoodCount;
 in >> oven.LeakLevel;
 in >> oven.OvenName;
 return in;
}

You can see that the format of this function is like that of the insertion operator:
The function returns a reference to the stream, and for parameters, the function
takes a reference to a stream and a reference to a Microwave object.

As before, you have complete freedom on how you want to read the data in. The
code reads in each member separately. So, if you call this function by using cin,
like this

cin >> myoven;

then — when you run this line — you can type the member values on one line
with spaces, or on separate lines, or any combination:

1234 5555
1054 "Buzz"

There are always caveats when it comes to input, and overriding the extraction
operator is no different. The istream you receive isn’t guaranteed to provide all
the data elements you need, in the correct order and in the right form. In some
respects, you depend on the user or other data source to provide the information
according to whatever protocol you’ve created. Consequently, unlike writing to a
stream, reading from a stream involves some level of risk, so you need to provide
robust error trapping.

742 BOOK 6 Reading and Writing Files

Manipulating a Stream
A lot of people see this kind of thing:

cout << "Hello" << endl;

and wonder what on Earth endl is. After all, it’s not a destination like cout — it’s
something else. The sections that follow discuss endl and other kinds of manip-
ulators, which are special functions that interact with streams in specific ways
using the insertion and extraction operators.

What’s a manipulator?
A manipulator is actually the address of a function. To clarify exactly what endl
is, think about this:

cout << endl;

The << operator function in this case is an overloaded insertion operator func-
tion that receives two parameters, cout and endl. The first parameter, cout, is
an instance of ostream. The second parameter, endl, is the address of a function.
When you type a function name, but don’t include parentheses, you’re giving the
address of the function rather than calling the function.

So, in the standard header files is an overloaded insertion function that takes both
an ostream and the address of a function. Now the thing about function addresses
is that the type of a function pointer is based on the function’s return type and
parameter types. Thus, pointers to these two functions have the same type:

void WriteMe(int x, char c);
void AlwaysAndForever(int y, char x);

Even though the names of the parameters are different, the types of the
parameters are the same. That’s why pointers to the two functions have the same
type. But pointers to the following two functions don’t have the same type:

void SomethingForNothing(int x);
int LeaveMeAlone(int y, int z);

The functions don’t have the same type because their prototypes are different. The
first takes a single integer as a parameter and returns a void. The second takes two

St
re

am
in

g
Yo

ur
 O

w
n

Cl
as

se
s

CHAPTER 5 Streaming Your Own Classes 743

integers as parameters and returns an integer. Here’s the prototype for the endl
function:

ostream& endl(ostream& outs);

This function takes a reference to ostream and returns a reference to ostream.
And here’s a typedef for a pointer to this function:

typedef ostream& (*omanip)(ostream&);

This typedef defines a new type called omanip, which is a pointer to a func-
tion that takes as a parameter a reference to ostream and returns a reference to
ostream. Therefore, if you have a variable of type omanip, you can set it to the
address of the endl function.

For the endl manipulator to work, you need an overloaded insertion operator
function that takes two parameters: first a reference to ostream (for cout) and
then omanip. The second parameter must be a reference to omanip because the
second item in cout << endl is of type omanip.

If you’re not clear on why endl is of type omanip, think about this: There’s a func-
tion called endl, and to call that function, you would type its name, an opening
parenthesis, some parameters, and then a closing parenthesis. But if you leave
off the parentheses, you’re just taking the address of the function. And the type
omanip, defined earlier, is exactly that: an address to a function. But on top of
being an address, the endl function’s prototype matches that for the omanip type.

Here’s a possibility for the header of the overloaded insertion operator:

ostream& operator<<(ostream& out, omanip func);

You can see the parameters that this function takes: First, it takes a reference to
ostream and then omanip. Consequently, to implement endl, two functions are
involved. Here are their headers:

ostream& endl(ostream& outs);
ostream& operator<<(ostream& out, omanip func);

When you type cout << endl, you’re not calling the endl function. Instead, you’re
calling the operator<< function because endl by itself — without parentheses — is

744 BOOK 6 Reading and Writing Files

nothing more than the address of the endl function. And the address is of type
omanip. Here’s the operator<< function in its entirety:

ostream& operator<<(ostream &out, omanip func) {
 return (*func)(out);
}

The func parameter contains the address of endl. The code shown ends up call-
ing endl and supplying it with out. You could use this approach for any function
that matches the omanip type. Using this approach relies on function pointer syn-
tax. As long as you know what is involved, you normally don’t need to delve too
far into the details. However, if you’d like more details, check out the article at
https://www.cprogramming.com/tutorial/function-pointers.html.

This isn’t the only way to accomplish coding a manipulator, as explained in the
following section, “Writing your own manipulator.” That section uses a slightly
different approach that works equally well. But the technique described in this
section is quite common, and you need to know how it works.

Writing your own manipulator
You can write your own manipulators in several ways. The goal is to allow for this
type of code:

cout << mymanipulator;

and this line causes a function such as the following to get called:

ostream &operator << (ostream &out, somespecialtype a);

Several operator<< functions are natively available; ultimately, they differ in the
second parameter type, somespecialtype. Whatever mymanipulator is, it must
be the somespecialtype type as well. This type must be unique or the compiler
will complain.

The “What’s a manipulator?” section (earlier in this chapter) gives you the details
on how the endl manipulator works, but that amount of detail is a bit too com-
plicated. The example in this section creates a unique type, and the manipulator
is an object of that type. As with other manipulators, function pointers work well.
But for the function pointer to be unique, its parameter types must be unique. The
example uses that as the parameter for the function, like this:

struct FullOvenManip {};
void FullOvenInfo(FullOvenManip x) {}

https://www.cprogramming.com/tutorial/function-pointers.html

St
re

am
in

g
Yo

ur
 O

w
n

Cl
as

se
s

CHAPTER 5 Streaming Your Own Classes 745

Check this sample carefully. The code uses a structure called FullOvenManip. This
structure has nothing in it; its sole purpose in life is to provide for a unique set
of parameters. The FullOvenInfo() function takes this structure as a parameter.
The point is to create a unique prototype.

You can now provide an overloaded operator << function. That function takes a
pointer to the FullOvenInfo() function. But to do that, you use typedef:

typedef void(*FullPtr)(FullOvenManip);

This line of code creates a type called FullPtr, which is a pointer to a function
that takes a FullOvenManip parameter and returns a void. When writing your
own manipulators, don’t shy away from using typedef. The manipulator concept
is confusing and can be a serious struggle for many developers to keep straight. By
using a typedef, you can simplify your life a bit. Here’s the overloaded operator
<< function header:

ostream &operator << (ostream &out, FullPtr);

You can see the second parameter: It’s a FullPtr. And look at this code:

cout << FullOvenInfo;

The FullOvenInfo item is also a FullPtr because it’s a pointer to a function that
takes a FullOvenManip(). The CustomManipulator example, in Listing 5-1, shows
how these elements work together.

LISTING 5-1:	 Using Manipulators

#include <iostream>
#include <fstream>
#include <map>

using namespace std;

class Microwave {
 friend ostream &operator <<(ostream &out,
 Microwave &oven);
public:
 int HighVoltageRadiation;
 int RadioactiveFoodCount;
 int LeakLevel;
 string OvenName;
 (continued)

746 BOOK 6 Reading and Writing Files

 typedef map<ostream *, bool> FlagMap;
 static FlagMap Flags;
};

Microwave::FlagMap Microwave::Flags;

ostream &operator <<(ostream &out, Microwave &oven) {
 bool full = true;
 Microwave::FlagMap::iterator iter =
 Microwave::Flags.find(&out);

 if (iter != Microwave::Flags.end()) {
 full = iter->second;
 }

 if (full) {
 out << "High Voltage Radiation: ";
 out << oven.HighVoltageRadiation << endl;
 out << "Radioactive Food Count: ";
 out << oven.RadioactiveFoodCount << endl;
 out << "Leak Level: ";
 out << oven.LeakLevel << endl;
 out << "Oven Name: ";
 out << oven.OvenName;
 } else {
 out << oven.HighVoltageRadiation << ",";
 out << oven.RadioactiveFoodCount << ",";
 out << oven.LeakLevel << ",";
 out << oven.OvenName;
 }
 return out;
}

istream &operator >>(istream &in, Microwave &oven) {
 in >> oven.HighVoltageRadiation;
 in >> oven.RadioactiveFoodCount;
 in >> oven.LeakLevel;
 in >> oven.OvenName;
 return in;
}

struct FullOvenManip {};

LISTING 5-1:	 (continued)

St
re

am
in

g
Yo

ur
 O

w
n

Cl
as

se
s

CHAPTER 5 Streaming Your Own Classes 747

void FullOvenInfo(FullOvenManip x) {}

typedef void(*FullPtr)(FullOvenManip);

ostream &operator << (ostream &out, FullPtr) {
 Microwave::Flags[&out] = true;
 return out;
}

struct MinOvenManip {};

void MinOvenInfo(MinOvenManip x) {}

typedef void(*MinPtr)(MinOvenManip);

ostream &operator << (ostream &out, MinPtr) {
 Microwave::Flags[&out] = false;
 return out;
}

int main() {
 Microwave myoven;
 myoven.HighVoltageRadiation = 9832;
 myoven.RadioactiveFoodCount = 7624;
 myoven.LeakLevel = 3793;
 myoven.OvenName = "Burnmaster";

 cout << myoven << endl;
 cout << "============" << endl;
 cout << FullOvenInfo << myoven << endl;
 cout << "============" << endl;
 cout << MinOvenInfo << myoven << endl;

 return 0;
}

The code in Listing 5-1 creates two manipulators, one called FullOvenInfo() and
one called MinOvenInfo(). When you use one of these manipulators, as in the fol-
lowing line, you call the overloaded operator << function:

cout << FullOvenInfo << myoven << endl;

748 BOOK 6 Reading and Writing Files

The FullOvenInfo() function works with a map to keep track of which stream
you’re manipulating. The map lives as a static member in the Microwave class. So
when you use the FullOvenInfo() manipulator on cout, the map’s item for cout
gets a value of true from operator<<() as Microwave::Flags[&out] = true;.
And when you use the MinOvenInfo() manipulator on cout, the map’s item for
cout gets a value of false from that manipulator’s operator<<() function.

Using the map may not make sense at first. The idea is that you may be working
with multiple streams, such as one for an ofstream file and one for cout, and you
may want some streams to show the full information via the FullOvenInfo()
manipulator — and some other streams to show the minimal information via the
MinOvenInfo(). The map is based on the stream. In the overloaded operator <<
function that prints a Microwave object, you see how the code checks the map for
a true or false for the current stream.

Note that cout << FullOvenInfo does not actually send any output to cout; it
just modifies cout so future output of a Microwave object will use the full format.
Then the next part of the statement, << myoven, sends the Microwave object to
cout. When you run this application, you see this output:

High Voltage Radiation: 9832
Radioactive Food Count: 7624
Leak Level: 3793
Oven Name: Burnmaster
============
High Voltage Radiation: 9832
Radioactive Food Count: 7624
Leak Level: 3793
Oven Name: Burnmaster
============
9832,7624,3793,Burnmaster

The output shows the same object three times. The first one demonstrates the
default: If you provide no manipulators, you get a full listing. This need is handled
in the overloaded operator <<() for printing a Microwave object:

bool full = true;
Microwave::FlagMap::iterator iter =
 Microwave::Flags.find(&out);

if (iter != Microwave::Flags.end()) {
 full = iter->second;
}

St
re

am
in

g
Yo

ur
 O

w
n

Cl
as

se
s

CHAPTER 5 Streaming Your Own Classes 749

Remember that iterator is really a pointer to the map entry. The code calls
find() to determine whether the item is inside the map entry. If it’s not, find
returns Flags.end(). And if the code doesn’t return Flags.end(), that means it
found the item in the map. So in that case, the code uses iter->second to obtain
the value.

But notice what happens if the code doesn’t return Flags.end(), meaning that
the stream wasn’t found in the map. Then the application sticks with the default
value for full, which is true:

bool full = true;

So you can see that these output lines will function properly:

cout << myoven << endl;
cout << "============" << endl;
cout << FullOvenInfo << myoven << endl;
cout << "============" << endl;
cout << MinOvenInfo << myoven << endl;

The first line with myoven line uses the default, which is a full listing. The second
line with myoven says to definitely output a full listing, using the FullOvenInfo()
manipulator. The third line with myoven outputs a minimal listing using the
MinOvenInfo() manipulator.

7Advanced
Standard Library
Usage

Contents at a Glance
CHAPTER 1:	 Exploring the Standard Library Further. 753

Considering the Standard Library Categories. 755
Parsing Strings Using a Hash. . 768
Obtaining Information Using a Random Access Iterator. 771
Locating Values Using the Find Algorithm. . 774
Using the Random Number Generator. . 776
Working with Temporary Buffers. . 777

CHAPTER 2:	 Working with User-Defined Literals (UDLs). 779
Understanding the Need for UDLs. . 780
Working with the UDLs in the Standard Library. 785
Creating Your Own UDLs. . 791

CHAPTER 3:	 Building Original Templates . . 795
Deciding When to Create a Template. . 796
Defining the Elements of a Good Template 797
Creating a Basic Math Template. . 799
Building a Structure Template. . 801
Developing a Class Template. . 804
Considering Template Specialization. . 807
Creating a Template Library . . 809
Using Your Template Library. . 815

CHAPTER 4:	 Investigating Boost. . 817
Considering the Standard Library Alternative. 818
Understanding Boost. . 820
Obtaining and Installing Boost for Code::Blocks. 823
Creating the Boost Tools . . 833
Using Boost.Build . . 836
Using Inspect. . 837
Understanding BoostBook. . 840
Using QuickBook. . 841
Using bcp . . 843
Using Wave. . 845
Building Your First Boost Application Using Date Time. 846

CHAPTER 5:	 Boosting up a Step . . 849
Parsing Strings Using RegEx. . 850
Breaking Strings into Tokens Using Tokenizer. 857
Performing Numeric Conversion . . 858
Creating Improved Loops Using Foreach. . 862
Accessing the Operating System Using Filesystem 864

CHAPTER 1 Exploring the Standard Library Further 753

Exploring the Standard
Library Further

The Standard Library is one of the most important parts of the C++ devel-
oper’s toolkit because it contains a host of interesting functions that let
you write great applications. The Standard Library originally started as the

Standard Template Library (STL), and a number of companies, including Silicon
Graphics, Inc. (SGI) and IBM, distributed it for everyone to use. The International
Standards Organization (ISO) eventually took over STL, made a few minor changes
to it, added some additional features, and renamed it the Standard Library.

The STL and the Standard Library are two separate entities. As the Standard
Library has grown, it has also become more different from the STL. Consequently,
when you work with C++ today, you likely work with the Standard Library and, to
avoid confusion, shouldn’t refer to it as the STL. In fact, the Standard Library and
the STL use different headers — again, to avoid confusion (you can see a heading
listing at https://en.cppreference.com/w/cpp/header). The site at https://
www.tutorialspoint.com/What-s-the-difference-between-STL-and-
Cplusplus-Standard-Library provides a short discussion of the differences
between the Standard Library and STL that includes additional details.

Chapter 1

IN THIS CHAPTER

»» Working with container functions

»» Performing random access with
iterator functions

»» Working with algorithms and utilities

»» Creating random numbers with
functions

»» Creating temporary buffers with
allocators

https://en.cppreference.com/w/cpp/header
https://www.tutorialspoint.com/What-s-the-difference-between-STL-and-Cplusplus-Standard-Library
https://www.tutorialspoint.com/What-s-the-difference-between-STL-and-Cplusplus-Standard-Library
https://www.tutorialspoint.com/What-s-the-difference-between-STL-and-Cplusplus-Standard-Library

754 BOOK 7 Advanced Standard Library Usage

This chapter offers an overview of the Standard Library and shows you some
examples of how to use it. However, if you don’t see what you want here, don’t
worry; later chapters have additional examples, and you can always refer to the
Standard Library documentation for even more examples. Before the chapter
moves on to any examples, however, you need to know what the Standard Library
contains, so the first section of this chapter gives you a list of Standard Library
function categories.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVII\Chapter01 folder of the downloadable source. See the
Introduction for details on how to find these source files.

GETTING A COPY OF THE STANDARD
LIBRARY DOCUMENTATION
The Standard Library is incredibly large, so this book doesn’t document it com-
pletely. The Code::Blocks product doesn’t come with a Standard Library reference
either. However, to really use the Standard Library, you really do need a copy of the
documentation.

You can join ISO for a bazillion bucks and get a copy of its document for free, or you
can purchase a copy of it from https://www.iso.org/standard/68564.html. Note
that the price shown is in Swiss Francs, so you need to consider the exchange rate.
As an alternative, you can buy a copy of the Standard Library documentation from an
ISO member, such as the American National Standards Institute (ANSI). Check it out at
https://webstore.ansi.org/ (simply type ISO/IEC 14882:2017 in the search field).

Because many common STL elements and the Standard Library are relatively close,
you have a third alternative: Use an STL resource. One of the best written and easiest–
to-use resources is from SGI at http://www.martinbroadhurst.com/sgi-stl-
documentation.html. The downside to using the STL documentation is that it doesn’t
contain information about newer features found only in the Standard Library.

In addition to the resources mentioned so far, you’ll want to check out Bjarne Stroustrup’s
website at http://www.stroustrup.com/#standard. Just in case you don’t know, he’s
the guy who designed and originally implemented C++.

https://www.iso.org/standard/68564.html
https://webstore.ansi.org/
http://www.martinbroadhurst.com/sgi-stl-documentation.html
http://www.martinbroadhurst.com/sgi-stl-documentation.html
http://www.stroustrup.com/

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 755

Considering the Standard
Library Categories

The Standard Library documentation uses a formal approach that you’re going
to find difficult to read and even harder to understand; it must have been put
together by lawyers more interested in the precise meaning of words rather than
the usability of the document. This immense tome (1,300+ pages) requires quite
a bit of time to review. Fortunately, you don’t have to wade through all that legal
jargon mixed indiscriminately with computer jargon and the occasional bit of
English. This chapter provides the overview you need to get going quickly.

The best way to begin is to break the Standard Library into smaller pieces. You can
categorize the Standard Library functions in a number of ways. One of the most
common approaches is to use the following categories:

Algorithms Atomic Operations
(C++ 11 and above)

C Compatibility

Concepts (C++ 20 and above) Containers Coroutines (C++ 20 and
above)

Filesystem (C++ 17 and above) Input/Output Iterators

Localization Numerics Ranges (C++ 20 and above)

Regular Expressions
(C++ 11 and above)

Strings Thread Support (C++ 11 and
above)

Utilities

Note that this table doesn’t include the Standard Library Extensions, additions
that add specialized (non-general) functionality, which appear at https://
en.cppreference.com/w/cpp/experimental/lib_extensions_2. The following
sections provide a brief description of each of these categories and tell what you
can expect to find in them. Knowing the category can help you locate the function
you need quickly on websites that use these relatively standard category names.

Algorithms
Algorithms perform data manipulations such as replacing, locating, or sorting
information. You’ve already seen some algorithms used in the book because it’s
hard to create a substantial application without using one. There aren’t any types
in the Algorithms category. The following is a list of common algorithm functions

https://en.cppreference.com/w/cpp/experimental/lib_extensions_2
https://en.cppreference.com/w/cpp/experimental/lib_extensions_2

756 BOOK 7 Advanced Standard Library Usage

(functions removed since C++ 11 and above don’t appear in the list even if you can
use them in an older version of C++):

adjacent_find all_of (C++ 11 and above) any_of (C++ 11 and
above)

binary_search clamp (C++ 17 and above) copy

copy_backward copy_if (C++ 11 and above) copy_n (Updated
C++ 11)

count count_if equal

equal_range fill fill_n

find find_end find_first_of

find_if find_if_not (C++ 11 and
above)

for_each

for_each_n (C++17 and
above)

generate generate_n

includes inplace_merge is_heap (Updated
C++ 11)

is_heap_until (C++ 11 and
above)

is_partitioned
(C++ 11 and above)

is_permutation
(C++ 11 and above)

is_sorted (Updated C++ 11) is_sorted_until
(C++ 11 and above)

iter_swap

lexicographical_compare lexicographical_
compare_three_way
(C++ 20 and above)

lower_bound

make_heap max max_element

merge min min_element

minmax (C++ 11 and above) minmax_element
(C++ 11 and above)

mismatch

move (C++ 11 and above) move_backward
(C++ 11 and above)

next_permutation

none_of (C++ 11 and above) nth_element partial_sort

partial_sort_copy partition partition_copy
(C++ 11 and above)

partition_point (C++ 11
and above)

pop_heap prev_permutation

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 757

push_heap remove remove_copy

remove_copy_if remove_if replace

replace_copy replace_copy_if replace_if

reverse reverse_copy rotate

rotate_copy sample (C++ 17 and above) search

search_n set_difference set_intersection

set_symmetric_
difference

set_union shift_left (C++ 20
and above)

shift_right (C++ 20 and
above)

shuffle (C++11 and above) sort

sort_heap stable_partition stable_sort

swap swap_ranges transform

unique unique_copy upper_bound

In addition to the <algorithm> header entries found in the previous table, C++ 17
and above users have access to the <execution> header entries in the table that
follows. This functionality is still part of the Algorithms category but appears in
a different header. An execution policy determines whether your code executes in
sequence (the normal approach) or in parallel. Executing code in parallel, when-
ever possible, makes your application run significantly faster.

is_execution_policy parallel_policy parallel_unsequenced_
policy

sequenced_policy unsequenced_policy
(C++ 20 and above)

Atomic operations
An atomic operation is a code block that executes as a single concurrent entity
without the use of locking mechanisms. There are several benefits to using atomic
operations:

»» Because the atomic operation is indivisible, it’s free of data races where:

•	 Two or more threads in a single process access the same memory location
concurrently

758 BOOK 7 Advanced Standard Library Usage

•	 At least one of the thread accesses is for writing

•	 The threads don’t use any exclusive locks to control their accesses to that
memory

»» which results in nondeterministic behavior. The changes made by the threads
vary run-by-run.

»» Application development is significantly easier because you don’t have to
manage locks.

»» There is a smaller risk of data-related errors.

You must have C++ 11 or above to use this feature. The following table contains the
Atomic Operations category functions.

atomic_compare_
exchange_strong

atomic_compare_
exchange_strong_
explicit

atomic_compare_
exchange_weak

atomic_compare_
exchange_weak_
explicit

atomic_exchange atomic_exchange_
explicit

atomic_fetch_add atomic_fetch_add_
explicit

atomic_fetch_and

atomic_fetch_and_
explicit

atomic_fetch_or atomic_fetch_or_
explicit

atomic_fetch_sub atomic_fetch_sub_
explicit

atomic_fetch_xor

atomic_fetch_xor_
explicit

atomic_flag_clear atomic_flag_clear_
explicit

atomic_flag_notify_
all (C++ 20 and above)

atomic_flag_notify_
one (C++ 20 and above)

atomic_flag_test
(C++ 20 and above)

atomic_flag_test_
and_set

atomic_flag_test_
and_set_explicit

atomic_flag_test_
explicit (C++ 20 and
above)

atomic_flag_wait
(C++ 20 and above)

atomic_flag_wait_
explicit (C++ 20 and
above)

atomic_init (Deprecated
in C++ 20)

atomic_is_lock_free atomic_load atomic_load_explicit

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 759

atomic_notify_all
(C++ 20 and above)

atomic_notify_one
(C++ 20 and above)

atomic_signal_fence

atomic_store atomic_store_explicit atomic_thread_fence

atomic_wait (C++ 20
and above)

atomic_wait_explicit
(C++ 20 and above)

kill_dependency

C Compatibility
A C compatibility header provides you with access to functionality that came with
the original C language. For example, you find special math functions like pow()
(raises a number to the given power) in the <math.h> header.

All the C compatibility headers are deprecated at this point, which means you
can still use them, but not for long. You should instead use the Utilities category
equivalents. For example, the <ctime> header replaces the <time.h> header (note
that the <ctime> header lacks the .h file extension).

Concepts
C++ 20 adds the capability to provide predicates that express a generic algo-
rithm’s expectations through concepts. You use a concept to formally document
the constraints on a template to enforce certain behaviors. In addition, because
the compiler knows the constraints at the outset, it can usually compile your
application faster. The article at https://isocpp.org/blog/2016/02/a-bit-
of-background-for-concepts-and-cpp17-bjarne-stroustrup provides more
details about the potential for concepts. You could also read the fuller discussion
at https://www.stroustrup.com/good_concepts.pdf. The following table pro-
vides a listing of Concepts category functions.

assignable_from common_reference_with common_with

constructible_from convertible_to copy_constructible

copyable default_initializable derived_from

destructible equality_comparable equality_comparable_
with

equivalence_relation floating_point integral

invocable movable move_constructible

https://isocpp.org/blog/2016/02/a-bit-of-background-for-concepts-and-cpp17-bjarne-stroustrup
https://isocpp.org/blog/2016/02/a-bit-of-background-for-concepts-and-cpp17-bjarne-stroustrup
https://www.stroustrup.com/good_concepts.pdf

760 BOOK 7 Advanced Standard Library Usage

predicate regular regular_invocable

relation same_as semiregular

signed_integral strict_weak_order swappable

swappable_with totally_ordered totally_ordered_with

unsigned_integral

Containers
Containers work just like the containers in your home — they hold something.
You’ve already seen containers at work in other areas of this book. For example,
both queues and deques are kinds of containers. The Containers category doesn’t
contain any functions, but it does contain a number of types including those in the
following table (types are removed because C++ 11 and above don’t appear in the
list even if you can use them in an older version of C++).

array (C++ 11 and above) deque forward_list
(C++ 11 and above)

list map queue

set span (C++ 20 and above) stack

unordered_map (C++ 11
and above)

unordered_set
(C++ 11 and above)

vector

Coroutines
A coroutine is a new feature in C++ 20 that allows a function to suspend exe-
cution and resume its task later. The function stores the data needed to allow
task resumption separately, rather than on the stack. This feature helps support
sequential code that executes asynchronously, such as nonblocking I/O, without
requiring use of callbacks. You can find an example of a coroutine at https://
blog.panicsoftware.com/your-first-coroutine/. The following table con-
tains the Coroutines category classes.

coroutine_handle coroutine_traits noop_coroutine_handle

noop_coroutine_promise std::hash<std::
coroutine_handle>

suspend_always

suspend_never

https://blog.panicsoftware.com/your-first-coroutine/
https://blog.panicsoftware.com/your-first-coroutine/

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 761

Filesystem
Before C++ 17, C++ lacked the ability to perform some basic file system tasks,
such as determining the existence of a path. The Filesystem category provides
functionality needed to work with file systems on a local system. You can see
an example of the <filesystem> header in use in the “Using the filesystem
Library” sidebar in Book 6, Chapter 4. The article at https://www.codingame.
com/playgrounds/5659/c17-filesystem provides additional examples. The fol-
lowing table lists the Filesystem category classes.

copy_options directory_entry directory_iterator

directory_options file_status file_time_type

file_type filesystem_error path

perm_options perms recursive_directory_
iterator

space_info

Input/Output
The Input/Output category is an old friend in this book because you see it used in
every example. Not every heading in this category appears in the book, but most
do in some form. The following table provides a listing of the Input/Output cate-
gory headers, which make it possible to access various forms of I/O.

cstdio fstream iomanip

ios iosfwd iostream

istream ostream sstream

streambuf strstream (Deprecated
in C++ 98)

syncstream (C++ 20 and above)

Iterators
Iterators enumerate something. When you create a list of items and then go
through that list checking items off, you’re enumerating the list. Using iterators
helps you create lists of items and manipulate them in specific ways. The kind of
iterator you create is important because some iterators let you go forward only,
some can go in either direction, and some can choose items at random. Each kind
of iterator has its specific purpose.

https://www.codingame.com/playgrounds/5659/c17-filesystem
https://www.codingame.com/playgrounds/5659/c17-filesystem

762 BOOK 7 Advanced Standard Library Usage

The Iterators category includes a number of classes. These classes determine the
kind of iterator you create in your code and the capabilities of that iterator. The
following is a list of the iterator classes (classes removed since C++ 11 and above
don’t appear in the list even if you can use them in an older version of C++):

back_insert_iterator bidirectional_
iterator (handled as
concept in C++ 20 and
above)

bidirectional_
iterator_tag

common_iterator (C++ 20
and above)

contiguous_iterator_
tag (C++ 20 and above)

counted_iterator
(C++ 20 and above)

default_sentinel (C++
20 and above)

forward_iterator
(handled as concept in C++
20 and above)

forward_iterator_
tag

front_insert_iterator incremental_traits (C++
20 and above)

indirect_result_t
(C++ 20 and above)

indirectly_readable_
traits (C++ 20 and above)

input_iterator (handled
as concept in C++ 20 and
above)

input_iterator_tag

insert_iterator istream_iterator istreambuf_iterator

iter_common_
reference_t (C++ 20 and
above)

iter_difference_t (C++
20 and above)

iter_move (C++ 20 and
above)

iter_reference_t (C++
20 and above)

iter_rvalue_
reference_t (C++ 20 and
above)

iter_swap (C++ 20 and
above)

iter_value_t (C++ 20 and
above)

iterator (Deprecated C++
17)

iterator_traits

move_iterator (C++ 11
and above)

move_sentinel (C++ 20
and above)

ostream_iterator

ostreambuf_iterator output_iterator
(handled as concept in
C++ 20 and above)

output_iterator_tag

projected (C++ 20 and
above)

random_access_
iterator (handled as
concept in C++ 20 and
above)

random_access_
iterator_tag

reverse_iterator unreachable_
sentinel_t (C++ 20 and
above)

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 763

Localization
When you write applications for multiple languages, the application needs to
know how to handle these languages correctly. The Localization category classes
won’t automatically convert your text to the other language. You need to perform
any needed translation yourself. However, it does help you perform these tasks:

»» Character classification

»» String collation

»» Numeric, monetary, and date/time formatting and parsing

»» Message retrieval

For most applications today, you use the <locale> header. If you have older appli-
cations that rely on the C language localization functionality that used to appear
in local.h, you use <clocale> instead. C++ 11 introduced the <codecvt> header
for converting Unicode character sets. This functionality is deprecated in C++ 17 —
use the codecvt class in the <locale> header instead. The following table shows
the <local> header classes.

codecvt codecvt_base codecvt_byname

collate collate_byname ctype

ctype_base ctype_byname ctype<char>

locale messages messages_base

messages_byname money_base money_get

money_put moneypunct moneypunct_byname

num_get num_put numpunct

numpunct_byname time_base time_get

time_get_byname time_put time_put_byname

wbuffer_convert (Added
C++ 11, deprecated C++ 17)

wstring_convert (Added
C++ 11, deprecated C++ 17)

Numerics
The Numerics category is immense, as you might imagine. It provides access to all
sorts of functions to perform math-related tasks. The most basic of the associated
headers is <cmath>, which contains basic math functionality, such as obtaining

764 BOOK 7 Advanced Standard Library Usage

the absolute value of a number using the abs function. The following table lists
the Numerics category headers.

Header C++ version Short description

<bit> C++ 20 and above Bit manipulation

<cfenv> C++ 11 and above Floating point environment access

<cmath> Common math functions

<complex> Complex number operations

<numbers> C++ 20 and above Math constants

<numeric> Operations on values in ranges

<random> C++ 11 and above Random number generation

<ratio> C++ 11 and above Compile-time rational math

<valarray> Interacts with arrays of values

Ranges
Being able to work efficiently with ranges of values is important in reducing
the amount of code you write and ensuring that the code you do write is easy to
understand. Most modern languages provide shortcuts for working with ranges of
values, and the C++ 20 standard adds this functionality to C++.

Unfortunately, as of this writing, no major compilers or libraries actually imple-
ment this functionality, so you need to download and install the range-v3 library
(https://github.com/ericniebler/range-v3/) to actually use it. This library is
the basis for ranges support in C++ 20. (Using this library is outside the scope of
this book; however, you can find documentation for it at https://ericniebler.
github.io/range-v3/.)

This particular category is designed to work with views, which describe what you
want to see as output. For example, if you want to sort a range in reverse order,
you provide a view that describes this need, such as views::reverse(v), where v
is a vector containing the range you want to interact with. A sort might then look
like ranges::sort(views::reverse(v));.

Ranges also work with concepts, described in the “Concepts” section of this chap-
ter. A concept defines the sort of range you work with. The following table lists
range concepts.

https://github.com/ericniebler/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 765

bidirectional_range common_range contiguous_range

forward_range input_range output_range

random_access_range range sized_range

view viewable_range

After you have a range, an idea of how you want to see it, and a task in mind, you
can use the various <ranges> header classes to perform work. The following table
shows the classes associated with the standard for this header.

borrowed_iterator_t borrowed_subrange_t dangling

iterator_t range_difference_t range_reference_t

range_rvalue_
reference_t

range_size_t range_value_t

ref_view sentinel_t subrange

view_interface views::all views::all_t

views::common
(common_view)

views::counted views::empty
(empty_view)

views::filter
(filter_view)

views::iota (iota_view) views::join
(join_view)

views::reverse
(reverse_view)

views::single
(single_view)

views::split
(split_view)

views::take
(take_view)

views::transform
(transform_view)

You can also customize the manner in which ranges work using customization
point objects. The following table lists these objects found in the std::ranges
namespace.

ranges::begin ranges::data ranges::empty

ranges::end ranges::rbegin ranges::rend

ranges::size

766 BOOK 7 Advanced Standard Library Usage

Regular Expressions
Regular expression support appears in C++ 11 and above. It helps you look for pat-
terns in strings. For example, you can ensure that email addresses and telephone
numbers are in the right format before someone enters them into a database,
reducing a few data errors in the process. You can also use regular expressions to
perform search-and-replace operations. The following table contains the Regular
Expression category classes.

basic_regex match_results regex_error

regex_iterator regex_token_iterator regex_traits

sub_match

Strings
The Strings category provides a wide range of support for strings in C++. You have
seen many examples of the <string> header, the most commonly used header,
in use in this book. Humans understand strings quite well, but computers handle
characters and, therefore, strings as numbers. To make strings easier to use, you
need library support. The following table lists the String category headers and
their purpose.

Header C++ Version Short Description

<cctype> Determines the category of narrow (char)
characters.

<charconv> C++ 17 and above Conversion to and from characters.

<cstring> Narrow character string handling functions.

<cuchar> C++ 11 and above C-style Unicode character conversion
functions.

<cwchar> Wide and multibyte character string-handling
functions.

<cwctype> Determines the category of wide (wchar_t)
characters.

<format> C++ 20 and above String formatting functionality.

<string_view> C++ 17 and above Basic string view handling class.

<string> Basic string handling class.

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 767

Thread Support
Multithreaded applications allow an application to apparently perform more than
one task at a time. Obviously, the actual simultaneous execution of tasks on a
system relies on the number of processors or cores it contains, but multithreading
enables you to share processors in a manner that lets you perform tasks efficiently.
Parallel and threaded execution of tasks falls into a category of development called
concurrency, which isn’t covered in this book, but you can find a basic article on it
at https://isocpp.org/wiki/faq/cpp11-library-concurrency.

Utilities
Utilities are functions and types that perform small service tasks within the Stan-
dard Library. The functions include min(), max(), and the relational operators.
The types include chart_traits (the traits of characters used in other Standard
Library features, such as basic_string) and pair (a pairing of two heterogeneous
values). The following table lists the various essential headers provided as part of
the Utilities category, their associated C++ version, and a short description. If no
C++ version is supplied, you can use the header in all current versions of C++.

Header C++ version Short description

<any> C++ 17 and
above

Provides support for the any class
for objects that hold instances of any
CopyConstructible type.

<bitset> Implements constant-length bit arrays.

<chrono> C++ 11 and
above

C++ time utilities.

<compare> C++ 20 and
above

Supports the three-way (spaceship)
operator.

<csetjmp> Passes control to a particular execution
context.

<csignal> Passes signals (messages) between various
application elements.

<cstdarg> Handles variable-length argument lists.

<cstddef> Standard macros and typedefs.

<cstdlib> General-purpose utilities for program
control, dynamic memory allocation,
random numbers, sort, and search.

<ctime> C-style time and date utilities.

https://isocpp.org/wiki/faq/cpp11-library-concurrency

768 BOOK 7 Advanced Standard Library Usage

Header C++ version Short description

<functional> Provides function objects, function
invocations, bind operations, and reference
wrappers.

<initializer_list> C++ 11 and
above

Provides the means to initialize containers
other than array, such as vector, list, and
map.

<optional> C++ 17 and
above

A wrapper for a variable that may or may
not contain an object.

<source_location> C++ 20 and
above

Identifies the location of source code.

<tuple> C++ 11 and
above

Allows creation of tuples.

<type_traits> C++ 11 and
above

Obtains compile-time type information.

<typeindex> C++ 11 and
above

Provides a wrapper around a type_info
object for use as an index in associative
and unordered associative containers.

<typeinfo> Obtains runtime information.

<utility> Basic utility functions.

<variant> C++ 17 and
above

Provides support for variant type variables.

<version> C++ 20 and
above

Supplies implementation-dependent library
information.

Parsing Strings Using a Hash
Hashes are an important security requirement for applications today. A hash cre-
ates a unique numeric equivalent of any string you feed it. Theoretically, you can’t
duplicate the number that the hash creates by using another string. A hash isn’t
reversible — it isn’t the same as encryption and decryption.

A common use for hashes is to send passwords from a client to a server. The cli-
ent converts the user’s password into a numeric hash and sends that number to
the server. The number varies daily depending on some formula that both client
and server know. The server verifies the number, not the password. Even if people
are listening in, they have no way to ascertain the password from the number;

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 769

therefore, they can’t steal the password for use with the target application. Other
examples of hash use are to:

»» Verify a file’s hash to a previously saved hash value to ensure no one has
modified the file.

»» Compare two files to ensure they’re most likely the same.

»» Make dictionary searches fast.

Code::Blocks provides excellent support for hashes. However, in order to use it,
you must enable support for C++ 11 extensions using the technique found in the
“Working with ranges” section of Book 1, Chapter 5. After you enable the required
support, you can create the HashingStrings example shown here to demonstrate
the use of hashes.

#include <iostream>
#include <unordered_map>

using namespace std;

int main() {
 hash<const char*> MyHash;
 cout << "The hash of \"Hello World\" is:" << endl;
 cout << MyHash("Hello World") << endl;
 cout << "while the hash of \"Goodbye Cruel World\" is:"
 << endl;
 cout << MyHash("Goodbye Cruel World") << endl;
 return 0;
}

The example begins by creating a hash function object, MyHash. You use this func-
tion object to convert input text to a hash value. The function object works just
like any other function, so you might provide the input text as MyHash("Hello
World"). Hashes always output precisely the same value given a particular input.
Consequently, you should see the following output from this example.

The hash of "Hello World" is:
4952133
while the hash of "Goodbye Cruel World" is:
4952192

770 BOOK 7 Advanced Standard Library Usage

Hashes have uses other than security requirements. For example, you can create
a container that relies on a hash to make locating a particular value easier. In this
case, you use a key/value pair in a hash map using unordered_map<>. The HashMap
example, shown next, illustrates how to create a hash map:

#include <iostream>
#include <unordered_map>
#include <string.h>

using namespace std;

struct eqstr {
 bool operator()(const char* s1, const char* s2) const
 {
 return strcmp(s1, s2) == 0;
 }
};

int main() {
 unordered_map<const char*, int,
 hash<const char*>, eqstr> Colors;
 Colors["Blue"] = 1;
 Colors["Green"] = 2;
 Colors["Teal"] = 3;
 Colors["Brick"] = 4;
 Colors["Purple"] = 5;
 Colors["Brown"] = 6;
 Colors["LightGray"] = 7;
 cout << "Brown = " << Colors["Brown"] << endl;
 cout << "Brick = " << Colors["Brick"] << endl;
 // This key isn't in the hash map, so it returns a
 // value of 0.
 cout << "Red = " << Colors["Red"] << endl;
}

An unordered (hash) map requires four inputs:

»» Key type

»» Data type

»» Hashing function

»» Equality key

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 771

The first three inputs are straightforward. In this case, the code uses a string as a
key type, an integer value as a data type, and hash<const char*> as the hashing
function. You already know how the hashing function works from the previous
example in this section.

The equality key class is a little more complex. You must provide the hash map
with a means of determining equality. In this case, the code compares the input
string with the string stored as the key. The eqstr structure performs the task of
comparing the input string to the key. The structure must return a Boolean value,
so the code compares the strcmp function to 0. When the two are equal, meaning
that the strings are equal, eqstr returns true.

The example goes on to check for three colors, only two of which appear in the
hash map Colors. In the first two cases, you see the expected value. In the third
case, you see 0, which indicates that Colors doesn’t contain the desired key.
Always reserve 0 as an error indicator when using a hash map, because the hash
map will always return a value, even if it doesn’t contain the desired key. The out-
put from this example is

Brown = 6
Brick = 4
Red = 0

Obtaining Information Using
a Random Access Iterator

Most containers let you perform random access of data they contain. For example,
the RandomAccess example shows that you can create an iterator and then add
to or subtract from the current offset to obtain values within the container that
iterator supports:

#include <iostream>
#include <vector>

using namespace std;

int main() {
 vector<string> Words;
 Words.push_back("Blue");
 Words.push_back("Green");

772 BOOK 7 Advanced Standard Library Usage

 Words.push_back("Teal");
 Words.push_back("Brick");
 Words.push_back("Purple");
 Words.push_back("Brown");
 Words.push_back("LightGray");
 // Define a random iterator.
 vector<string>::iterator Iter = Words.begin();
 // Access random points.
 Iter += 5;
 cout << *Iter << endl;
 Iter -= 2;
 cout << *Iter << endl;
 return 0;
}

In this case, the vector, Words, contains a list of seven items. The code creates an
iterator for Words named Iter. It then adds to or subtracts from the iterator
offset and displays the output onscreen. Here is what you see when you run this
example:

Brown
Brick

Sometimes you need to perform a special task using a random-access iterator.
For example, you might want to create a special function to summate the mem-
bers of vector or just a range of members within vector. In this case, you must
create a specialized function to perform the task as follows because the Standard
Library doesn’t include any functions to do it for you, as shown in the RandomAc-
cess2 example:

#include <iostream>
#include <vector>

using namespace std;

template <class RandomAccessIterator>
float AddIt(RandomAccessIterator begin,
 RandomAccessIterator end) {
 float Sum = 0;
 RandomAccessIterator Index;
 // Make sure that the values are in the correct order.
 if (begin > end)
 {
 RandomAccessIterator temp;

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 773

 temp = begin;
 begin = end;
 end = temp;
 }
 for (Index = begin; Index != end; Index++)
 Sum += *Index;
 return Sum;
}

int main() {
 vector<float> Numbers;
 Numbers.push_back(1.0);
 Numbers.push_back(2.5);
 Numbers.push_back(3.75);
 Numbers.push_back(1.26);
 Numbers.push_back(9.101);
 Numbers.push_back(11.3);
 Numbers.push_back(1.52);

 // Sum the individual members.
 float Sum;
 Sum = AddIt(Numbers.begin(), Numbers.end());
 cout << Sum << endl;
 Sum = AddIt(Numbers.end(), Numbers.begin());
 cout << Sum << endl;

 // Sum a range.
 vector<float>::iterator Iter = Numbers.begin();
 Iter += 5;
 Sum = AddIt(Iter, Numbers.end());
 cout << Sum << endl;
 return 0;
}

This example builds on the previous example. You still create a vector, Numbers,
and fill it with data. However, in this case, you create an output variable, Sum, that
contains the summation of the elements contained in Numbers.

AddIt() is a special function that accepts two RandomAccessIterator values as
input. These two inputs represent a range within the vector that you want to
manipulate in some way. The example simply adds them, but you can perform any
task you want. The output is a float that contains the summation.

774 BOOK 7 Advanced Standard Library Usage

AddIt() works as you expect. You call it as you would any other function and
provide a beginning point and an end point within vector. The first two calls to
AddIt sum the entire vector, and the third creates an iterator, changes its off-
set, and then sums a range within vector. Here is the output from this example:

30.431
30.431
12.82

A random-access iterator can go in either direction. In addition, you can work
with individual members within the container supplied to iterator. As a result,
the functions you create for iterator must be able to work with the inputs in
any order. How you handle this requirement depends on the kind of function you
create.

Locating Values Using the Find Algorithm
The Standard Library contains a number of functions to find something you need
within a container. Locating what you need as efficiently as possible is always a
good idea. The four common find() algorithms are

»» find()

»» find_end()

»» find_first_of()

»» find_if()

The algorithm you use depends on what you want to find and where you expect to
find it. You’ll likely use the plain find() algorithm most often. The FindString
example shows how to locate a particular string within vector. You can use the
same approach to locate something in any container type:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int main() {
 vector<string> Words;
 Words.push_back("Blue");

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 775

 Words.push_back("Green");
 Words.push_back("Teal");
 Words.push_back("Brick");
 Words.push_back("Purple");
 Words.push_back("Brown");
 Words.push_back("LightGray");

 vector<string>::iterator Result =
 find(Words.begin(), Words.end(), "LightGray");
 if (Result != Words.end())
 cout << *Result << endl;
 else
 cout << "Value not found!" << endl;

 Result = find(Words.begin(), Words.end(), "Black");
 if (Result != Words.end())
 cout << *Result << endl;
 else
 cout << "Value not found!" << endl;
}

The example starts with a vector containing color strings. In both cases, the code
attempts to locate a particular color within vector. The first time the code is
successful because LightGray is one of the colors listed in Words. However, the
second attempt is thwarted because Black isn’t one of the colors in Words. Here’s
the output from this example:

LightGray
Value not found!

Never assume that the code will find a particular value. Always assume that some-
one is going to provide a value that doesn’t exist and then make sure you provide a
means of handling the nonexistent value. In this example, you simply see a mes-
sage stating that the value wasn’t found. However, in real-world code, you often
must react to situations in which the value isn’t found by

»» Indicating an error condition

»» Adding the value to the container

»» Substituting a standard value

»» Defining an alternative action based on invalid input

776 BOOK 7 Advanced Standard Library Usage

You can use the find() algorithm for external and internal requirements. Even
though the example shows how you can locate information in an internal vector,
you can also use find() for external containers, such as disk drives.

Using the Random Number Generator
Random number generators fulfill a number of purposes. Everything from games
to simulations require a random number generator to work properly. Randomness
finds its way into business what-if scenarios as well. In short, you need to add
random output to your application in many situations. Creating a random number
isn’t hard. All you need to do is call a random number function, as shown in the
RandomNumberGenerator example:

#include <iostream>
#include <time.h>
#include <stdlib.h>

using namespace std;

int main() {
 // Always set a seed value.
 srand((unsigned int)time(NULL));
 int RandomValue = rand() % 12;
 cout << "The random month number is: "
 << RandomValue + 1 << endl;
 return 0;
}

The Standard Library uses pseudorandom number generators: The numbers are
distributed such that you appear to see a random sequence, but given enough time
and patience, eventually the sequence repeats. In fact, if you don’t set a seed value
for your random number generator (or set it to a specific number), you can obtain
predictable sequences of numbers every time. Most people use the time or some
other automatically changing numeric source to set the seed value to make it more
unpredictable. Here is typical output from this example:

The random month number is: 7

The first line of code in main() sets the seed by using the system time. Using the
system time ensures a certain level of randomness in the starting value — and
therefore a level of randomness for your application as a whole. If you comment
out this line of code, you see the same output every time you run the application.

Ex
pl

or
in

g
th

e
St

an
da

rd

Li
br

ar
y

Fu
rt

he
r

CHAPTER 1 Exploring the Standard Library Further 777

The example application uses rand() to create the random value. When you take
the modulus of the random number, you obtain an output that is within a specific
range — 12 in this case. The example ends by adding 1 to the random number
because there isn’t any month 0 in the calendar, and then outputs the month
number for you.

Working with Temporary Buffers
Temporary buffers are useful for all kinds of tasks. Normally, you use them when
you want to preserve the original data, yet you need to manipulate the data in
some way. For example, creating a sorted version of your data is a perfect use of a
temporary buffer. The TemporaryBuffer example shows how to use a temporary
buffer to sort some strings:

#include <iostream>
#include <vector>
#include <memory>
#include <algorithm>

using namespace std;

int main() {
 vector<string> Words;
 Words.push_back("Blue");
 Words.push_back("Green");
 Words.push_back("Teal");
 Words.push_back("Brick");

 int Count = Words.size();
 cout << "Words contains: " << Count << " elements."
 << endl;

 // Create the buffer and copy the data to it.
 pair<string*, ptrdiff_t> Mem =
 get_temporary_buffer<string>(Count);
 uninitialized_copy(Words.begin(), Words.end(),
 Mem.first);

 // Perform a sort and display the results.
 sort(Mem.first, Mem.first+Mem.second);
 for (int i = 0; i < Mem.second; i++)
 cout << Mem.first[i] << endl;

778 BOOK 7 Advanced Standard Library Usage

 // Show that the original list is unchanged.
 cout << "\nShowing Words Hasn't Changed" << endl;
 for (int i = 0; i < Count; i++)
 cout << Words[i] << endl;
 return 0;
}

The example starts with the now familiar list of color names. It then counts the
number of entries in Words and displays the count onscreen.

At this point, the code creates the temporary buffer using get_temporary_
buffer(). The output is Mem of type pair, with the first value containing a pointer
to the string values and the second value containing the count of data elements.
Mem doesn’t contain anything — you have simply allocated memory for it.

The next task is to copy the data from Words to Mem using uninitialized_copy().
Now that Mem contains a copy of your data, you can organize it using the sort()
function. The final step is to display the Mem content onscreen. Here is what
you’ll see:

Words contains: 4 elements.
Blue
Brick
Green
Teal

Showing Words Hasn't Changed
Blue
Green
Teal
Brick

CHAPTER 2 Working with User-Defined Literals (UDLs) 779

Working with
User-Defined Literals
(UDLs)

Previous chapters have discussed literals as a kind of constant. For example,
in the expression X = 5, the number 5 is a literal constant. The constant X
stands in for the value 5 in application code. Using a literal enables you to

create code that states the use of a value clearly, rather than having code that is
filled with mystery values that no one can figure out. In addition, using literals
lets you change constant values in one place, rather than in each place they’re
needed in an application.

Up to this point, you have used every other kind of literal constant in the various
examples except for User-Defined Literals (UDLs). Unlike other kinds of literal
constants, a UDL isn’t defined as part of the C++ compiler — you create UDLs as
needed to make your code more readable and easier to manage. In some cases,
UDLs come with the libraries you use in C++, such as the Standard Library. This
chapter does discuss UDLs that come as part of the Standard Library, but it also
looks at how you’d create your own UDLs as needed.

Chapter 2

IN THIS CHAPTER

»» Considering the needs and uses
for UDLs

»» Using the UDL features of the
Standard Library

»» Developing custom UDLs

780 BOOK 7 Advanced Standard Library Usage

UDLs aren’t part of older C++ specifications. In fact, they first made an appearance
in C++ 11. This means that you must configure Code::Blocks to use the features
provided by C++ 11 by using the technique found in the “Working with ranges”
section of Book 1, Chapter 5. If you don’t perform the configuration for each
example in this chapter, you see error messages telling you that the default setup
doesn’t provide the desired support.

There are also some small, but important, changes for UDLs in C++ 20 that aren’t
covered in this chapter because they’re used at a more detailed level. You can read
about these tweaks to UDLs at https://en.cppreference.com/w/cpp/language/
user_literal.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVII\Chapter02 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Understanding the Need for UDLs
The whole point of literals is to make code more readable and easier to maintain.
However, built-in literals are limited to a few data types, summarized as follows:

»» Integer

»» Floating-point

»» Character

»» String

»» Boolean

»» Pointer

»» UDL

Sometimes you need a literal of a type other than these built-in types, and that’s
where UDLs come into play. Unlike variables, the value of a UDL is always known
at compile time. The compiler substitutes whatever value you define for the UDL
with the actual value in the code. The purpose of the UDL is to make the code
easier for the human developer to read and understand. After that task is com-
pleted, the compiler is free to use the actual value referenced by the UDL in the
compiled code so that the application doesn’t need to convert it during runtime.
Your application therefore runs faster and uses fewer resources while remaining
easy to read.

https://en.cppreference.com/w/cpp/language/user_literal
https://en.cppreference.com/w/cpp/language/user_literal

W
or

ki
ng

 w
it

h
U

se
r-

D
efi

ne
d

Li
te

ra
ls

 (U
D

Ls
)

CHAPTER 2 Working with User-Defined Literals (UDLs) 781

Built-in literals are straightforward because they’re based on core types. A UDL
can be as complex as you need it to be to express a real-world data type. For
example, if you’re involved in a field that uses imaginary numbers, you can create
a UDL to fulfill that need. You can also perform data conversions and other tasks
that would be time consuming to perform in other ways. You can even create side
effects, such as performing some sort of output, using a UDL.

Prefixes and suffixes
Saving time and effort is part of the reason you use literals. There is a short-
hand way to create literals and ensure that you obtain the correct constant type.
Many of the standard literals provide you with a prefix or suffix that you can use
to tell the compiler how to interpret them. Precisely how the prefix or suffix is
interpreted depends on how you use it. For example, a suffix of U could mean
an unsigned int when used with an int value, while a prefix of U could mean a
char32_t const pointer when used with a character string. Table 2-1 shows a list-
ing of the prefixes and suffixes that most compilers support.

TABLE 2-1	 Standard Prefixes and Suffixes
Data Type Prefix Suffix Resultant Type

int U or u unsigned int

int L or l long

int UL, Ul, uL, ul, LU, Lu, lU, or lu unsigned long

int LL or ll long long

int ULL, Ull, uLL, ull, LLU, LLu, llU, or llu unsigned long long

double F or f float

double L or l long double

char L wchar_t

char U char32_t

char U char16_t

String L wchar_t const*

String U char32_t const*

String U char16_t const*

782 BOOK 7 Advanced Standard Library Usage

Using the prefixes and suffixes can save you considerable time. The PrefixesAnd-
Suffixes example in Listing 2-1 demonstrates how you’d employ them to create
variables of various sorts.

LISTING 2-1:	 Creating Literals Using Prefixes and Suffixes

#include <iostream>
#include <typeinfo>
#include <cxxabi.h>

using namespace std;
using namespace abi;

char* Demangle(const char* Object) {
 int Status;
 char* RealName;
 RealName = __cxa_demangle(Object, 0, 0, &Status);
 return RealName;
}

int main() {
 auto Int1 = 23;
 auto Int2 = 23L;
 auto Int3 = 23U;
 auto Int4 = 23u;

 auto String1 = "Hello";
 auto String2 = L"Hello";
 auto String3 = U"Hello";
 auto String4 = u"Hello";

 cout << Int1 << endl
 << Demangle(typeid(Int1).name()) << endl;
 cout << Int2 << endl
 << Demangle(typeid(Int2).name()) << endl;
 cout << Int3 << endl
 << Demangle(typeid(Int3).name()) << endl;
 cout << Int4 << endl
 << Demangle(typeid(Int4).name()) << endl;

 cout << String1 << endl
 << Demangle(typeid(String1).name()) << endl;
 cout << String2 << endl
 << Demangle(typeid(String2).name()) << endl;

W
or

ki
ng

 w
it

h
U

se
r-

D
efi

ne
d

Li
te

ra
ls

 (U
D

Ls
)

CHAPTER 2 Working with User-Defined Literals (UDLs) 783

 cout << String3 << endl
 << Demangle(typeid(String3).name()) << endl;
 cout << String4 << endl
 << Demangle(typeid(String4).name()) << endl;
 return 0;
}

The Demangle() function is GCC specific. Most C++ compilers mangle (modify
the spelling of) keywords and type information to make an application harder
for someone to reverse-assemble (convert from machine language back into C++
source code). To determine type information, you use the typeid() function to
create a typeinfo structure. The name() function returns the type name found in
this structure to display it onscreen. However, this name is mangled, so you must
use the Demangle() function to change it back to its original readable form.

Most of the examples in this chapter rely on the auto keyword to automatically
detect the variable type created by a UDL. This keyword is an important feature
for newer C++ applications that make use of the new extensions that the language
provides. You can read about the auto keyword in the “Using the auto keyword
with lambda expressions” section of Book 3, Chapter 2. In this case, the code uses
the auto keyword to detect the output of the literal prefix or suffix so that the
variable is automatically the correct type for a situation. When you run this appli-
cation, you see the following output:

23
int
23
long
23
unsigned int
23
unsigned int
Hello
char const*
0x46e02c
wchar_t const*
0x46e038
char32_t const*
0x46e02c
char16_t const*

Even though the data is the same in every case, the variables used to hold the data
differ because of the prefix or suffix used to create the variable. Notice that the
same prefix or suffix has different effects depending on the type of the variable to

784 BOOK 7 Advanced Standard Library Usage

which it’s applied. In addition, sometimes the case of the prefix or suffix matters
(as in working with a string).

Differentiating between raw and cooked
There are many ways to define literals. Of course, the kind of information that a
literal affects is the most common method. However, literals can also be raw or
cooked. A raw literal receives input from the application source and doesn’t inter-
pret it in any way. This means that the information is interpreted character by
character, precisely as the sender has presented it. Cooked literals interpret the
sender’s input and automatically perform any required conversions to make the
data usable to the recipient.

The easiest way to see this principle in action is through an example. The RawAnd-
Cooked example, shown in Listing 2-2, demonstrates the technique used to create
either raw or cooked string processing.

LISTING 2-2:	 Using Raw and Cooked String Processing

#include <iostream>

using namespace std;

int main() {
 auto Cooked = "(Hello\r\nThere)";
 auto Raw = R"(Hello\r\nThere)";
 cout << Cooked << endl;
 cout << Raw << endl;
}

Most of the time when you see the \r\n combination, you know that the appli-
cation will output a carriage return and linefeed combination. This is the cooked
method of processing a string. The string is interpreted and any escape charac-
ters converted into control characters (characters that are normally regarded as
commands, rather than data, such as the carriage return). However, notice how
the Raw string is created. The R in front of the string tells the compiler to create
the variable without interpreting the content. Here’s the output you see from this
example:

(Hello
There)
Hello\r\nThere

W
or

ki
ng

 w
it

h
U

se
r-

D
efi

ne
d

Li
te

ra
ls

 (U
D

Ls
)

CHAPTER 2 Working with User-Defined Literals (UDLs) 785

Notice that the cooked form does output the parentheses, but the raw form
doesn’t. The parentheses are required as part of the raw form input. As you might
imagine, the cooked form outputs the \r\n combination as control characters,
while the raw form outputs the actual characters.

Working with the UDLs in the
Standard Library

Even though you can currently create UDLs for the basic types described in the
“Understanding the Need for UDLs” section, earlier in this chapter, there are
many situations in which developers need UDLs for classes as well. In some cases,
these classes are part of the Standard Library. Rather than have a number of non-
standard implementations of these UDLs, the standards committee decided to add
the UDLs directly to the Standard Library. You can read the details in the “User-
defined Literals for Standard Library Types” at http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2013/n3531.pdf. Consistent and standardized UDLs are
now attached to some classes. The following sections describe the more important
classes and show how to use them.

std::basic_string
The std::basic_string class enables you to work with sequences of char-like
objects. The class currently has templates defined for

»» char

»» wchar_t

»» char16_t

»» char32_t

OBTAINING STANDARD LIBRARY
UDL SUPPORT
Adding UDLs to the Standard Library is a new feature for C++ 14. To actually see this
feature at work, your compiler must support all the C++ 14 additions. Because some of
these features require time to implement, your C++ compiler may not provide all the
standardized features, even if it purports to provide C++ 14 support.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3531.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3531.pdf

786 BOOK 7 Advanced Standard Library Usage

However, the class could easily be extended for other kinds of characters. In
addition, the templates let you specify character traits and the method used to
store the data in memory. The essential idea behind the basic_string is to ena-
ble you to accommodate a variety of character types within one character class
to simplify coding.

In C++ 14, the Standard Library includes built-in literal support for basic_string.
All you need to do is add the s suffix to a string to create one. However, it’s impor-
tant to get an idea of how all this works behind the scenes. The BasicString
example, shown in Listing 2-3, demonstrates three techniques for creating a
basic_string object.

LISTING 2-3:	 Three Techniques for Creating a basic_string

#include <iostream>
#include <typeinfo>
#include <cxxabi.h>

using namespace std;
using namespace abi;

string operator"" _s(const char * str, unsigned len) {
 return string{str, len};
}

char* Demangle(const char* Object) {
 int Status;
 char* RealName;
 RealName = __cxa_demangle(Object, 0, 0, &Status);
 return RealName;
}

int main() {
 basic_string<char> StdString = "A standard string.";
 auto AutoString = "This is an auto string."_s;
 auto UDLString = "This is a UDL string."s;

 cout << StdString << endl <<
 Demangle(typeid(StdString).name()) << endl;
 cout << AutoString << endl <<
 Demangle(typeid(AutoString).name()) << endl;
 cout << UDLString << endl <<
 Demangle(typeid(UDLString).name()) << endl;
 return 0;
}

W
or

ki
ng

 w
it

h
U

se
r-

D
efi

ne
d

Li
te

ra
ls

 (U
D

Ls
)

CHAPTER 2 Working with User-Defined Literals (UDLs) 787

This example performs three essential levels of conversion so that you can see
the progression from one to another. In the first case, you see the straightforward
method for creating a simple basic_string object, StdString. As you can see, it
works just like any other template. The second case relies on a C++ 11 type opera-
tor definition to emulate the UDL that is included as part of C++ 14. The “Creating
Your Own UDLs” section of this chapter tells you all the details about creating
such an operator. All you really need to know for now is that the operator makes
it possible to use a shortcut when creating basic_string objects. The third case
shows the C++14 version of the same _s definition, but this one is built right into
the Standard Library so you don’t have to do anything special to use it. In all three
cases, you create the same basic_string object type, but the technique differs
each time. When you run this example, you see the following output:

A standard string.
std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >
This is an auto string.
std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >
This is a UDL string.
std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >

There seems to be some confusion online as to how the raw and cooked versions of
basic_string should work. In looking at the _s and s operators, the code already
provides both raw and cooked implementations. For example, if you used this
code with the _s operator:

auto RawString = R"(This is a\r\nraw string.)";
auto CookedString = "This is a\r\ncooked string.";
cout << RawString << endl;
cout << CookedString << endl;

you’d see the following output:

This is a\r\nraw string.
This is a
cooked string.

The s operator works in the same manner. So, you can use either raw or cooked
strings with the same operator and receive the appropriate results.

788 BOOK 7 Advanced Standard Library Usage

std::complex
A complex number consists of a real number and an imaginary number that
are paired together. (Just in case you’ve completely forgotten about complex
numbers, you can read about them at http://www.mathsisfun.com/numbers/
complex-numbers.html.) Real-world uses for complex numbers include:

»» Electrical engineering

»» Fluid dynamics

»» Quantum mechanics

»» Computer graphics

»» Dynamic systems

There are other uses for complex numbers, too, but this list should give you some
ideas. In general, if you aren’t involved in any of these disciplines, you probably
won’t ever encounter complex numbers. However, the Standard Library provides
full support for complex numbers, just in case you do need them.

As with the BasicString example, this example shows the progression from a
standard declaration to the C++ 14 suffix. The ComplexNumber example, shown in
Listing 2-4, demonstrates all three stages so that you can see how both the C++ 14
suffix and the C++ 11 UDL forms work.

LISTING 2-4:	 Three Techniques for Creating a complex Number

#include <iostream>
#include <complex>

using namespace std;

complex<long double> operator"" _i(long double Value) {
 return complex<double>(0, Value);
}
int main() {
 complex<double> StdComplex(0, 3.14);
 auto AutoComplex = 3.14_i;
 auto UDLComplex = 3.14i;
 auto NonZeroRealPart = 2.01 + 3.14i;

 cout << StdComplex.real() << "\t"
 << StdComplex.imag() << endl;
 cout << AutoComplex.real() << "\t"
 << AutoComplex.imag() << endl;

http://www.mathsisfun.com/numbers/complex-numbers.html
http://www.mathsisfun.com/numbers/complex-numbers.html

W
or

ki
ng

 w
it

h
U

se
r-

D
efi

ne
d

Li
te

ra
ls

 (U
D

Ls
)

CHAPTER 2 Working with User-Defined Literals (UDLs) 789

 cout << UDLComplex.real() << "\t"
 << UDLComplex.imag() << endl;
 cout << NonZeroRealPart.real() << "\t"
 << NonZeroRealPart.imag() << endl;
 return 0;
}

The example declares variables of all three types and assigns values to them. It
also creates a version of a variable with a non-zero real part so you can see how to
perform this task. You provide the real part plus the imaginary part as two values.
It then displays both the real and imaginary parts of the number. When you run
this example, you see the following output:

0 3.14
0 3.14
0 3.14
2.01 3.14

You can create three kinds of complex numbers. The following list shows the suf-
fixes used for each type:

»» i: double

»» if: float

»» il: long double

The auto UDLComplex = 3.14i; form of declaration generates an error when
you use the -fext-numeric-literals switch with the GNU GCC Compiler. You
see this switch demonstrated in the “Specifying a precision” section of Book 6
Chapter 2. When performing tasks such as using hexadecimal notation with an
exponent, you need to use one of the other complex number declaration types
instead.

std::chrono::duration
The chrono::duration class serves to mark the passage of time. It answers the
question of how much time has elapsed between two events. Developers use it for
all sorts of time-related purposes.

790 BOOK 7 Advanced Standard Library Usage

A chrono::duration object relies on a second as the standard duration between
ticks. A tick is a single time duration interval. Using the standard setup, each tick
equals one second. However, you can use the ratio object to define a new tick
duration. For example, if you define ratio<60>, each tick lasts one minute. Like-
wise, defining ratio<1, 5> sets each tick to last one fifth of a second.

You can also change one interval to another using duration_cast with either a
standard interval, such as chrono::seconds, or any interval typedef that you
want to create. For example, typedef chrono::duration<double, ratio<1, 5>>
fifths; defines an interval called fifths.

There is a lot more to talk about with the chrono::duration class, but you now
have enough information to work with the Duration example, shown in List-
ing 2-5. As with previous examples, this one shows a progression from defining
a variable directly, to using a custom UDL, and finally the built-in support that
C++ 14 provides.

LISTING 2-5:	 Three Techniques for Creating a chrono::duration

#include <iostream>
#include <chrono>

using namespace std;

chrono::duration<unsigned long long> operator"" _m(
 unsigned long long Value) {
 return chrono::duration<int, ratio<60>>(Value);
}

int main() {
 chrono::duration<int, ratio<60>>StdTime(20);
 auto AutoTime(20_m);
 auto UDLTime(20min);

 cout << chrono::duration_cast<chrono::seconds>(StdTime)
 .count() << endl;
 cout << chrono::duration_cast<chrono::seconds>(AutoTime)
 .count() << endl;
 cout << chrono::duration_cast<chrono::seconds>(UDLTime)
 .count() << endl;
 return 0;
}

W
or

ki
ng

 w
it

h
U

se
r-

D
efi

ne
d

Li
te

ra
ls

 (U
D

Ls
)

CHAPTER 2 Working with User-Defined Literals (UDLs) 791

The example demonstrates a few features of the chrono::duration class. How-
ever, it focuses again on the progression from defining the variable by hand to
using a shortcut to perform the task. Notice that the UDL relies on an integer
value in this case, rather than a floating-point type. The value of 20 minutes is
converted to seconds for output. As a result, you see these values when you run
the application:

1200
1200
1200

The Standard Library supports a number of suffixes for chrono::duration when
you use C++ 14. The following list shows the individual suffixes and tells you what
they mean:

»» h: Hours

»» min: Minutes

»» s: Seconds

»» ms: Milliseconds

»» us: Microseconds

»» ns: Nanoseconds

Creating Your Own UDLs
The Standard Library, coupled with the built-in features of C++, provide you
with an interesting array of literals. However, the true value of literals becomes
more obvious when you create your own. There are many different needs you can
address using UDLs, but three common needs are supporting data conversions,
making custom types easier to work with, and obtaining desired side effects with-
out the usual number of coding problems.

Although built-in or Standard Library literals come in both prefix and suffix form,
you can create only the suffix form when defining your own literals. In addition,
the suffix must begin with an underscore. The underscore serves to help prevent
conflicts with existing suffixes and to ensure that other developers know that the
literal is a custom (nonstandard) form.

792 BOOK 7 Advanced Standard Library Usage

Developing a conversion UDL
You can encapsulate conversions within a UDL. All you need to do after you create
such a UDL is provide the appropriate suffix when defining the constant to obtain
the result you want. The CustomUDL01 example, in Listing 2-6, demonstrates a
technique for defining a conversion that changes the radius input to the area of a
circle in the constant.

LISTING 2-6:	 Defining a Data Conversion UDL

#include <iostream>

using namespace std;

constexpr long double operator""
 _circ(long double radius) {
 return radius*radius*3.141592;
}

int main() {
 double x = 5.0_circ;
 cout << "The circle's area is: " << x << endl;
 return 0;
}

To create the UDL, the example relies on a constexpr with a return value of a long
double and an input value, radius, of a long double. The equation for computing
the area of a circle is πr2. As you can see, the example performs the correct com-
putation as part of the constexpr.

Whenever you create a custom UDL, the compiler forces you to use the largest
type for the conversion. What this means is that you must use a long double for
floating-point literals and unsigned long long for integer literals. Even if you
later choose to use a smaller type, as is done in this example by declaring x as a
double, the literal itself must employ the largest possible type.

To declare a UDL of the new type, the example creates x, which uses the _circ
suffix. It then outputs the result onscreen. When you run this example, you see
that the correct value has been placed in x, as shown here:

The circle's area is: 78.5398

W
or

ki
ng

 w
it

h
U

se
r-

D
efi

ne
d

Li
te

ra
ls

 (U
D

Ls
)

CHAPTER 2 Working with User-Defined Literals (UDLs) 793

Developing a custom type UDL
A lot of the code you encounter relies on custom types that are hard to follow and
understand. Creating a UDL to simplify the code makes things clearer and reduces
the potential for error. The CustomUDL02 example, shown in Listing 2-7, shows
a custom type, the operator used to create the UDL, and how the UDL is used to
define a literal.

LISTING 2-7:	 Creating a UDL for a Custom Type

#include <iostream>

using namespace std;

struct MyType {
 MyType (double Input):Value(Input){}
 double Value;
};

MyType operator"" _mytype (long double Value) {
 return MyType(Value);
}

int main() {
 auto UDLType = 145.6_mytype;
 cout << UDLType.Value << endl;
 return 0;
}

For this technique to work, you must create a constructor for your type that
accepts the number of inputs required to configure the type. At minimum,
the constructor must accept one type or the input value the user provides is lost.
The custom type need not support the same size data type as required by the
operator, but they must be of the same sort. For example, you couldn’t transition
a long double to an int.

When you run this example, you see an output value of 145.6, which is the value
you input to the custom type. You can handle fairly complex setups using this
approach. The user of your custom type obtains the capability to create clear code
that’s easy to follow and interpret, even when the underlying types are complex.

794 BOOK 7 Advanced Standard Library Usage

Using a custom UDL for side effects
One of the most interesting uses for UDLs is to create side effects (an operation
other than the usual or normal operation, either to make the application shorter
and more efficient or to provide added flexibility). You want to define a certain
kind of operation that takes place as a result of defining the literal. What you get
is still a literal, but a literal that doesn’t necessarily denote a value that you plan
to use later. The CustomUDL03 example, shown in Listing 2-8, shows one such
nontraditional use.

LISTING 2-8:	 Using UDLs to Create an Interesting Side Effect

#include <iostream>

using namespace std;

void operator"" _countdown (unsigned long long Value) {
 for (int i = Value; i >= 0; i--)
 cout << i << endl;
}

int main() {
 5_countdown;
 return 0;
}

Notice that the _countdown operator isn’t attached to something that you’d nor-
mally associate with a value. In fact, it doesn’t return a value at all. What you get
instead is a side effect. When you run this example, you see this output.

5
4
3
2
1
0

What has happened is that the compiler has replaced 5_countdown with individ-
ual cout statements, one for each iteration of the loop. You end up with six cout
statements that output the values between 5 and 0 (in reverse order). The side
effect UDL opens all sorts of interesting possibilities for creating code that simpli-
fies certain repetitive tasks in a manner that makes their use obvious.

CHAPTER 3 Building Original Templates 795

Building Original
Templates

C++ has been around for many years. Because of its longevity, C++ templates
abound. In fact, it may seem that there is a template for every practical pur-
pose. However, the templates that are available to the developer community

through standardized and third-party resources usually reflect generalized needs.
The individual company you work for (or you as a developer) may have specialized
needs that a generalized template can’t address.

Every programming tool in existence offers a certain amount of flexibility. The
reason you see so many generalized tools is that someone developed them and the
community as a whole decided to adopt them. Never think that you can’t create
your own tools. After all, someone created the generalized tools you work with
daily. Creating a custom tool requires nothing special, just time and thought on
your part.

The trick to creating a customized tool is to think the process through, just as you
would for any application you create. The fact that you’ll use this customized tool
to create multiple applications means that you must apply a higher standard to its
design and the code it contains than you would for one-time applications. A mis-
take in a customized tool can spell errors in every application you create using it,
so this code must work well.

Chapter 3

IN THIS CHAPTER

»» Defining template and template
library creation

»» Understanding the elements of good
template design

»» Developing basic math, structure,
and class templates

»» Using template specialization to your
advantage

796 BOOK 7 Advanced Standard Library Usage

This chapter addresses the thought process behind templates first and then shows
some typical template examples. The examples help demonstrate ways in which
you can use templates to create better applications that require less code because
the templates you create meet your needs more completely than any generalized
template can. After you see the template examples, you discover the techniques
used to place a number of templates in a library. Finally, you discover how to use
the template library to create applications.

The examples in this chapter discuss significant template creation and use details.
However, they’re designed to work with a broad range of C++ versions simply
because templates are most useful when they support more than the latest ver-
sion. However, C++ 17 and 20 do provide some interesting additional features, such
as type deduction (see the “Understanding the Role of auto” section in Book 3,
Chapter 1 for details) and you can read about them in the article at https://
dzone.com/articles/c-template-story-so-farc11-to-c20.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVII\Chapter03 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Deciding When to Create a Template
The first step in creating a template is deciding whether your idea will gener-
ate a useful template. Most developers have thousands of creative thoughts that
translate into ideas during their careers; however, only a few of these ideas are
exceptionally useful. By determining whether the template you want to create is
a good idea at the outset, you waste less time on bad ideas and have more time to
create that truly useful idea. Before you begin creating a new template, consider
the following questions:

»» Is there a generic template that is close enough to meet your needs?
A good template idea is unique — it does something more than perform a
useful task; it performs a new kind of useful task. Template ideas that fail the
uniqueness test usually consume many resources for a small payoff.

»» Will you use the template more than once? Some template ideas are so
tuned to a particular project that the developer ends up using them precisely
once, which means that the template never provides a payback on the
investment to create it.

https://dzone.com/articles/c-template-story-so-farc11-to-c20
https://dzone.com/articles/c-template-story-so-farc11-to-c20

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 797

»» Will the template save more time than you use to create it? Templates
can become complex. In fact, some templates are complex enough that you’d
save time by not writing them at all. The reason to use templates is to save
time and effort, so a complex template tends to require a larger payback
period than a simple one.

»» Is there a third-party template you can buy (or, better yet, obtain free)
that nearly meets your need? Someone else may have already had your
good idea, or something very close to it. Before you invest time in creating a
template, you should spend time researching online. Obtaining a third-party
template that’s close to what you want is always more time efficient than
creating a custom template on your own.

»» How generic is the template you want to create? Many good template
ideas are simply too specific, which limits their adaptability to other situations.
You want to create a unique template, but one that can meet a range of
organizational needs.

»» Is your template concept complete? Developers often envision only a piece
of a template. For example, if you create a math template, you should actually
create a library that contains all the equations you plan to use with your
applications. Designing a template that contains a single equation is never
worthwhile because other developers will have to finish the work you started.

»» Do you have the skills to create the template? Not everyone is a good
template designer. A template designer must define a template that goes
beyond the original expectations because someone will almost certainly use
the template in unexpected ways. The best templates adapt to new situations
that the originator never considered. Consequently, creating a template
requires a different sort of mindset than creating an application.

A little research at the outset can save significant time, effort, and replicated
development. C++ has been around for a long time (at least in computer terms),
so you can choose from a wealth of existing code. Always determine in advance
whether the template you want to create is worth the effort and will make life
easier for other developers.

Defining the Elements of a Good Template
Book 5, Chapter 5 offers some insights into basic template creation techniques.
However, that introductory chapter doesn’t address what makes for a good tem-
plate. The template you create has to look professional and work as expected. The

798 BOOK 7 Advanced Standard Library Usage

first decision you have to make is what kind of template to create. You can choose
among these three types:

»» Function: A function represents the simplest way to create a template and
eases debugging requirements. You can group functions in libraries to make
them easier to access. However, functions often lack depth, and you can’t
coordinate activities between them as easily as you can between the elements
of an object.

»» Structure: A structure provides the best speed in many cases and can reduce
the amount of system resources required, depending on how you define the
structure. Remember that C++ allocates memory for the entire structure, but
structures also present opportunities for optimization that you don’t get with
a class.

»» Class: A class provides the greatest flexibility because you can express the
template using all the elements that a class can provide — methods, proper-
ties, and events. You can inherit classes to create new classes. In short, if you
have a complex idea to implement, classes are the way to do it.

The second decision you have to make is how to weight design factors when creat-
ing the template. C++ offers myriad ways to accomplish any given task. For exam-
ple, you have multiple ways to create a function. However, one method is normally
superior to the others simply because it offers some particular benefit. Consider
these requirements when choosing the kind of template to create:

»» Security: “Simplicity” often translates into “easier to secure.” In general,
functions are easier to secure than structures, which are easier to secure than
classes. However, you can easily write an insecure class if you use the wrong
approach. Secure templates often require additional checks that can affect
reliability (the template tends not to allow specific actions when these actions
affect security) and speed (additional code always slows template execution).

»» Reliability: The options you choose will affect the reliability of the template
you create. A reliable template produces consistent results for any data type
supplied to it. In some cases, ensuring reliability means adding checks to the
template, which increases complexity. The additional code affects both the
security and the speed of the template.

»» Speed: Templates save the developer time. However, if the resulting template
produces slow code, you can be sure that users will complain and the developer
will end up rewriting some code to improve application speed. A fast template is
usually small and performs the task precisely. The additional checks required to
ensure secure and reliable operation always affect speed negatively, so you
must work to achieve a balance.

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 799

»» Usage: Some templates are so difficult to use that it’s hard to imagine that
even the originator uses them. If a developer can’t determine how to use your
template, no one will ever use it, and your effort is wasted. Consequently, you
must design the template such that it meets security, reliability, and speed
goals without becoming overly difficult to use.

»» Time: Every time you design a new piece of software, a time element is
involved. It’s essential to decide whether the template will ultimately save
enough development time to offset the development cost of creating and
testing it. A template that you intend to use only a few times may not be worth
the effort.

»» Maintenance: Someone will have to maintain the code used to create the
template. A good template is one in which the code is relatively straightfor-
ward. Of course, you need to add comments to the code that explain how the
code works — and fully document the template design. Most templates see
some level of redesign during their lifecycles. They evolve as developers use
the template and discover new ways to incorporate it into applications.

The best template is the one that seems obvious. Consider the article about the
invention of the safety pin at https://lemelson.mit.edu/resources/walter-
hunt. The safety pin seems obvious, but someone still had to invent it because
no one else had thought about it. When you create a template and someone tells
you that it seems like an obvious idea, don’t get mad. Be glad. You’ve joined the
ranks of people who thought of something that fulfills an obvious need, but no
one thought about your idea before you did.

The third decision you must make is how inclusive to make the template. In some
cases, you want to create a template that can handle a range of situations. How-
ever, a template can quickly become unwieldy and difficult to manage. A good
template is balanced; it includes the elements you need, but nothing beyond.

Creating a Basic Math Template
With a math template, you usually need access to a wealth of calculations but may
use only one or two of those calculations at a time. For example, when calculating
your mortgage, you don’t need to know the amortization calculation. However,
you might need the amortization calculation the next week when thinking about a
retirement plan. In short, the calculations all have a purpose, and you need them
all, but you don’t need them all at the same time. Because of the way you use math
templates, they work best as a series of function templates. The MathTemplate
example, in Listing 3-1, shows how to create the series of functions.

https://lemelson.mit.edu/resources/walter-hunt
https://lemelson.mit.edu/resources/walter-hunt

800 BOOK 7 Advanced Standard Library Usage

LISTING 3-1:	 Defining a Series of Function Templates

#include <iostream>
#include <cmath>

using namespace std;

template<typename T> T Area(T height, T length) {
 return height * length;
}

const double PI = 4.0*atan(1.0);

template<typename T> T CircleArea(T radius) {
 double result;
 result = PI * radius * radius;
 // This version truncates the value.
 return (T)result;
}

template<typename T> T TriangleArea(T base, T height) {
 double result;
 result = base * height * 0.5;
 return (T)result;
}

int main() {
 cout << "4 X 4 Areas:" << endl;
 cout << "Square: " << Area<int>(4, 4) << endl;
 cout << "Circle: " << CircleArea<int>(2) << endl;
 cout << "Triangle: " << TriangleArea<int>(4, 4) << endl;
 cout << "Using a value of pi of: " << PI << endl;
 return 0;
}

The calculations could consist of any math calculation. The point of the example is
that using functions makes each of the calculations discrete, easy to use, and easy
to manage. When you run this example, you see the following output:

4 X 4 Areas:
Square: 16
Circle: 12
Triangle: 8
Using a value of pi of: 3.14159

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 801

Note that CircleArea<int>(2) uses half the value of the other calculations as
input. That’s because you calculate the area of a circle using the equation π × r2.
If you want to see other area and volume equations, check out the website at
http://www.aquatext.com/calcs/calculat.htm.

For consistency, you could change the circle equation to read like this:

radius = radius / 2;
result = PI * radius * radius;

Dividing the input by 2, essentially changing the diameter to a radius, means that
you could call the equation using the same number as all the other area calcula-
tions: CircleArea<int>(4). Whichever approach you choose, you need to docu-
ment how the template works so that other developers know how to use it.

You should also note that the circle and triangle calculations perform a bit of type
coercion to ensure that the user gets the expected results back by modifying the
return statement to read return (T)result;. The type conversions are needed
to keep your templates from generating warning messages. It’s important to note
that the approach used in the example truncates the result when the template
returns an int.

You may see examples online that don’t calculate the value of π. Instead, these
examples use M_PI, which supposedly appears in <cmath> or <math.h>. You can
use either header. However, if you try to access M_PI, the compiler will com-
plain that it can’t find the value. This is because most compilers today use strict
ANSI (American National Standards Institute) conventions, and M_PI isn’t part of
that convention. To access M_PI, you must add #undef __STRICT_ANSI__ before
#include <cmath> in your file. Of course, now you’re also dragging in all the
non-ANSI features, so in most cases, it’s just better to calculate π to keep your
code cleaner.

Building a Structure Template
Structure templates have many interesting uses, such as creating a data reposi-
tory that doesn’t depend on a particular type. The StructureTemplate example,
shown in Listing 3-2, shows one such use.

http://www.aquatext.com/calcs/calculat.htm

802 BOOK 7 Advanced Standard Library Usage

LISTING 3-2:	 Creating a Template from a Structure

#include <iostream>

using namespace std;

template<typename T> struct Volume {
 T height;
 T width;
 T length;

 Volume() {
 height = 0;
 width = 0;
 length = 0;
 }

 T getvolume() {
 return height * width * length;
 }

 T getvolume(T H, T W, T L) {
 height = H;
 width = W;
 length = L;
 return height * width * length;
 }
};

int main() {
 Volume<int> first;
 cout << "First volume: " << first.getvolume() << endl;
 first.height = 2;
 first.width = 3;
 first.length = 4;
 cout << "First volume: " << first.getvolume() << endl;

 Volume<double> second;
 cout << "Second volume: "
 << second.getvolume(2.1, 3.2, 4.3) << endl;
 cout << "Height: " << second.height << endl;
 cout << "Width: " << second.width << endl;
 cout << "Length: " << second.length << endl;
 return 0;
}

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 803

In this case, the structure contains height, width, and length data values that the
code can use to determine volume. The structure includes a constructor to ini-
tialize the values, so even if someone calls getvolume() without initializing the
structure, nothing bad will happen. The structure allows independent access of
each of the data values. You can set or get them as needed.

The getvolume() function is overloaded. You can call it with or without input
values. The code in main() tests the structure thoroughly. Here’s what you see as
output from this example:

First volume: 0
First volume: 24
Second volume: 28.896
Height: 2.1
Width: 3.2
Length: 4.3

You can use structures for another interesting purpose. The C++ standard says
you can’t create a typedef template. For example, the following code produces an
error when you try to compile it:

template<typename T>
typedef map<string, T> MyDef;

When you try to compile this code in Code::Blocks, you see the following error:

error: template declaration of 'typedef'

However, you can define a typedef within a structure template. The Structure-
Template2 example code, in Listing 3-3, shows a variation of the example found
in Listing 6-4 of Book 5, Chapter 6.

LISTING 3-3:	 Using a Structure to Define a typedef

#include <iostream>
#include <map>

using namespace std;

template<typename T> struct MyDef {
 typedef map<string, T> Type;
};

(continued)

804 BOOK 7 Advanced Standard Library Usage

int main() {
 MyDef<string>::Type marriages;
 marriages["Tom"] = "Suzy";
 marriages["Harry"] = "Harriet";
 cout << marriages["Tom"] << endl;
 cout << marriages["Harry"] << endl;
 return 0;
}

This example overcomes the C++ limitations by placing the typedef within the
struct, MyDef. The same structure can hold any number of typedef entries.

Using a typedef in this manner makes it easier to work with map. All you need to
worry about is the value type; the key type is already defined as string. Except for
the marriages declaration, this example works precisely the same as the example
in Book 5, Chapter 6. It still outputs the following results:

Suzy
Harriet

Developing a Class Template
Class templates perform the heavy lifting of the template types. You use a class
template to define objects of nearly any size. Classes are larger and more complex
than the other techniques demonstrated in the chapter so far. In most cases, you
use classes to represent complex objects or to perform tasks ill suited for function
or structure templates.

You normally code classes in a separate file using the name of the class as the
filename. The class definition appears in a header file, while the code appears in
a code file. To make things a bit easier to understand, this chapter eschews the
normal setup and shows the entire example using a single file.

The example shows a specialized queue implementation. It includes many of the
features of a standard queue and then adds a few features to meet special devel-
opment needs. Queues and other containers tend to contain complex code, but
you also need to use them with a variety of data types, making a class template
the perfect implementation. The ClassTemplate example, shown in Listing 3-4,
shows the code for this example.

LISTING 3-3:	 (continued)

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 805

LISTING 3-4:	 Creating a Specialized Queue

#include <iostream>
#include <vector>

using namespace std;

template<typename T> class MyQueue {
protected:
 vector<T> data;
public:
 void Add(T const &input);
 void Remove();
 void PrintString();
 void PrintInt();
 bool IsEmpty();
};

template<typename T> void MyQueue<T>::Add(T const &input){
 data.push_back(input);
}

template<typename T> void MyQueue<T>::Remove() {
 data.erase(data.begin());
}

template<typename T> void MyQueue<T>::PrintString() {
 vector<string>::iterator PrintIt = data.begin();
 while (PrintIt != data.end()) {
 cout << *PrintIt << endl;
 PrintIt++;
 }
}

template<typename T> void MyQueue<T>::PrintInt() {
 vector<int>::iterator PrintIt = data.begin();
 while (PrintIt != data.end()) {
 cout << *PrintIt << endl;
 PrintIt++;
 }
}

template<typename T> bool MyQueue<T>::IsEmpty() {
 return data.begin() == data.end();
}

(continued)

806 BOOK 7 Advanced Standard Library Usage

int main() {
 MyQueue<string> StringQueue;
 cout << StringQueue.IsEmpty() << endl;
 StringQueue.Add("Hello");
 StringQueue.Add("Goodbye");
 cout << "Printing strings: " << endl;
 StringQueue.PrintString();
 cout << StringQueue.IsEmpty() << endl;
 StringQueue.Remove();
 cout << "Printing strings: " << endl;
 StringQueue.PrintString();
 StringQueue.Remove();
 cout << StringQueue.IsEmpty() << endl;

 MyQueue<int> IntQueue;
 IntQueue.Add(1);
 IntQueue.Add(2);
 cout << "Printing ints: " << endl;
 IntQueue.PrintInt();
 return 0;
}

The example starts with the class MyQueue. Note that data is a vector, not a queue
as you might expect. A queue is an adapter — as such, it doesn’t provide support
for many of the features found in containers, such as vector. One of these fea-
tures is the use of iterators.

This example uses an iterator for printing, so it relies on a vector rather than
a queue as a starting point. Whenever you create your own specialized version of
a common construct, make sure you begin with the right object. Otherwise, you
might find the experience of creating the new class frustrating at a minimum, and
impossible in the worst case.

MyQueue includes the capability to add, remove, and print elements. In addition,
you can check whether a queue is empty or full. You have already seen the code for
these tasks in other parts of the book.

You might wonder about the code used for printing. The example includes sepa-
rate methods for printing strings and integers, which might seem counterintui-
tive. After all, why not simply declare the iterator as follows so that it accepts any
data type:

vector<T>::iterator PrintIt = data.begin();

LISTING 3-4:	 (continued)

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 807

The problem is that the iterator requires a specific data type. Consequently, you
must declare it as shown previously in Listing 3-4. Otherwise you get this unhelp-
ful error message:

error: expected ';' before 'PrintIt'

At some point, you want to test this new class using steps similar to those found
in main(). The test checks whether the queue actually does detect the empty and
filled states, determines how adding and removing elements works, and checks
whether the print routines work. Here is the output from this example:

1
Printing strings:
Hello
Goodbye
0
Printing strings:
Goodbye
1
Printing ints:
1
2

Considering Template Specialization
Some templates don’t go together quite as easily as you might expect because they
express a concept that doesn’t translate the same way for every data type. For
example, when you use stringify to turn a data type into its string representa-
tion, the technique differs based on data type. When using stringify on an int,
you might use the following template (as shown in the StringifyInt example):

#include <iostream>
#include <sstream>

using namespace std;

template<typename T>
inline string stringify(const T& input) {
 ostringstream output;
 output << input;
 return output.str();
}

808 BOOK 7 Advanced Standard Library Usage

int main() {
 // This call works as expected.
 cout << stringify<int>(42) << endl;
 // This call truncates.
 cout << stringify<double>(45.6789012345) << endl;
 return 0;
}

The stringify() function accepts any data type and simply uses an ostring-
stream to convert input to a string. This approach works fine for the first call in
main(), which is an int. However, when the code uses it for a double, the result
is truncated, as shown here:

42
45.6789

You can fix this problem by adding special handling for a double. Here is the
modified form of the example (as shown in StringifyDouble) that accommo-
dates a double:

#include <iostream>
#include <sstream>
#include <iomanip>
#include <limits>

using namespace std;

template<typename T>
inline string stringify(const T& input) {
 ostringstream output;
 output << input;
 return output.str();
}

template <>
inline string stringify<double> (const double& input) {
 ostringstream output;
 const int sigdigits = numeric_limits<double>::digits10;
 output << setprecision(sigdigits) << input;
 return output.str();
}

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 809

int main() {
 cout << stringify<int>(42) << endl;
 cout << stringify<double>(45.6789012345) << endl;
 return 0;
}

When you run this example, you see the expected result because the double form
of the template uses setprecision to modify the ostringstream value. As a
result, you see the following output:

42
45.6789012345

As things sit with C++ today, you must create a special template for each data
type that requires it. Theoretically, if C++ ever gets a typeof() function, you
could detect the data type and add a switch to perform specialized processing
within a single template. The typeid() function demonstrated in the “Prefixes
and suffixes” section in Chapter 2 of this minibook could work as a substitute for
typeof(), but it’s vendor-specific and not implemented in every version of C++.
If you choose to use the typeid() function, make sure you know which compiler
your organization will use to compile the application code.

You may have also noticed the inline keyword used for the template in this
example. The inline keyword tells the compiler to place the code created by the
template in line with the code in which it appears, rather than out of line as a sep-
arate function call. In some cases, such as this stringify() function, the result is
code that executes faster. The compiler is under no obligation to comply with the
inline keyword. In addition, you want template code placed out of line when it
must perform some level of instantiation or it doesn’t represent critical path code
that the application can call often.

Creating a Template Library
You won’t normally create a template and stick it in your application project file.
The previous examples in this chapter put everything together for ease of expla-
nation, but in the real world, templates usually reside in a library. Code::Blocks
provides several kinds of library projects. This chapter looks at the static
library — a library that is added into the application. Templates always reside
in static libraries.

810 BOOK 7 Advanced Standard Library Usage

Code::Blocks also supports dynamic link libraries (DLLs) and shared libraries that
more than one application can use at a time. However, you can’t place template
code inside a DLL or shared library unless you create specific instances of the
template because templates require the preprocessor to work and DLLs are pre-
compiled code. Working with DLLs and shared libraries is more complex than
working with static libraries, and you won’t normally need the ability to share
the library when creating a console application. See the “Defining your first proj-
ect” section of Book 1, Chapter 3 for details about the various project types that
Code::Blocks supports.

Defining the library project
Creating a library project is only a little different than creating a console applica-
tion. The following steps describe how to create a library project:

1.	 Choose File ➪ New ➪ Project.

You see the New From Template dialog box, shown in Figure 3-1.

2.	 Highlight the Static Library icon on the Projects tab and then click Go.

You see the Welcome page of the Static Library wizard.

3.	 Click Next.

You see a list of project-related information fields, as shown in Figure 3-2.
These questions define project basics, such as the project name.

FIGURE 3-1:
Provide a

description of
your project for

Code::Blocks.

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 811

4.	 Type a name for your project in the Project Title field.

The example uses MathLibrary as the project title. Notice that the
wizard automatically starts creating an entry for you in the Project
Filename field.

5.	 Type a location for your project in the Folder to Create Project In field.

6.	 (Optional) Type a project filename in the Project Filename field.

7.	 Click Next.

You see the compiler settings, shown in Figure 3-3. This example uses the
default compiler settings. However, it’s important to remember that you can
choose a different compiler, modify the locations of the debug and release
versions of the project, and make other changes as needed. Code::Blocks
provides the same level of customization for libraries as it does for
applications.

8.	 Change any required compiler settings and click Finish.

The wizard creates the application for you. It then displays the Code::Blocks
IDE with the project loaded. This template creates a main.c file rather than a
main.cpp file. Note that the Static Library project main.c file includes some
sample code to get you started. You could compile this library and test it now.

FIGURE 3-2:
Provide a

description of
your static library
for Code::Blocks.

812 BOOK 7 Advanced Standard Library Usage

Configuring the library project
The static library starts with a standard C file. To make this library work well with
templates, you need to delete the C file, add a C++ file, and add a header file. The
following steps describe how to perform this process:

1.	 Right-click main.c in the Projects tab of the Management window and
choose Remove File From Project from the context menu that appears.

Code::Blocks removes the file from the project tree.

2.	 Choose File ➪ New ➪ File.

You see the New from Template dialog box, shown in Figure 3-4.

3.	 Highlight the C/C++ Header icon and click Go.

You see the Welcome page of the C/C++ Header wizard.

4.	 Click Next.

The wizard asks you to provide the header configuration information
(see Figure 3-5).

5.	 In the Filename with Full Path field, type MathLibrary.h, click the ellipsis
(. . .) button, and then click Save.

Code::Blocks adds the complete project path to the filename you chose. Notice
that Code::Blocks also supplies an entry for the Header Guard Word field. This
word ensures that the header isn’t added more than once to a project.

6.	 Click All and then click Finish.

The C/C++ Source wizard adds the file to your project. You’re ready to begin
creating a template library.

FIGURE 3-3:
Change the

compiler settings
to meet your

project needs.

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 813

Coding the library
At this point, you have what amounts to a blank header file in a static library proj-
ect. Your static library could conflict with other libraries, so it’s important to add
a namespace to your code. The example uses MyNamespace, but normally you’d use
something related to you as a person or your company, such as MyCompanyInc. The
MathLibrary heading, in Listing 3-5, shows what you need to create the library
used for this example.

FIGURE 3-4:
Add new files

using the New
from Template

dialog box.

FIGURE 3-5:
Define the header

requirements.

814 BOOK 7 Advanced Standard Library Usage

LISTING 3-5:	 Creating a Static Library

#ifndef MATHLIBRARY_H_INCLUDED
#define MATHLIBRARY_H_INCLUDED

#include <iostream>
#include <cmath>

using namespace std;

namespace MyNamespace {
 template<typename T> T Area(T height, T length) {
 return height * length;
 }

 const double PI = 4.0*atan(1.0);
 template<typename T> T CircleArea(T radius) {
 double result;
 result = PI * radius * radius;
 // This version truncates the value.
 return (T)result;
 }

 template<typename T> T TriangleArea(T base, T height) {
 double result;
 result = base * height * 0.5;
 return (T)result;
 }
}

#endif // MATHLIBRARY_H_INCLUDED

As you can see, this is a portable form of the math library discussed in the “Cre-
ating a Basic Math Template” section, earlier in this chapter. Of course, the
library form has changes. You have the usual #define statements and the use of
a namespace to encapsulate all the code. Notice that the namespace comes after
all the declarations.

Bu
ild

in
g

O
ri

gi
na

l
Te

m
pl

at
es

CHAPTER 3 Building Original Templates 815

Using Your Template Library
You have a shiny new template library. It’s time to test it. The MathLibraryTest
console application uses MathLibrary to display some area information. The out-
put is the same as in the “Creating a Basic Math Template” section, earlier in this
chapter. Listing 3-6 shows the test code used for this example.

LISTING 3-6:	 Testing the Static Library

#include <iostream>
#include "..\MathLibrary\MathLibrary.h"

using namespace std;
using namespace MyNamespace;

int main() {
 cout << "4 X 4 Areas:" << endl;
 cout << "Square: " << Area<int>(4, 4) << endl;
 cout << "Circle: " << CircleArea<int>(2) << endl;
 cout << "Triangle: " << TriangleArea<int>(4, 4) << endl;
 cout << "Using a value of pi of: " << PI << endl;
 return 0;
}

When you use your own libraries, you need to tell the compiler where to find them.
Because you likely created the example library in the same folder as the test appli-
cation, you can use the simple path shown in Listing 3-6.

Because the library relies on a namespace, you must also include using namespace
MyNamespace; in the example code. Otherwise, you’ll spend hours trying to figure
out why the compiler can’t locate the templates in your library. You access and use
the template library much as you did before.

CHAPTER 4 Investigating Boost 817

Investigating Boost

As your skill with C++ improves, you find that you need additional function-
ality that doesn’t come with the Standard Library. For example, the simple
act of checking a string for specific character sequences (such as a tele-

phone number pattern) can prove difficult. You can do it, but most developers will
think that someone else has certainly crossed this bridge before. The answer to
the question of where to find the additional code you need is third-party libraries.
One of the most popular C++ libraries is Boost, which is the topic of this chapter
and the next.

Two book chapters can’t serve as a complete reference to an entire library —
especially not a set of libraries the size of Boost. This particular chapter
(Chapter 4) has a set of more limited goals. It introduces you to Boost and helps
you understand why Boost may be helpful to your development efforts. It also
shows you how to obtain and install Boost, demonstrates some Boost tools, and
finally helps you create your first application using Boost. Chapter 5 picks up
where this chapter leaves off and helps you use Boost to build some interesting
applications. In short, these two chapters combined provide you with an overview
of a library that you should consider spending more time discovering.

Chapter 4

IN THIS CHAPTER

»» Considering what Boost can do
for you

»» Getting, installing, and building Boost

»» Working with the various Boost tools

»» Integrating and using the Boost
documentation

»» Creating your first application using
Boost

818 BOOK 7 Advanced Standard Library Usage

Libraries are simply repositories of code. Consequently, any library can help you
produce applications faster and with fewer errors. However, not all libraries are
created with the same quality of code. Many developers use the Boost libraries
because they provide high-quality code — so high quality that some of Boost is
being standardized for inclusion in the Standard Library. The bottom line is that
you must choose the libraries you want with care and look at both quality and
price (when price is an issue).

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVII\Chapter04 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Considering the Standard
Library Alternative

As a developer, you encounter a vast number of libraries designed to overcome C++
deficiencies or limitations. Boost is one of the most popular libraries, but you can
find many others. Looking at the list found at https://en.cppreference.com/w/
cpp/links/libs, you soon discover that you could easily find yourself buried in
libraries. Some of these libraries provide resources for exotic programming needs,
and you should peruse them before creating your own custom library, as discussed
in the previous chapter of this minibook. However, this section essentially comes
down to the question of whether to use the Boost library or to stick exclusively
with the Standard Library, both of which support general needs.

Understanding why the Standard Library
contains Boost features
Boost has maintained a high standard for using the latest C++ features over the
years. You can find more than a few articles and discussions online covering Boost
classes that moved to the Standard Library after testing. Unfortunately, it’s hard
(or perhaps impossible) to find a complete listing. The discussion at https://
stackoverflow.com/questions/8851670/which-boost-features-overlap-
with-c11 is one of the most interesting because it shows that some Boost fea-
tures are backported (an act of taking features from a newer version of a piece
of software and adding them to an older version of the same software) from the

https://en.cppreference.com/w/cpp/links/libs
https://en.cppreference.com/w/cpp/links/libs
https://stackoverflow.com/questions/8851670/which-boost-features-overlap-with-c11
https://stackoverflow.com/questions/8851670/which-boost-features-overlap-with-c11
https://stackoverflow.com/questions/8851670/which-boost-features-overlap-with-c11

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 819

Standard Library (rather than the other way around). Check out the site at
https://caiorss.github.io/C-Cpp-Notes/boost-libraries.html as well,
because it’s more complete than most sources. When thinking about these moves,
C++ 11 uses these Boost features, among many others:

»» std::regex

»» std::tuple

»» std::function

»» Threading

»» Smart pointers

Each version of C++ with its associated Standard Library comes with new addi-
tions. When you move to C++ 17, you see these additions from Boost (along with
many others):

»» Vocabulary types: std::variant, std::any, and std::optional

»» string_view

»» Searchers: Boyer Moore and Boyer Moore Horspool

»» std::filesystem

»» Special math functions

»» Template enhancements

The main point here is that Boost is a proving ground, while the Standard Library
tends to act as a repository for tested functionality. If your goal is to build sta-
ble applications that use tested techniques, Boost may not be the solution you’re
looking for. However, when you need to implement the latest C++ features, you
really need to use Boost.

Defining the trade-offs of using
the Standard Library
As mentioned in the previous section, the Standard Library tends toward using
stable techniques. You therefore don’t necessarily find the best solution to a prob-
lem in the Standard Library if C++ is deficient in an area at the outset. How-
ever, you need to consider the transitional phase of an application, where it can
move from using Boost to the Standard Library. Consider these sites that provide

https://caiorss.github.io/C-Cpp-Notes/boost-libraries.html

820 BOOK 7 Advanced Standard Library Usage

insights from people who moved from using Boost to the Standard Library when
the Standard Library received updates from Boost that made it a good solution:

»» Bitcoin: https://github.com/bitcoin/bitcoin/projects/3

»» Tronic: https://github.com/performous/performous/issues/39

»» GoogleCodeExporter: https://github.com/jbeder/yaml-cpp/issues/264

In reviewing these sites, you find that the transition wasn’t necessarily seam-
less or error free, but it was doable. Fortunately, you can also find articles about
making the move, such as this one on std::filesystem for C++ 17 developers:
https://www.bfilipek.com/2019/05/boost-to-stdfs.html.

Many people also feel that Boost provides better productivity over the Standard
Library. To a certain extent, this perception makes sense because Boost pro-
vides access to the latest C++ features in an easily used form. You don’t have
to write new functions to use the latest C++ features; Boost provides them for
you. Articles like the one at http://linuxcursor.com/open-source-gnu/01c-
boost-libraries-can-increase-productivity supply additional reasons for
the productivity boost, which include the use of strict code-writing guidelines.

You should consider the trade-offs no matter which library you choose to use.
Despite the problems of using older functionality, potentially introducing errors
into your code by transitioning, and a drop in productivity, the essential reasons
to use the Standard Library in place of Boost are the following:

»» The Standard Library is part of the compiler, so it’s easy to access and is
guaranteed to work.

»» The standards committee approves the Standard Library, so you can be sure
that compatibility is stronger.

»» The concepts and techniques in the Standard Library are time tested, so you
know that what you’re using is less likely to break over time.

»» Boost developers are part of the Standard Library effort as well, so you can be
sure that they’ve had time to work out kinks in Boost that won’t appear in the
Standard Library.

Understanding Boost
One of the best things about Boost is that the library itself is free. The Boost
website, https://www.boost.org/, makes a point of letting developers know

https://github.com/bitcoin/bitcoin/projects/3
https://github.com/performous/performous/issues/39
https://github.com/jbeder/yaml-cpp/issues/264
https://www.bfilipek.com/2019/05/boost-to-stdfs.html
http://linuxcursor.com/open-source-gnu/01c-boost-libraries-can-increase-productivity
http://linuxcursor.com/open-source-gnu/01c-boost-libraries-can-increase-productivity
https://www.boost.org/

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 821

that they won’t pay anything for using Boost, even in a commercial setting. In
addition, Boost doesn’t have any expenses, so you probably won’t ever need to
pay for it. You need to download Boost 1.73 (the version used for this book) from
the https://www.boost.org/users/history/version_1_73_0.html site before
proceeding with the rest of this chapter (you see installation instructions later in
the chapter after the explanation of Boost features). You should probably read the
associated Getting Started guide (the index page is at https://www.boost.org/
doc/libs/1_73_0/more/getting_started/index.html) so that you know how to
perform the installation for your platform. A number of people and organizations
contribute to Boost. You can check out their pictures at https://www.boost.org/
users/people.html.

However, don’t get the idea that Boost is completely free. If you want commercial-
level support, you’ll pay for it, just as you would with any other product. Only the
library itself is free. The following sections describe some of the details of Boost.

Boost features
You might think that Boost couldn’t really be all that complete if you can get it for
free. Actually, Boost includes a significant number of features — far more features
than the average developer will use in writing typical applications. It’s interest-
ing to note that you probably have an application on your system that relies on
Boost: Adobe Acrobat. That’s right; major applications do rely on Boost because
it’s a feature-rich application development library. In fact, you can see entire lists
of applications you know and use at https://www.boost.org/users/uses.html
(simply choose one of the categories, such as Shrink Wrapped Boost, to see the
applications in that category).

The current version of Boost contains in excess of a hundred libraries in cat-
egories that meet an incredible number of needs (new libraries are added all
the time). You can see a list of these libraries at https://www.boost.org/doc/
libs/1_73_0/. In some cases, you’ll need only Boost to meet all your development
needs. Because these libraries meet specific conformity requirements, you never
find yourself calling a function one way with one library and another way when
using a different library.

In addition to libraries, Boost also provides a number of tools to make your devel-
opment experience more enjoyable. Most of this chapter discusses these special-
ized tools. Because you get the source code for all the tools, you can build a version
of the tool for every platform in your organization, which means that every devel-
oper can use the same toolset. Using a common toolset reduces training time and
tends to improve the consistency of development output.

https://www.boost.org/users/history/version_1_73_0.html
https://www.boost.org/doc/libs/1_73_0/more/getting_started/index.html
https://www.boost.org/doc/libs/1_73_0/more/getting_started/index.html
https://www.boost.org/users/people.html
https://www.boost.org/users/people.html
https://www.boost.org/users/uses.html
https://www.boost.org/doc/libs/1_73_0/
https://www.boost.org/doc/libs/1_73_0/

822 BOOK 7 Advanced Standard Library Usage

Licensing
The Boost license is friendly to individual users, consultants, and organizations.
Even if you work in an enterprise environment, you can use Boost for free. The
developers behind Boost are concerned enough about legal matters that they con-
tinue working on the license so that usage requirements are easy to understand.
You can find a copy of the current license at https://www.boost.org/users/
license.html.

The Boost license and the GNU General Public License (GPL) differ in some impor-
tant ways. The most important consideration for organizations is that the Boost
license lets you make changes to the libraries without having to share these
changes with anyone. You get to keep your source code secret, which is a big plus
for organizations that create commercial applications.

ENSURE THAT YOUR COMPILER
IS SUPPORTED
Boost constantly adds new libraries and functionality. To provide these new features,
the developers who create Boost have to make some hard decisions. One of the hard-
est decisions is whether to continue supporting older compilers (and possibly hold
Boost development back) or to drop support for some compilers in order to make
Boost better.

Boost 1.73.0 is the current version as of this writing, and is the version used for the
examples (using a different version may cause some examples to fail). You can view
compiler support details at https://www.boost.org/doc/libs/1_73_0/libs/log/
doc/html/log/installation.html that includes caveats, such as the use of com-
piler optimization in some cases. As a result, if you’re using this book with an older com-
piler, the examples in this chapter and Chapter 5 of this minibook may not work. (In fact,
they probably won’t.) If you plan to use Boost extensively, it pays to subscribe to its RSS
feed for additional information.

In addition to the Boost-specific information, please be sure to check for book-
specific information on my blog at http://blog.johnmuellerbooks.com/
categories/263/c-all-in-one-for-dummies.aspx. I’ll provide updates as read-
ers bring issues to my attention. In addition, my blog is the place to look for information
regarding the effect of Boost updates on book examples and so on. Please be sure
to contact me at John@JohnMuellerBooks.com with your questions and concerns
regarding book examples.

https://www.boost.org/users/license.html
https://www.boost.org/users/license.html
https://www.boost.org/doc/libs/1_73_0/libs/log/doc/html/log/installation.html
https://www.boost.org/doc/libs/1_73_0/libs/log/doc/html/log/installation.html
http://blog.johnmuellerbooks.com/categories/263/c-all-in-one-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/c-all-in-one-for-dummies.aspx
mailto:John@JohnMuellerBooks.com

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 823

Paid support
When working with Boost, you gain access to the source code and community
support. For some organizations, the lack of a formal support mechanism is a
problem. Fortunately, you can also get paid support from BoostPro Computing
(https://github.com/boostpro). Most important, BoostPro Computing offers
formal training in using Boost, which means that your organization can get up
to speed quickly. You can find additional companies that provide Boost support at
https://www.boost.org/community/.

Obtaining and Installing Boost
for Code::Blocks

Before you can use Boost, you need to download it. The examples in this chapter
rely on version 1.73.0 of the library, which you can obtain at https://www.boost.
org/users/history/version_1_73_0.html. You get the entire Boost library in
a single 173MB download (when obtained in .zip format). There are downloads
for Windows and Unix (which you can use for both Mac and Linux development).

The Boost documentation appears at https://www.boost.org/doc/libs/1_73_0/.
You can download the documentation as a .pdf from https://sourceforge.net/
projects/boost/files/boost-docs/, but this source is outdated with 1.56.0 as
the latest version.

You can download binaries for Windows systems if you want the library prebuilt
from https://sourceforge.net/projects/boost/files/boost-binaries/.
Unfortunately, the 1.73.0 binaries work only with Microsoft Visual C++. Code::Blocks
developers will need to compile their own version of the product, which is actually
the best way to go for everyone because you avoid compatibility issues that way.

Unpacking Boost
The first step in gaining access to Boost is to unpack the Boost 1.73.0 library file
(boost_1_73_0.zip) that you downloaded earlier. The unzipped files add up
to around 613MB, so it can take a while for the library to unpack. When work-
ing with Code::Blocks, you want to unpack this library into the \CodeBlocks\
boost_1_73_0\ folder for ease of access. The documentation often refers to the
boost_1_73_0\ folder as the Boost root directory, or $BOOST_ROOT. When you

https://github.com/boostpro
https://www.boost.org/community/
https://www.boost.org/users/history/version_1_73_0.html
https://www.boost.org/users/history/version_1_73_0.html
https://www.boost.org/doc/libs/1_73_0/
https://sourceforge.net/projects/boost/files/boost-docs/
https://sourceforge.net/projects/boost/files/boost-docs/
https://sourceforge.net/projects/boost/files/boost-binaries/

824 BOOK 7 Advanced Standard Library Usage

unpack the Zip file, you see the following folders (some of the folders, such as
lib\, will be empty):

»» boost\: Contains all the Boost header files.

»» doc\: Provides a subset of the Boost documentation. If you want complete
documentation, you must either download the separate Boost Docs file or use
the website directly.

»» lib\: Contains all the Boost precompiled libraries after you build them. This
folder won’t contain any files (or may not even exist) when you unpack the
Boost library.

»» libs\: Provides a root folder for all the Boost library headers. Here is a small
sampling of a few of them:

•	 libs\accumulators\: Contains a library of incremental statistical computation
functions. In addition, you use this library for general incremental calculations.

•	 libs\algorithm\: Contains algorithms that build on the string functionality
found in the Standard Library. These algorithms provide functionality such
as trimming, case conversion, predicates, and find/replace functions. You
also find a min/max library that lets you determine the minimum and
maximum of an expression in a single call (among other things).

•	 libs\any\: Contains a library that helps you interact with variables in a
manner reminiscent of scripting languages. You don’t need this capability
all the time, but it’s handy when you want to do things such as convert
between an int and string using a simple lexical_cast.

•	 libs\array\: Provides an extension to basic array functionality so that you
get some of the advantages of using a vector without the performance hit
that using a vector can introduce.

•	 libs\more libraries: Boost contains more than a hundred libraries. You’ll
want to check them all out.

»» more\: Holds policy and other important documents. The most important
document at the outset is getting_started.html, which provides essential
information for getting started using Boost. The index.htm file provides
access to basic information about Boost, such as the licensing policy.

»» status\: Provides access to a Boost-wide test suite. Generally, you won’t need
the contents of this folder unless you plan to augment the Boost libraries in
some way.

»» tools\: Contains a wealth of tools you use when working with Boost. Much of
this chapter tells you about these tools. You must build the tools before you
can use them. Each folder contains complete instructions, but you can also
find an example of building the tools later in this section.

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 825

Using the header-only libraries
No matter which platform you work with, the header-only libraries are ready
for use immediately after you unpack Boost. These libraries appear in the
boost_1_73_0\boost\ directory. Each library is contained in a separate subdirec-
tory, and you access the library through its header file. Boost 1.73.0 supports 146
different header-only libraries that address all sorts of issues, such as incremen-
tal statistical computation. (That particular area is covered by the accumulators
library, which is found in the accumulators\ subdirectory.)

Having access to the library doesn’t mean that you’ll know how to use it right out
of the box, but the Boost folks do make an effort to supply you with good docu-
mentation so that you can discover how to use Boost. Look in the boost_1_73_0\
libs\ directory and you see another set of subdirectories containing the names of
libraries, such as accumulators\. Each of these subdirectories contains a mini-
mum of three subdirectories:

»» doc: The documentation for understanding and using the library. Access the
documentation for an individual library by opening the index.htm file in its
subdirectory. Access the documentation for Boost as a whole by opening the
libraries.htm (or index.html) file found in the boost_1_73_0\libs\
directory.

»» example: A somewhat simple application that demonstrates how to use the
library. (The example is designed to show both usage and functionality, so
some complex libraries have larger examples to demonstrate them.) Some
libraries include multiple examples to fully demonstrate the library’s
functionality.

»» test: A test suite that you can use to ensure that any changes you make to
Boost won’t break the library or cause undesirable side effects.

Depending on the needs of the library, you may find additional subdirectories that
contain other information or resources, such as tools. Some of the libraries require
additional processing before you can use them. The next section of the chap-
ter describes the building process so that you have a complete Boost installation.
Make absolutely certain that you build the libraries before you proceed.

Building the libraries
The Boost library relies on code in headers. Using this approach means that if you
include the header in your code, you already have everything you need to use the

826 BOOK 7 Advanced Standard Library Usage

Boost library. However, these few Boost libraries, including these common librar-
ies, require separate compilation:

»» Boost.Chrono

»» Boost.Context

»» Boost.Filesystem

»» Boost.GraphParallel

»» Boost.IOStreams

»» Boost.Locale

»» Boost.MPI

»» Boost.ProgramOptions

»» Boost.Python (See the Boost.Python build documentation before building and
installing it.)

»» Boost.Regex

»» Boost.Serialization

»» Boost.Signals

»» Boost.System

»» Boost.Thread

»» Boost.Timer

»» Boost.Wave

If you have used previous versions of Boost, throw out everything you know
because this latest version uses a completely different (and much easier) process
to build the libraries — and it works the same on any platform. The process isn’t
any faster, unfortunately, but then again, Boost is a huge library.

The following steps help you build the libraries and create a centralized store of
Boost information for your applications. These steps assume that you’re using
Code::Blocks as your IDE and that you’ve installed it using the instructions in
Book 1, Chapter 1. You may need to modify the steps if you used some other instal-
lation process, rely on a different IDE, or work with certain 64-bit systems.

1.	 Open a command prompt or terminal window using the technique
appropriate for your platform.

For example, when working with Windows, you choose Start ➪ Programs ➪ 

Accessories ➪ Command Prompt. (Depending on your version of Windows, you

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 827

may need to press the Windows key, type cmd, press Enter, and then select
Command Prompt App from the list presented.) When working with a Mac,
you navigate to the /Applications/Utilities window and double-lick Terminal.
The method of opening a terminal window in Linux varies with the distribution
you use.

2.	 Type CD /CodeBlocks/boost_1_73_0 and press Enter.

The command processor takes you to the Boost directory.

3.	 (Optional) If you haven’t already created a path to the Code::Blocks
compiler at the command line or terminal, create one.

For example, when working with Windows, type path = C:\CodeBlocks\
MinGW\bin;%path% and press Enter.

4.	 Type bootstrap gcc and press Enter.

You see a message, Building Boost.Build engine, at the command prompt or
terminal window for a few seconds. After the Boost.Build Engine is complete,
you see additional text telling you how to use the resulting B2 command.

5.	 Type b2 and press Enter.

Go get a cup of coffee. The installation process takes between 5 and 20 minutes
depending on your system. This command prompt installs Boost using the
default options and in the default directory. For example, you find Boost
installed in the C:\Boost directory on a Windows system. It appears in the
/usr/local/Boost directory on Mac and most Linux systems. When the
process is complete, you find the new Boost folder complete with header and
library files appropriate for your system.

Older sites will tell you to build the Boost function using the --toolset=gcc
command-line switch with b2 to perform various tasks. Using this command-line
switch will result in an error with the newest versions of Boost. Make sure you
leave this command line switch out unless you actually need it. In fact, it’s usu-
ally better to use b2 alone and only add the --toolset command-line switch if
an error occurs.

Testing the installation
At this point, you have the unpacked Boost files as a subdirectory under your
Code::Blocks installation and a set of built libraries in the Boost directory (wher-
ever it might appear on your system). You may initially think that you can get
rid of one or the other set of files, but this isn’t the case. The files you unpacked
include documentation and example code that isn’t part of the built libraries. The
following steps help you test your installation by building the Boost.Timer library,
which relies on both sets of files, so having both sets in place is important. (You
can modify these instructions to build other libraries as well.)

828 BOOK 7 Advanced Standard Library Usage

BOOST INSTALLATION ON CERTAIN
64-BIT SYSTEMS
You may find that the build process in Step 4 of the procedure in the “Building the
libraries” section fails. Generally, these steps work fine, but if you’re working with cer-
tain 64-bit systems, you may find that they fail completely. The main problem could
occur because you’re using the wrong version of Code::Blocks for the book. Choose
Help ➪ About and verify that the version number you’re using is 17.12 and that the
Information tab shows Release 12.12 rev. 11256 in the Version field and 1.33.0 in the
SDK Version field. If these values are wrong, you have the wrong version of Code::Blocks
installed and may find that this chapter doesn’t work at all.

If you have a 64-bit system (it says that you have a 64-bit install on the About dia-
log), you might still need to use an alternative installation procedure, as described at
https://gist.github.com/zrsmithson/0b72e0cb58d0cb946fc48b5c88511da8.
You shouldn’t have to reinstall your copy of MinGW; simply move down to the
Install Boost part of the page. The Boost settings accessed using Settings ➪ Compiler
(and described in the “Testing the installation” section of the chapter) will differ, as
shown here:

•	 Search Directories: Compiler: \boost\include\boost-1_68

•	 Search Directories: Linker: C:\boost\lib

•	 Toolchain Executables: Compiler’s installation directory: C:\MinGW

•	 Toolchain Executables: C Compiler: g++.exe

•	 Toolchain Executables: C++ Compiler: g++.exe

•	 Toolchain Executables: Linker for Dynamic Libs: g++.exe

•	 Linker Settings: Link Libraries: C:\boost\lib\
libboost_regex-mgw81-mt-sd-x64-1_68.a

Note that this procedure uses Boost 1.68, not Boost 1.73, so you may still experience
problems, but this process could provide an alternative for making the examples in
this chapter work. It’s also important to note that the locations of header files and
other application development necessities will differ from those in this chapter for your
installation.

https://gist.github.com/zrsmithson/0b72e0cb58d0cb946fc48b5c88511da8

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 829

1.	 Locate the C:\CodeBlocks\boost_1_73_0\libs\regex\example\timer
folder on your system.

2.	 Double-click the regex_timer.cpp file.

Code::Blocks automatically opens the file for you. If you attempt to compile the
file at this point, Code::Blocks displays a considerable number of errors. The
errors aren’t due to problems with the code, but with issues in the configura-
tion. You need to configure Code::Blocks to work with this example.

3.	 Choose Settings ➪ Compiler.

You see the Compiler Settings dialog box, shown in Figure 4-1. You need to
perform three configuration tasks to make the example usable:

•	 Tell Code::Blocks where to find the Boost include (header) files.

•	 Tell Code::Blocks where to find the Boost library files.

•	 Configure Code::Blocks to add the required libraries to the application.

4.	 Select the Search Directories tab.

You see three subtabs: Compiler, Linker, and Resource Compiler.

FIGURE 4-1:
Use the Compiler

Settings dialog
box to configure
Code::Blocks to

use Boost.

830 BOOK 7 Advanced Standard Library Usage

5.	 Click Add in the Compiler subtab.

You see an Add Directory dialog box like the one shown in Figure 4-2.

6.	 Type the location of the Boost header files in the Directory field.

As an alternative, you can click the Browse button to use a Browse for Folder
dialog box to find them. The files are normally located in the C:\CodeBlocks\
boost_1_73_0\boost folder.

7.	 Click OK.

You see the search folder added to the Compiler tab, as shown in Figure 4-3.

FIGURE 4-2:
Add appropriate

search directories
for Boost header
and library files.

FIGURE 4-3:
The Search

Directories tab
will display any

compiler, linker,
or resource

compiler search
locations.

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 831

8.	Click Add in the Linker subtab.

You see the Add Directory dialog box (refer to Figure 4-2).

9.	Type the location of the Boost library files in the Directory field and then
click OK.

The Boost library files are typically located in the C:\CodeBlocks\boost_
1_73_0\libs directory. After you click OK, you see the directory added to the
Linker tab.

10.	Select the Linker Settings tab.

This tab contains two lists — one for link libraries and another for linker
options.

11.	Click Add.

Code::Blocks displays the Add Library dialog box, shown in Figure 4-4. This
example requires use of the libboost_regex-mgw6-mt-d-x32-1_73.a
library file.

12.	Click the Browse button, locate the library you need to use, and click
Open.

The libboost_regex-mgw6-mt-d-x32-1_73.a library is normally found in
the C:\CodeBlocks\boost_1_73_0\bin.v2\libs\regex\build\gcc-
6.2.0\debug\address-model-32\link-static\threading-multi\
visibility-hidden\ directory.

13.	Click OK.

You see the library file added to the Link Libraries list, as shown in Figure 4-5.

14.	Click OK.

The Compiler Settings dialog box closes.

15.	Build the application by choosing Build ➪ Build.

The application should build without warnings or errors. If you see warnings or
errors, ensure that you’ve added both header and library search paths, and the
required library file.

FIGURE 4-4:
The example
requires the

use of a special
library.

832 BOOK 7 Advanced Standard Library Usage

At this point, you have a shiny new application to try. This is an example applica-
tion that is provided as part of Boost that shows how to work with regular expres-
sions. (It serves to test the development environment to ensure that everything
works.) Now it’s time to see the application in action.

1.	 Click Run.

You see the example start. The example asks you to type an expression. A
simple string works fine.

2.	 Type Hi when asked to enter an expression and press Enter.

The example asks you to provide a search string.

3.	 Type Hi there! and press Enter.

You see the results shown in Figure 4-6. The times may be different because
they depend on the processing speed of your system and a number of other
factors.

4.	 Type quit and press Enter.

5.	 Type quit (a second time) and press Enter twice.

The application ends. At this point, you know you can create, build, and use
Boost applications on your system. You can close Code::Blocks without saving
anything.

FIGURE 4-5:
The needed file
appears in the

Link Libraries list.

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 833

Creating the Boost Tools
It’s always nice when a vendor provides tools for making it easier to work with a
product, and Boost is no exception. You find these tools in the \boost_1_73_0\
tools directory. The sections that follow this one describe a number of these tools
in detail, but here is a quick list of the tools you get:

»» Boost.Build: Helps you build applications that use Boost by automating some
of the process from the command line. This product is actually an add-on for
an updated version of Boost.Jam, which used to appear as a separate product.

»» Inspect: Determines whether there are any errors in the Boost directory
hierarchy. Errors in the directory hierarchy can cause the automatic Boost
features to work incorrectly.

»» BoostBook: Provides the developer with a fast and easy method for accessing
the Boost documentation. It relies partially on DocBook (https://docbook.
org/), the eXtensible Stylesheet Language (XSL), and some Boost functionality.
This tool is used by some Boost libraries.

»» bcp: Extracts subsets of Boost for use with your application. To perform this
task, bcp also provides a method for determining which parts of Boost your
code relies upon and it also makes it possible to print reports of Boost usage
(including any required licensing information).

»» QuickBook: Generates BoostBook XML files. This tool provides a WikiWiki
(wiki) style documentation geared toward C++ documentation requirements.
A wiki is a collection of hypertext documents. Wiki pages are collaborative and
allow all users or registered users to change the content in these collections,
which makes them different from a collection of static hypertext documents.
It relies on simple rules and markup for providing output formatting.

FIGURE 4-6:
The example

displays
the result

of the search.

https://docbook.org/
https://docbook.org/

834 BOOK 7 Advanced Standard Library Usage

»» Wave: Preprocesses your C/C++ application code. You can use it with any
compiler. The main purpose of the Wave preprocessor is to check the
expansion of macros in your code as part of the debugging process. You can
also use it as a preprocessor replacement if you don’t like how the preproces-
sor supplied with your compiler works.

»» AutoIndex: Creates indexes for BoostBook and DocBook documents.

All these tools come in source code format as part of your Boost installation.
They’re not ready for use when you unpack Boost. Of course, the lack of execut-
able code makes sense considering the number of platforms that Boost supports.
In order to use the tools, you must first build them.

The first task is to create a version of Boost.Build for your system. You use Boost.
Build to build all the other tools. The following steps describe how to build Boost.
Build:

1.	 Open a command prompt or terminal window using the technique
appropriate for your platform.

For example, when working with Windows, you choose Start ➪ Programs ➪ Acc
essories ➪ Command Prompt. When working with a Mac, you navigate to the /
Applications/Utilities window and double-click Terminal. The method of
opening a terminal window in Linux varies with the distribution you use.

2.	 Type CD \CodeBlocks\boost_1_73_0\tools\build and press Enter.

This is the Windows version of the command. For other platforms, you need to
change directories to the directory that contains the Boost 1.73 tools. The
command processor takes you to the Boost.Build directory.

3.	 (Optional) If you haven’t already created a path to the CodeBlocks
compiler at the command line or terminal, create one.

For example, when working with Windows, type path = C:\CodeBlocks\
MinGW\bin;%path% and press Enter.

4.	 Type bootstrap gcc and press Enter.

You see a message, Building the B2 engine (along with a lot of other text),
at the command prompt or terminal window for a few seconds. When the
Boost.Build compilation is complete, you see additional text telling you how to
use the resulting B2 command.

5.	 Type b2 --prefix=DIR install and press Enter.

You must replace the placeholder text DIR shown previously with the location
you want to use to install Boost.Build. For example, if you have a Windows
system and want to install Boost.Build in C:\Boost.Build, you type b2 --prefix=
C:\Boost.Build install and press Enter.

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 835

6.	 Add Boost.Build to the path using the command for your particular
platform.

For example, when working with Windows, type path=C:\Boost.Build\
bin;%path% and press Enter.

Now that you have an application to build the Boost tools, you can build the tools
themselves. A number of the tools come with build directories or build files in
their main directory. In those directories are the instructions required to cre-
ate the tools. For example, look in the \CodeBlocks\boost_1_73_0\tools\auto_
index\build directory and you see a Jamfile.v2 file. This is the file that contains
the instructions for building the AutoIndex tool. Likewise, you find a Jamfile.v2
file in the \CodeBlocks\boost_1_73_0\tools\bcp folder. (The file is in the main
directory, rather than a build directory in this case.). No matter where the Jam-
file.v2 file is located, you use it to build the associated tool.

However, the easiest method to build the tools is to build them all at one time.
A special Jamfile.v2 file is located in the \CodeBlocks\boost_1_73_0\tools
directory. You use it to create all the tools simultaneously, using the following
steps.

1.	 Open a command prompt or terminal window using the technique
appropriate for your platform.

2.	 Type CD \CodeBlocks\boost_1_73_0\tools and press Enter.

The command processor takes you to the main tools directory.

3.	 (Optional) If you haven’t already created a path to the CodeBlocks
compiler at the command line or terminal, create one.

For example, when working with Windows, type path = C:\CodeBlocks\
MinGW\bin;%path% and press Enter.

4.	 (Optional) If you haven’t already created a path to Boost.Build at the
command line or terminal, create one.

For example, when working with Windows, type path=C:\Boost.Build\
bin;%path% and press Enter.

5.	 Type b2 and press Enter.

Be patient; the build process will take several minutes. The executable files for
Inspect (inspect.exe), bcp (bcp.exe), and QuickBook (quickbook.exe) will
automatically appear in the \CodeBlocks\boost_1_73_0\dist\bin directory
on your system after the build process is complete. BoostBook content appears
in the \CodeBlocks\boost_1_73_0\dist\share\boostbook directory.

836 BOOK 7 Advanced Standard Library Usage

Using Boost.Build
Boost.Build is a complex tool that helps you create fully functional applications that
rely on Boost using your compiler, such as GCC. Boost.Build provides an automated
command-line approach to performing tasks that some developers prefer, espe-
cially when performing repetitive tasks where the IDE simply gets in the way. You
have already used Boost.Build several times in this chapter to build the Boost librar-
ies, a specific version of Boost.Build for your compiler, as well as the Boost tools. The
following sections provide some helpful hints and tips for working with Boost.Build.

Getting a successful build
Every time you use the b2 command at the command prompt or terminal window,
you use Boost.Build. A few rules to remember when using Boost.Build are

»» Ensure that you have a path set up to your compiler.

»» Ensure that you have a path set up to Boost.Build.

»» Use the --prefix option to place the output in a specific directory.

If you know these rules, you’ll avoid the problems that plague many developers
who are new to Boost.Build. The bbv2.html file contained in the \CodeBlocks\
boost_1_73_0\doc\html directory contains complete documentation for Boost.
Build. This is where you find a complete list of the Boost.Build properties and
options. In addition, the documentation tells you how to perform various build
types, such as applications and libraries. If you find that the bbv2.html file link is
broken, it’s a known issue that’s documented at https://github.com/boostorg/
website/issues/451. You can try the online alternative at https://boostorg.
github.io/build/manual/master/index.html instead.

Creating your own example
It’s time to see Boost.Build at work. To do this, you create a folder on your system
where you can place a .cpp file. The example for this section appears in the Hello
folder of the downloadable source as hello.cpp. The code for this example is
really simple. It outputs a message to the computer screen, as shown here:

#include <iostream>

using namespace std;

int main()

https://github.com/boostorg/website/issues/451
https://github.com/boostorg/website/issues/451
https://boostorg.github.io/build/manual/master/index.html
https://boostorg.github.io/build/manual/master/index.html

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 837

{
 cout << "Hello, I am your computer talking." << endl;
 return 0;
}

You don’t even need to use Code::Blocks to perform this task. Any editor that
produces plain-text output will work fine. For example, you could use Notepad to
produce the code in Windows.

To use Boost.Build, you also need create a jamfile.v2 file, which is just
another plain-text file that you can create using Notepad or another text editor.
The resource at https://www.boost.org/doc/libs/1_33_1/doc/html/bbv2/
advanced/jamfiles.html makes things look a bit complex, but for this example,
it comes down to a single line of text:

exe Hello : hello.cpp ;

Notice the space between cpp and ;. You must include this space or the build pro-
cess will fail. The error message isn’t very helpful either. It tells you that you’ve
encountered an odd escape character and then the end of file. All that this file says
is to create an executable named Hello from hello.cpp.

To perform the build, you open a command prompt in the folder you chose, type
b2 --toolset=gcc, and press Enter. The output tells you what Boost.Build does:

...found 8 targets...

...updating 5 targets...
gcc.compile.c++ bin\gcc-6.2.0\debug\hello.o
gcc.link bin\gcc-6.2.0\debug\Hello.exe
...updated 5 targets...

The fourth line tells you the location of the file: bin\gcc-6.2.0\debug\. When
you go to this directory, you can type Hello, press Enter, and see the expected
output. You can do a lot more than this section tells you, but it provides you with
a very basic idea of how Boost.Build works.

Using Inspect
Many organizations want to make changes to the Boost library to ensure that the
library meets their needs or to augment the Boost library to meet a new require-
ment. Whenever you change something, there is a chance that the change will

https://www.boost.org/doc/libs/1_33_1/doc/html/bbv2/advanced/jamfiles.html
https://www.boost.org/doc/libs/1_33_1/doc/html/bbv2/advanced/jamfiles.html

838 BOOK 7 Advanced Standard Library Usage

cause compatibility issues because it doesn’t meet the Boost library guidelines.
In addition, a developer might introduce errors into the Boost library that others
will find difficult to fix. The Inspect utility enables you to scan for potential Boost
library errors after you make a change to it.

Start Inspect from the directory that you want to check. To make this process
more efficient, make sure to set a path to the copy of Inspect that you built in the
“Creating the Boost Tools” section of the chapter using the method appropriate
for your platform. For example, when working with Windows, you type path = C:\
CodeBlocks\boost_1_73_0\dist\bin;%path% and press Enter.

Inspect looks for errors in the current directory and all subdirectories. You can
try it by checking the library files you find out how to build in the “Building the
libraries” section, earlier in this chapter. These files usually appear in the \Code-
Blocks\boost_1_73_0\boost directory. Normally, Inspect performs a complete
check of the libraries. However, you can modify Inspect behavior using the fol-
lowing command-line switches to perform specific tests:

»» -license

»» -copyright

»» -crlf

»» -end

»» -link

»» -path_name

»» -tab

»» -ascii

»» -apple_macro

»» -assert_macro

»» -deprecated_macro

»» -minmax

»» -unnamed

»» -version-string version_message

You can use any number of these command-line switches. If you forget the Inspect
command-line switches, type Inspect -help and press Enter. Inspect shows you a
list of the command-line switches that you can use for testing.

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 839

Inspect also provides a number of command-line switches that affect how it per-
forms tests. The following list describes these command-line switches:

»» –cvs: Performs a check of only the cvs directory and ignores all other files.

»» –text: Outputs the results in pure text format. This option is especially useful
when you want to save the results to a text file for later analysis. Otherwise,
Inspect formats the output as HTML. Figure 4-7 shows a typical report. Click
the links to see details about a particular test, such as the licensed status of
each file within a particular directory.

Inspect outputs information to the default output device, which is normally
the console (your display). Seeing HTML in text form on a display isn’t
particularly helpful. Most platforms offer some type of redirection feature so
that you can see the output to a file. For example, on a Windows system, you
can type Inspect > MyReport.html and press Enter to output the results to a
file named MyReport.html.

»» –brief: Reduces the amount of output text to the minimum required to
indicate success or failure of the various tests.

FIGURE 4-7:
Inspect

normally
outputs its

reports
as HTML.

840 BOOK 7 Advanced Standard Library Usage

»» -version-string version_message: Reduces the amount of output text
by locating entries with a specific version string (as defined by version_
message). What you’re normally looking for is the version string provided with
the library, such as 1_73_0 for the 1.73.0 version.

Inspect is sensitive about the ordering of command-line switches. You must
place the -cvs, -text, or -brief command-line switch first, followed by the test
switches; otherwise, Inspect displays an error message. The website at https://
www.boost.org/doc/libs/1_73_0/tools/inspect/index.html tells you more
about working with Inspect.

Understanding BoostBook
The world abounds with documentation formats — everything from .docx files
produced by Word to the seemingly ubiquitous .pdf file. Of all the documenta-
tion formats, the most universal and compatible is the lowly .txt file. However,
.txt files lack formatting (except for control characters like tab, carriage return,
and linefeed), which means that they limit you solely to words, which may not be
enough to describe your documentation. Because you can choose from so many
different file formats, and formatting code can prove especially difficult, the Boost
library relies on a special document format called BoostBook.

Documentation seems to be the bane of developers everywhere. No one seems to
want to write the documentation, and the attempts at documentation often leave
readers with more questions than answers. BoostBook won’t make you a good
writer. Although it does help you produce highly formatted documentation with a
standardized format, it can’t overcome deficiencies in writing skill. When creating
documentation for your project, the best writer in your group is still the unsur-
passed choice for documentation tasks.

If you have installed the Boost library using the instructions in the “Obtaining and
Installing Boost for Code::Blocks” section of this chapter, you already have access
to BoostBook. However, as with some other Boost utilities, you need to know a bit
about Python to use this feature. In addition, you need an Apache server setup and
must also download a number of other utilities. In short, even though BoostBook
is accessible from a Boost library perspective, you still need to do some work
to make this feature useful. The instructions at https://www.boost.org/doc/
libs/1_73_0/doc/html/boostbook/getting/started.html describe the addi-
tional steps you need to perform.

https://www.boost.org/doc/libs/1_73_0/tools/inspect/index.html
https://www.boost.org/doc/libs/1_73_0/tools/inspect/index.html
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook/getting/started.html
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook/getting/started.html

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 841

BoostBook relies on XML to hold the content you want to place in the document.
The use of XML is the reason you must install the DocBook eXtensible Stylesheet
Language (XSL) (http://docbook.sourceforge.net/) and DocBook Document
Type Definition (DTD) (http://www.oasis-open.org/docbook/xml/4.5/) sup-
port. You can see the XML used for BoostBook at https://www.boost.org/doc/
libs/1_73_0/doc/html/boostbook/documenting.html. Check the main BoostBook
page at https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook.html
for additional information.

If you performed the steps in the “Creating the Boost Tools” section of the chapter,
you already have access to all the functionality needed to use BoostBook. The files
you require appear in the CodeBlocks\boost_1_73_0\dist\share\boostbook
directory of your system. These files help you perform the required formatting.

Even if you choose not to use BoostBook for your project, you do need to create
a common documentation format. Using BoostBook may prove complicated for
the Windows developer; the originators seem to have meant this documentation
format more for Unix and Linux developers. However, it’s still a useful documen-
tation format, and you should consider it. If you find BoostBook lacking, you need
to create a custom format or suffer the consequences of a poorly documented
application.

Using QuickBook
QuickBook is an add-on for BoostBook. This utility started as someone’s weekend
project. Originally, QuickBook outputted simple HTML documents. However, now
it outputs XML in BoostBook format so that you can quickly generate documenta-
tion that links with the rest of the documentation for your project. As described by
the author at https://www.boost.org/doc/libs/1_73_0/doc/html/quickbook.
html, QuickBook is a WikiWiki-style documentation tool. It’s important to note
that some people simply call it a Wiki (https://en.wikipedia.org/wiki/Wiki)
or Wiki-Wiki or even Wiki Wiki. All the terms mean the same thing.

Before you use QuickBook, you generate a documentation file. You can see
an example of such a file at https://www.boost.org/doc/libs/1_73_0/
tools/quickbook/doc/quickbook.qbk. For a complete syntax summary for
QuickBook, look at https://www.boost.org/doc/libs/1_73_0/doc/html/
quickbook/syntax.html.

http://docbook.sourceforge.net/
http://www.oasis-open.org/docbook/xml/4.5/
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook/documenting.html
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook/documenting.html
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook.html
https://www.boost.org/doc/libs/1_73_0/doc/html/quickbook.html
https://www.boost.org/doc/libs/1_73_0/doc/html/quickbook.html
https://en.wikipedia.org/wiki/Wiki
https://www.boost.org/doc/libs/1_73_0/tools/quickbook/doc/quickbook.qbk
https://www.boost.org/doc/libs/1_73_0/tools/quickbook/doc/quickbook.qbk
https://www.boost.org/doc/libs/1_73_0/doc/html/quickbook/syntax.html
https://www.boost.org/doc/libs/1_73_0/doc/html/quickbook/syntax.html

842 BOOK 7 Advanced Standard Library Usage

At this point, you’re probably wondering why you should use QuickBook at all,
because you have to generate a document file for it anyway. Here are the reasons
why many developers use QuickBook instead of relying on BoostBook directly:

»» The QuickBook syntax is easier to read and use than writing XML.

»» You can use QuickBook to generate non-Boost documentation.

»» It’s relatively easy to convert other documentation formats into QuickBook
syntax.

QuickBook is a command-line utility. You find it in the \CodeBlocks\
boost_1_73_0\dist\bin directory after generating the Boost tools. (See the
“Creating the Boost Tools” section, earlier in this chapter, for details.) Here are
the command-line switches you can access when working with QuickBook:

»» --help: Displays a help message showing all the command-line switches, as
well as the command-line syntax.

»» --version: Displays version information about QuickBook.

»» --no-pretty-print: Disables XML printing and uses plain text instead.

»» --strict: Performs additional checks for issues such as sections that aren’t
closed and square brackets that don’t match any tags or templates.

»» --no-self-linked-headers: Generates plain headers, which makes creating the
files easier but also prevents someone from right-clicking the header and
copying a link to it.

»» --indent arg: Defines the number of spaces to use for indents (as specified
by arg).

»» --linewidth arg: Defines the number of characters in a single line.

»» --input-file arg: Specifies the name of the input file.

»» --output-format arg: Allows the creation of boostbook, html, or onehtml
output. The default is boostbook.

»» --output-file arg: Specifies the name of the output file.

»» --output-dir arg: Specifies the output directory path for html files.

»» --no-output: Allows checking of the documentation syntax without outputting
the boostbook, which saves time during debugging.

»» --output-deps arg: Specifies the name of the output dependency file.

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 843

»» --ms-errors: Specifies that QuickBook should use the Microsoft Visual Studio
style of errors and warnings in the output message format. This option can
make QuickBook easier for Microsoft Visual Studio developers to use and
understand.

»» --include-path arg: Adds the selected path to the include path. You may use
this command-line switch multiple times to add multiple paths.

»» --define arg: Defines a QuickBook macro. This feature is often used for
conditional compilation.

»» --image-location arg: Specifies the location of any image elements in order to
read SVG details.

Using bcp
The bcp (Boost copy) utility helps you make Boost more manageable. You can
use it to

»» Copy one or more Boost modules to another location so that you can use a
subset within an application.

»» List all the elements within a module.

»» Create an HTML report about module content that includes:

•	 License information

•	 Files without licensing information

•	 Files without copyright information

•	 Copyright information

•	 Dependency information for individual files

Theoretically, you can also use bcp to scan your application for a listing of elements
needed to run the application. The output report includes all the information in a
standard bcp report for a Boost module. You use one of four command-line syn-
taxes to work with bcp, as shown here:

bcp [options] module-list output-path
bcp --list [options] module-list
bcp --list-short [options] module-list
bcp --report [options] module-list html-file

844 BOOK 7 Advanced Standard Library Usage

Each of these command-line syntaxes performs a different task: copy, listing,
short listing, and reporting. These command lines can accept a number of options,
as described in the following list:

»» --boost=path: Defines the path to the Boost library.

»» --scan: Treats the modules as a non-Boost file for the purpose of scanning file
dependencies. You always use this option with your own applications.

»» --cvs: Copies only files under Concurrent Versions System (CVS) version
control.

»» --unix-lines: Uses Unix-style line endings for the output. You won’t ever use
this command-line switch on a Windows system but may need it on Unix,
Linux, and Macintosh systems.

»» --namespace=name: Rename the Boost namespace and associated library
names to the value specified by name.

»» --namespace-alias: Makes the namespace boost an alias of the namespace
set with the --namespace command-line switch.

Using bcp is relatively straightforward. For example, if you want a listing of files
for the regex library, change directories to \CodeBlocks\boost_1_73_0 and then
use the following command line:

bcp --list regex > Out.txt

The bcp utility looks in the \CodeBlocks\boost_1_73_0 directory for Boost appli-
cations. In this case, the output appears in Out.txt. You should always use file
redirection because the output is too large to read at the command prompt.

Say that you want a report about the regex module instead of a simple listing. In
this case, you use the following command line:

bcp --report regex MyReport.html

Creating a report can take a while. Eventually, you see an HTML report like the one
shown in Figure 4-8. You can discover more about bcp at https://www.boost.
org/doc/libs/1_73_0/tools/bcp/doc/html/index.html.

https://www.boost.org/doc/libs/1_73_0/tools/bcp/doc/html/index.html
https://www.boost.org/doc/libs/1_73_0/tools/bcp/doc/html/index.html

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 845

Using Wave
The Wave utility is a preprocessor for the Boost library. Using a preprocessor can
significantly speed the compilation process because a preprocessor compiles the
library portion of the application. After you compile it the first time, you need not
compile the library again. Theoretically, you can use Wave with any C++ compiler;
however, you probably won’t need it with compilers such as Code::Blocks and
Microsoft Visual Studio because these products include their own preprocessor.
You can find more information about the Wave utility at https://www.boost.
org/doc/libs/1_73_0/libs/wave/doc/wave_driver.html.

There is more to the Wave utility than meets the eye, however. The Wave utility
relies on the Wave library. This library ships as part of Boost, and you can use it
in your applications as you do any other library. The website at https://www.
boost.org/doc/libs/1_73_0/libs/wave/index.html tells you more about the
Wave library.

FIGURE 4-8:
The bcp utility

can output some
nice-looking

reports about
Boost modules.

https://www.boost.org/doc/libs/1_73_0/libs/wave/doc/wave_driver.html
https://www.boost.org/doc/libs/1_73_0/libs/wave/doc/wave_driver.html
https://www.boost.org/doc/libs/1_73_0/libs/wave/index.html
https://www.boost.org/doc/libs/1_73_0/libs/wave/index.html

846 BOOK 7 Advanced Standard Library Usage

Building Your First Boost Application
Using Date Time

Enough information about licensing, content, and utilities — it’s time to use the
Boost library for something interesting. This section shows a simple date/time
example that you can’t easily build without using Boost. You also discover some
interesting setup requirements that are good to know when you work with other
third-party libraries.

As usual, this example begins with a console application. The example uses the
name FirstBoost. After you create the new console application project following
the steps you’ve used to create all the other console applications in the book, per-
form these setup steps:

1.	 Choose Project ➪ Build Options and select the Search Directories tab.

You see the Project Build Options dialog box.

2.	 Highlight FirstBoost in the left pane. Click Add.

Code::Blocks displays the Add Directory dialog box, shown in Figure 4-9.

3.	 Click the Browse button to display the Browse for Folder dialog box and
highlight the \CodeBlocks\boost_1_73_0 folder on your hard drive.
Click OK.

A dialog box appears asking whether you want to maintain the entry as a
relative path. Relative paths specify a location using the current location as a
starting point. The alternative is an absolute path, which specifies a location
based on the root directory of your hard drive. In most cases, absolute paths
are less likely to get broken.

4.	 Click No.

Code::Blocks adds the folder you selected to the Add Directory dialog box.

FIGURE 4-9:
Select the Boost
library directory.

In
ve

st
ig

at
in

g
Bo

os
t

CHAPTER 4 Investigating Boost 847

5.	 Click OK.

You see the folder for the Boost library, as shown in Figure 4-10. (Your path
could vary from the one shown in the screenshot, depending on the platform
you use and how your copy of Boost was set up). Make sure you select the
correct folder; otherwise, the compiler won’t be able to find the Boost library or
the headers won’t compile correctly because they point to the wrong location
on the hard drive.

6.	 Click OK.

The application environment is ready to use with the Boost library.

Now that you have the environment configured, you can begin working with
Boost. Listing 4-1 shows a date/time example that displays the current time and
then a modified date/time.

LISTING 4-1:	 Using Boost to Create a Simple Date/Time Example

#include <iostream>
#include "boost/date_time/posix_time/posix_time.hpp"

using namespace std;
using namespace boost::posix_time;
using namespace boost::gregorian;

int main() {
 // Obtain the current date and time.

FIGURE 4-10:
Make sure

you set the
environment to

use Boost.

(continued)

848 BOOK 7 Advanced Standard Library Usage

 ptime Now = second_clock::local_time();
 cout << Now << endl;

 // Get the date and adjust it for tomorrow.
 date TheDate = Now.date() + days(1);

 // Get the time and adjust for an hour from now.
 time_duration TheHour = Now.time_of_day() + hours(1);

 // Create a new date/time and output it.
 ptime NewDateTime = ptime(TheDate, TheHour);
 cout << NewDateTime << endl;
 return 0;
}

As with any other added capability, you must include the proper library files. Note
that Boost headers use an .hpp extension, which makes it harder to confuse them
with some other header type. To define what to include as the path to your library,
simply look at the hierarchy in Windows Explorer. Locate the .hpp file you want
to use and then copy that information from the Address bar.

Boost provides namespaces for each of the libraries. In this case, the ptime and
time_duration classes appear in the boost::posix_time namespace and the
date class appears in the boost::gregorian namespace. If you find that your
application won’t compile, it usually means that you’ve missed a namespace and
need to consider where each of the classes in your application comes from.

The application code begins by creating a variable, Now, that contains the cur-
rent time, which you obtain using the second_clock::local_time() method. It
then displays the current time. The ptime class includes methods for interacting
with every time element: years, months, days, hours, minutes, seconds, and so
on. The example shows a few of the interactions you can perform. When you run
this application, the second time you see is one day and one hour ahead of the
current time.

LISTING 4-1:	 (continued)

CHAPTER 5 Boosting up a Step 849

Boosting up a Step

The Boost library is vast. It’s doubtful that a typical developer will ever use
everything that Boost has to offer. Of course, before you can pick and choose
what you want to use, you need to know it exists. Browsing through the help

file can reveal classes that you need to add to your toolkit to produce good appli-
cations. This chapter helps by taking you on a whirlwind tour of the major Boost
categories. Don’t expect this chapter to discuss everything — Boost is simply too
large for that. If you want to see a list of what Boost has to offer, check out

»» All classes in alphabetical order: https://www.boost.org/doc/libs/
1_73_0

»» Categorized list: https://www.boost.org/doc/libs/1_73_0?view=
categorized

In addition to reviewing the examples in this chapter and looking through
the Help file, it also pays to browse the Boost directory for examples. For
example, if you look at the \CodeBlocks\boost_1_73_0\libs\regex\exam-
ple directory, you find three examples of how to use RegEx, one of which is
demonstrated in the “Testing the installation” section of Book 7, Chapter 4.
Every example directory contains a Jamfile.v2 that you can use to build

Chapter 5

IN THIS CHAPTER

»» Using RegEx to parse strings

»» Using Tokenizer to break strings into
tokens

»» Converting numbers to other data
types

»» Using Foreach to create improved
loops

»» Using Filesystem to access the
operating system

https://www.boost.org/doc/libs/1_73_0
https://www.boost.org/doc/libs/1_73_0
https://www.boost.org/doc/libs/1_73_0?view=categorized
https://www.boost.org/doc/libs/1_73_0?view=categorized

850 BOOK 7 Advanced Standard Library Usage

the examples using Boost.Build. If you still haven’t found the example you
need, check online for more examples — Boost is extremely popular. Even
Microsoft has gotten into the act by providing examples at https://devblogs.
microsoft.com/cppblog/using-c-coroutines-with-boost-c-libraries/,
https://marketplace.visualstudio.com/items?itemName=AdamWulkiewicz.
GraphicalDebugging, and https://docs.microsoft.com/en-us/visualstudio/
test/how-to-use-boost-test-for-cpp?view=vs-2019.

Before you begin working through the examples in this chapter, make sure you
know how to configure your development environment to use Boost. The “Testing
the installation” and “Building Your First Boost Application Using Date Time”
sections of Book 7, Chapter 4 tell how to configure Code::Blocks to use Boost. The
“Building Your First Boost Application Using Date Time” section also provides you
with a simple example that gets you started working with Boost.

You don’t have to type the source code for this chapter manually. In fact, using
the downloadable source is a lot easier. You can find the source for this chapter
in the \CPP_AIO4\BookVII\Chapter05 folder of the downloadable source. See the
Introduction for details on how to find these source files.

Parsing Strings Using RegEx
Regular expressions are an important part of today’s computing environment.
You use them to perform pattern matching, where the application finds a series of
matching characters in a string. For example, if you want the user to enter values
from 0 through 9 and nothing else, you can create a pattern that prevents the user
from entering anything else. Using patterns in the form of regular expressions
serves a number of important purposes:

»» Ensures that your application receives precisely the right kind of input

»» Enforces a particular data input format (such as the way you input a tele-
phone number)

»» Reduces security risks (for example, a user can’t input a script in place of the
data you wanted)

Some developers make the mistake of thinking that a regular expression can pre-
vent every sort of data input error. However, regular expressions are only one
tool in an arsenal you must build against errant input. For example, a regular
expression can’t perform range checking. If you want values between 101 and 250,
a regular expression will ensure that the user enters three digits; however, you
must use range checking to prevent the user from entering a value of 100.

https://devblogs.microsoft.com/cppblog/using-c-coroutines-with-boost-c-libraries/
https://devblogs.microsoft.com/cppblog/using-c-coroutines-with-boost-c-libraries/
https://marketplace.visualstudio.com/items?itemName=AdamWulkiewicz.GraphicalDebugging
https://marketplace.visualstudio.com/items?itemName=AdamWulkiewicz.GraphicalDebugging
https://docs.microsoft.com/en-us/visualstudio/test/how-to-use-boost-test-for-cpp?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/how-to-use-boost-test-for-cpp?view=vs-2019

Bo
os

ti
ng

 u
p

a
St

ep

CHAPTER 5 Boosting up a Step 851

Defining the pattern for a regular expression can prove time consuming. However,
after you create the pattern, you can use it every time you must check for a par-
ticular input pattern. The following sections describe how to work with the RegEx
(regular expressions) library.

Adding the RegEx library
Most of the Boost library works just fine by adding headers to your application
code. However, a few components, such as RegEx, require a library. Before you can
use a library, you must build it. The instructions for performing this task appear
in the “Building the libraries” section of Book 7, Chapter 4. After you build the
library, you must add it to your application.

DEFINING THE PATTERN
The RegEx library provides a number of methods for creating a pattern. For example,
if you want the user to input only lowercase letters, you can create a range by using
[a-z]. The example in this chapter shows how to create a simple three-digit numeric
input. However, you can create a pattern for nearly any use. For example, a telephone
number pattern might appear as ([0-9][0-9][0-9])[0-9][0-9][0-9]-[0-9]
[0-9][0-9][0-9], where a telephone number of (555) 555-5555 is acceptable, but
a telephone number of 555-555-5555 isn’t. The RegEx library reference appears at
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/index.html.

This chapter doesn’t provide you with a full explanation of all the patterns you can cre-
ate. In fact, there are different flavors of regex patterns, so you want to be sure that a
pattern you see online will actually work with the library that you’re using for your appli-
cation. The best place to start discovering the basics of Boost-compatible patterns is at
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_
regex/syntax.html. It’s important to note that older versions of Boost supported only
the Perl syntax; newer versions support POSIX basic and POSIX extended syntax as well.
Boost provides a wealth of pattern types.

How you use the pattern is just as important as how you create the pattern. For exam-
ple, you can use RegEx_match to obtain a precise match. However, if you want to
search only for a value, you use RegEx_search instead. The usage reference appears
at https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_
regex/ref.html.

https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/index.html
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_regex/syntax.html
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_regex/syntax.html
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_regex/ref.html
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_regex/ref.html

852 BOOK 7 Advanced Standard Library Usage

Two techniques exist for adding the required headers and libraries to an appli-
cation. The first technique is to add it to the compiler settings, as you do for the
“Testing the installation” section of Book 7, Chapter 4. The second technique is to
add the settings to a specific project. You use the first technique when you work
with Boost for a large number of projects and require access to all libraries. The
second technique is best when you use Boost only for specific projects and require
access only to specific libraries. The following steps show you how to perform
the project-specific setup for any library, not just the RegEx library:

1.	 Use the Project wizard to create a new project.

Nothing has changed from the beginning of this book; every application begins
with a new project. The next section discusses the RegEx example, and you can
use that project name as a starting point here.

2.	 Choose Project ➪ Build Options.

Code::Blocks displays the Project Build Options dialog box.

3.	 Select the project name, such as RegEx, in the left pane.

4.	 Select the Linker Settings tab.

You see a number of linker settings, including a Link Libraries list, which will be
blank.

5.	 Click Add.

Code::Blocks displays the Add Library dialog box, shown in Figure 5-1.

6.	 Click the Browse button — the button sporting an opening file folder.

You see the Choose Library to Link dialog box.

USING BOOST LIBRARIES ON CERTAIN
64-BIT SYSTEMS
If you performed the Boost installation for your system using the techniques found in
the “Boost Installation on Certain 64-bit Systems” sidebar in Book 7 Chapter 4, then you
may not have any library files to use because they won’t build. However, that means
skipping the instructions in this section. In this case, you can try a header-only exam-
ple using the code in the next section of the chapter to see if RegEx will work on your
system. In at least some cases, it will work, but you may lose functionality provided by
the library. When problems occur, you’ll see an error message telling you there is a con-
figuration (or sometimes other) error and that the Boost RegEx library is missing. The
example in the “Accessing the Operating System Using Filesystem” section won’t run on
a 64-bit system using the alternative configuration.

Bo
os

ti
ng

 u
p

a
St

ep

CHAPTER 5 Boosting up a Step 853

7.	 Using the dialog box, navigate to the library of your choice, such as
libboost_regex-mgw6-mt-x64-1_73.a (the release version of the library),
select the library, and then click OK.

The Boost library files are typically located in the \CodeBlocks\boost_1_
73_0\bin.v2\libs\ directory. When you click OK, you see a dialog box that
asks whether you want to keep this as a relative path.

Relative paths specify a location using the current location as a starting point.
The alternative is an absolute path, which specifies a location based on the root
directory of your hard drive. In most cases, absolute paths are less likely to get
broken.

8.	 Click No.

You see the absolute path for the selected library, such as libboost_regex-
mgw6-mt-x64-1_73.a, added to the File field of the Add Library dialog box.

9.	 Click OK.

After you click OK, you see the absolute path for the library added to the Linker
Settings, as shown in Figure 5-2.

FIGURE 5-1:
Select the library
you want to add.

FIGURE 5-2:
Add the library to

the application.

854 BOOK 7 Advanced Standard Library Usage

10.	Click the Search Directories tab.

You see three subtabs: Compiler, Linker, and Resource Compiler.

11.	Click Add in the Compiler subtab.

You see an Add Directory dialog box like the one shown in Figure 5-3.

12.	Type the location of the Boost header files in the Directory field.

As an alternative, you can click the Browse button to use a Browse for Folder
dialog box to find them. The files are normally located in the \CodeBlocks\
boost_1_73_0\boost folder.

13.	Click OK.

You see the search folder added to the Compiler tab, as shown in Figure 5-4.

14.	Click Add in the Linker subtab.

You see yet another Add Directory dialog box (refer to Figure 5-3).

FIGURE 5-3:
Add appropriate

search directories
for Boost header
and library files.

FIGURE 5-4:
The search

location for any
compiler, linker,

or resource
compiler.

Bo
os

ti
ng

 u
p

a
St

ep

CHAPTER 5 Boosting up a Step 855

15.	Type the location of the Boost library files in the Directory field and then
click OK.

The Boost library files are typically located in the \CodeBlocks\boost_1_73_0\
bin.v2\libs directory. After you click OK, you see the directory added to the
Linker tab.

16.	Click OK.

The selected library is ready for inclusion in your application.

Creating the RegEx code
Using a regular expression is relatively straightforward. All you do is create the
expression and then use it with a function to perform specific kinds of pattern
matches. The function you choose is important because each function performs
the pattern matching differently. The RegEx example code, shown in Listing 5-1,
demonstrates how to create a regular expression and then use it in two different
ways to determine whether user input is correct.

LISTING 5-1:	 Performing Matches and Searches Using RegEx

#include <iostream>
#include "boost/regex.hpp"

using namespace std;
using namespace boost;

int main() {
 char MyNumber[80];
 cout << "Type a three-digit number: ";
 cin >> MyNumber;

 regex Expression("[0-9][0-9][0-9]");
 cmatch Matches;

 // Perform a matching check.
 if (regex_match(MyNumber, Matches, Expression)) {
 cout << "You typed: " << Matches << endl;
 } else {
 cout << "Not a three-digit number!" << endl;
 }

(continued)

856 BOOK 7 Advanced Standard Library Usage

 // Perform a search check.
 if (regex_search(MyNumber, Matches, Expression)) {
 cout << "Found: " << Matches << endl;
 } else {
 cout << "No three-digit number found!" << endl;
 }
 return 0;
}

In this case, the code begins by adding the proper header, RegEx.hpp, and the
proper namespace, boost. In many cases, you can get by without doing much
more than performing these two steps in your code. It then performs three steps:

1.	 Get some user input. Even though the prompt tells the user to enter a
three-digit number, C++ doesn’t enforce this requirement.

2.	 Create the regular expression. This example needs a set of three ranges for
numbers: [0-9][0-9][0-9]. Using ranges works well for a number of tasks,
and you use them often when creating a regular expression.

3.	 Perform the pattern match. The example uses RegEx_match(), which
performs a precise match, and RegEx_search(), which looks for the right
characters anywhere in the input. Both functions require three input values:
the value you want to check, an output variable of type cmatch that tells where
the match is found, and the regular expression.

To see how this code works, you must perform a series of three tests. First, run the
application and type 0 as the input. Naturally, typing 0 means that the code will
fail and you see this output:

Not a three-digit number!
No three-digit number found!

Run the application again and type 123 as the input to see

You typed: 123
Found: 123

So far, there isn’t much difference between the two functions, which is why you
need the third test. Run the application and type ABC123XYZ as the input to see:

Not a three-digit number!
Found: 123

LISTING 5-1:	 (continued)

Bo
os

ti
ng

 u
p

a
St

ep

CHAPTER 5 Boosting up a Step 857

This final test shows that the RegEx_search() function finds the three-digit value
in the string. Obviously, the RegEx_search() function is great when you need to
locate information but not good when you need to secure it. When you need a pre-
cise pattern match, use RegEx_match() instead.

Breaking Strings into Tokens
Using Tokenizer

Humans view strings as a sentence or at least a phrase. Mixtures of words create
meaning that we can see in a moment.

Computers, on the other hand, understand nothing. A computer can perform pat-
tern matching and do math, but it can’t understand Kipling (read more about this
fascinating author at https://www.poetryfoundation.org/poets/rudyard-
kipling). It’s because of this lack of understanding that you must tokenize text
for the computer. A computer can perform comparisons on individual tokens, usu-
ally single words or symbols, and create output based on those comparisons.

The compiler you use relies on a tokenizer, an application component that breaks
text into tokens, to turn the text you type into machine code the computer can
execute. However, the tokenizer appears in all sorts of applications. For example,
when you perform a spelling check on a document, the word processing applica-
tion breaks the text into individual words using a tokenizer, and then compares
those words to words in its internal dictionary.

The Tokens example, shown in Listing 5-2, shows a method for creating tokens
from strings. This basic technique works with any phrase, string, or series of
strings. You’ll normally process the tokens after you finish creating them.

LISTING 5-2:	 Creating Tokens from Strings

#include <iostream>
#include "boost/tokenizer.hpp"

using namespace std;
using namespace boost;

int main() {
 string MyString = "This is a test string!";
 tokenizer<> Tokens(MyString);

(continued)

https://www.poetryfoundation.org/poets/rudyard-kipling
https://www.poetryfoundation.org/poets/rudyard-kipling

858 BOOK 7 Advanced Standard Library Usage

 // Display each token on screen.
 tokenizer<>::iterator Iterate;
 for (Iterate = Tokens.begin(); Iterate != Tokens.end();
 Iterate++)
 cout << *Iterate << endl;
 return 0;
}

The tokenizer template places the tokenized form of MyString in Tokens. The
application now has a set of tokens with which to work. To see the tokens, you
must iterate through them by creating a tokenizer<>::iterator, Iterate. The
application uses iterator to output the individual tokens. When you run this
application, you see the following output:

This
is
a
test
string

This example shows a basic routine that you can use for just about any need. How-
ever, you might need some of the extended capabilities of the tokenizer class.
Check out the materials at https://www.boost.org/doc/libs/1_73_0/libs/
tokenizer/doc/index.html for more information about both the tokenizer and
the tokenizer<>::iterator.

Performing Numeric Conversion
Numeric conversion isn’t hard to perform — it’s accurate numeric conversion
that’s hard to perform. Getting the right result as you move from one type of
number to another is essential. Sure, you probably won’t notice too much if your
game score is off by a point or two, but you’ll definitely notice the missing dollars
from your savings account. Worse yet, when taking a trip into space, a round-
ing error can definitely ruin your day as you head off toward the sun rather than
Planet Earth.

The Boost library includes the converter template, which makes converting from
one kind of number to another relatively easy. The converter template includes
all kinds of flexibility. The Convert example, shown in Listing 5-3, presents two
different levels of converter template usage.

LISTING 5-2:	 (continued)

https://www.boost.org/doc/libs/1_73_0/libs/tokenizer/doc/index.html
https://www.boost.org/doc/libs/1_73_0/libs/tokenizer/doc/index.html

Bo
os

ti
ng

 u
p

a
St

ep

CHAPTER 5 Boosting up a Step 859

LISTING 5-3:	 Converting from double to int

#include <iostream>
#include "boost/numeric/conversion/converter.hpp"

using namespace std;
using namespace boost;
using namespace boost::numeric;

WHY NUMERIC CONVERSION IS NECESSARY
Humans don’t differentiate between one kind of number and another — seeing 1 is
about the same as seeing 1.0. The computer, however, does make a differentiation
between numbers at two levels:

•	 Integer versus floating-point

•	 Size

The integer part of the equation comes into play because of the early processors in
PCs, which could perform only integer math. For floating-point math, you had to buy a
separate math coprocessor. Today, the math coprocessor comes with the processor,
but integer and floating-point math still occur in different areas of the processor. When
the processor performs integer math, it uses different registers and capabilities than
when it performs floating-point math. So the conversion between integer and floating-
point data is more than philosophical; it involves using physically different areas of the
processor.

The size issue determines how large the integer or floating-point value is. Again, the
difference is physical. Early processors could handle only 8 bits of data at a time, then
16 bits, and on to 32 bits, and finally the 64 bits of today. (You can even read about an
AMD 128 bit processor at https://www.tweaktown.com/news/68872/rick-morty-
uses-128-bit-amd-cpu-3-584-825-480gb-ram/index.html.) Using larger num-
bers in older processors required a number of additional tasks in software, so using
larger numbers incurred a significant performance penalty.

Today, with memory and processor register size no longer a concern, large numbers are
also no longer a concern, except that you must observe the historical reasons for using
numbers of a specific size. In addition, you sometimes gain benefits from a reliability,
security, or speed perspective in using a smaller number. The important consideration
in working with numbers is that you must observe the correct conversion techniques
when you want to obtain the correct results.

(continued)

https://www.tweaktown.com/news/68872/rick-morty-uses-128-bit-amd-cpu-3-584-825-480gb-ram/index.html
https://www.tweaktown.com/news/68872/rick-morty-uses-128-bit-amd-cpu-3-584-825-480gb-ram/index.html

860 BOOK 7 Advanced Standard Library Usage

int main() {
 typedef converter<int, double> Double2Int;
 double MyDouble = 2.1;
 int MyInt = Double2Int::convert(MyDouble);

 cout << "The double value is: " << MyDouble << endl;
 cout << "The int value is: " << MyInt << endl;

 // See what happens with a larger value.
 MyDouble = 3.8;
 MyInt = Double2Int::convert(MyDouble);
 cout << "The double value is: " << MyDouble << endl;
 cout << "The int value is: " << MyInt << endl;

 // Round instead of truncate.
 typedef conversion_traits<int, double> Traits;
 typedef converter<int, double, Traits,
 def_overflow_handler, RoundEven<double> >
 Double2Rounded;
 MyInt = Double2Rounded::convert(MyDouble);
 cout << "The int value is: " << MyInt << endl;
 return 0;
}

The example begins by creating a converter object, Double2Int. This first object
shows the minimum information that you can provide — the target (int) and
source (double) values. The default setting truncates floating-point values (float
and double among them) to obtain an int value. To perform a conversion, the
code relies on the convert method, which requires a variable of the required
source type as an argument.

The converter template includes support for four kinds of rounding. You must
use the correct kind of rounding to match your application requirements. Imagine
what would happen to calculations if you used truncation when rounding is really
the required operation. The following list describes all four kinds of rounding that
converter supports:

»» Trunc: Removes the decimal portion of the value (rounds toward 0)

»» RoundEven: Rounds values up or down as needed such that the ending value
is even (also called banker’s rounding). Consequently, 1.5 rounds up to 2,
while 2.5 rounds down to 2.

LISTING 5-3:	 (continued)

Bo
os

ti
ng

 u
p

a
St

ep

CHAPTER 5 Boosting up a Step 861

»» Ceil: Rounds the value up toward positive infinity when the decimal portion
is greater than 0

»» Floor: Rounds the value down toward negative infinity when the decimal
portion is greater than 0

The second converter object, Double2Rounded, shows the template requirements
to choose the kind of rounding that the object performs. In this case, you sup-
ply five arguments to the template (the converter template accepts up to seven
arguments; see https://www.boost.org/doc/libs/1_73_0/libs/numeric/
conversion/doc/html/boost_numericconversion/converter___function_
object.html):

»» Target

»» Source

»» conversion_traits, which include the target and source types as a
minimum

»» Overflow handler, which determines how the object handles conversions that
result in an overflow (the default is def_overflow_handler)

»» Rounding template object (which includes the rounding source type)

The process for using the extended form of the converter template is the same
as the simple form shown earlier in the example. However, you must now create a
conversions_traits object (Traits in this case) and provide the required input
information. (See more examples of using conversion_traits at https://www.
boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/boost_
numericconversion/conversion_traits___traits_class.html.) As before, you
rely on the convert method to perform the conversion process. Here’s the appli-
cation output:

The double value is: 2.1
The int value is: 2
The double value is: 3.8
The int value is: 3
The int value is: 4

The last two lines show the difference in rounding the value 3.8 using Trunc
and RoundEven. See https://www.boost.org/doc/libs/1_73_0/libs/numeric/
conversion/doc/html/index.html for more about numeric conversion.

https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/boost_numericconversion/converter___function_object.html
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/boost_numericconversion/converter___function_object.html
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/boost_numericconversion/converter___function_object.html
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/boost_numericconversion/conversion_traits___traits_class.html
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/boost_numericconversion/conversion_traits___traits_class.html
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/boost_numericconversion/conversion_traits___traits_class.html
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/index.html
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/index.html

862 BOOK 7 Advanced Standard Library Usage

Creating Improved Loops Using Foreach
Writing efficient loops is a requirement if you want your application to perform
optimally. Interestingly enough, many loops use a certain amount of boilerplate
code (code that is essentially the same every time you write it, but with small
nuances).

Templates and other methodologies described in this book provide a means to
overcome the boredom of writing essentially the same code. However, none of
the examples to date has shown a tried-and-true method: macros. A macro is
essentially a substitution technique that replaces a keyword with the boilerplate
code you’d normally write. Macros normally appear in uppercase, such as BOOST_
FOREACH, which is the macro used in this section of the chapter. Instead of typing
all the code associated with a macro, you simply type the macro name and the
compiler does the rest of the work for you.

The magic behind the BOOST_FOREACH macro is that it creates all the iteration
code you normally create by hand. In other words, you aren’t providing any less
code to the compiler; you simply let the macro write it for you. The Boost library
still relies on the Standard Library for_each algorithm; you avoid writing all the
code you used to write when using the algorithm. See https://www.boost.org/
doc/libs/1_73_0/doc/html/foreach.html for more about the BOOST_FOREACH
macro. The ForEach example, in Listing 5-4, shows how to use a BOOST_FOREACH
loop to iterate through a vector.

LISTING 5-4:	 Creating a BOOST_FOREACH Loop

#include <iostream>
#include <vector>
#include "boost/foreach.hpp"

using namespace std;
using namespace boost;

int main() {
 vector<string> names;
 names.push_back("Tom");
 names.push_back("Dick");
 names.push_back("Harry");
 names.push_back("April");
 names.push_back("May");
 names.push_back("June");

https://www.boost.org/doc/libs/1_73_0/doc/html/foreach.html
https://www.boost.org/doc/libs/1_73_0/doc/html/foreach.html

Bo
os

ti
ng

 u
p

a
St

ep

CHAPTER 5 Boosting up a Step 863

 BOOST_FOREACH(string Name, names)
 cout << Name << endl;

 cout << endl << "Backward:" << endl;
 BOOST_REVERSE_FOREACH(string Name, names)
 cout << Name << endl;
 return 0;
}

This example begins by creating a vector. In fact, it’s the same vector as the one
used for the Vectors example in Book 5, Chapter 6, Listing 6-1. In this case, the
example then creates a BOOST_FOREACH loop that iterates through names. Each
iteration places a single value from names into Name. The code then prints the
single name.

An interesting feature of the Boost library is that you can reverse the order of
iteration. In this case, the code uses a BOOST_REVERSE_FOREACH loop to go in the
opposite direction — from end to beginning. The technique is precisely the same
as going forward. Here’s the application output:

Tom
Dick
Harry
April
May
June

Backward:
June
May
April
Harry
Dick
Tom

As you can see, iterating forward and backward works precisely as you expect.
The BOOST_FOREACH and BOOST_REVERSE_FOREACH macros support a number of
container types:

»» Any Standard Template Library (STL) container

»» Arrays

»» Null-terminated strings (char and wchar_t)

864 BOOK 7 Advanced Standard Library Usage

»» STL iterator pair (essentially a range)

»» boost::iterator_range<> and boost::sub_range<>

The macro STL container support is generalized. Any object type that supports
these two requirements will work:

»» Nested iterator and const_iterator types

»» begin() and end() methods

Accessing the Operating System
Using Filesystem

Working with files and directories is an important part of any application you
create. Book 6 shows some standard techniques you use to work with both files
and directories. However, these methods can become cumbersome and somewhat
limited. Boost augments your ability to work with the file system using the File-
system library. Creating and deleting both files and directories becomes a single
call process. You can also perform tasks such as moving and renaming both files
and directories.

The most important addition that Boost makes is defining a method to obtain
error information from the operating system. This feature is found in the System
library, which you must include as part of your application. Among other capabili-
ties, the System library enables you to convert a numeric error that the operating
system returns into a human-readable form. Unfortunately, the System library
is still a work in progress, so this chapter can’t demonstrate how to use it in any
great detail.

You must add references to the libboost_filesystem-mgw6-mt-x32-1_73.a
and libboost_system-mgw6-mt-x32-1_73.a files using the technique found in
the “Adding the RegEx library” section, earlier in this chapter, for the exam-
ple to work. The project file may require that you change the library setting to
match your system. When you set up this application properly, you should see
two libraries on the Linker Settings tab of the Project Build Options dialog box, as
shown in Figure 5-5.

Bo
os

ti
ng

 u
p

a
St

ep

CHAPTER 5 Boosting up a Step 865

FIGURE 5-5:
Using the

Filesystem library
requires

the System
library as well.

THE FILESYSTEM LIBRARY AND THE
STANDARD LIBRARY
The developers of the Boost library continuously add to its capabilities. Some of the
additions developers make are so useful that they end up in the Standard Library.
The Filesystem library is one of these useful elements. In fact, it appears as part of
C++ 17, as described in the article at https://www.fluentcpp.com/2019/11/22/
how-c17-benefits-from-boost-libraries-part-two/.

Of course, standardized libraries require discussion from multiple groups, not just the
Boost developers. Consequently, the Boost library you use today may not be precisely
the same library you see added to the Standard Library. It’s important to keep up with
the proposed technical changes to the Boost library as they move to the Standard
Library by reviewing the documentation online.

The movement of code from one setting to another tends to confuse developers
because they suddenly find that a favorite library has seemingly disappeared. These
developers also question whether they should continue using the old library or move to
the new one. In all cases, you want to use the Standard Library when you can because
the Standard Library is fully supported by a standards group, and is, well, standard.
Consequently, when you begin creating new applications based on C++ 17 or above,
you may want to consider moving from Boost to the Standard Library for the Filesystem
library needs. (Ensure that your compiler also provides the required support.)

https://www.fluentcpp.com/2019/11/22/how-c17-benefits-from-boost-libraries-part-two/
https://www.fluentcpp.com/2019/11/22/how-c17-benefits-from-boost-libraries-part-two/

866 BOOK 7 Advanced Standard Library Usage

The OS example in Listing 5-5 shows only a modicum of the capabilities of the
Filesystem library. The big thing to remember when using this example is that it
requires both Filesystem and System libraries because the System library provides
error-handling support. The example begins by creating a directory and a file. It
then adds data to the file, reads the file back in and displays it, and then deletes
both file and directory.

LISTING 5-5:	 Interacting with the File System Using Boost

#include <iostream>
#include "boost/filesystem.hpp"

using namespace boost::filesystem;
using namespace std;

int main() {
 if (! exists("Test")) {
 create_directory(path("Test"));
 cout << "Created Directory Test" << endl;
 } else
 cout << "Directory Test Exists" << endl;

 if (! exists("Test/Data.txt")) {
 boost::filesystem::ofstream File("Test/Data.txt");
 File << "This is a test!";
 File.close();
 cout << "Created File Data.txt" << endl;
 } else
 cout << "File Data.txt Exists" << endl;

 if (exists("Test/Data.txt")) {
 cout << "Data.txt contains "
 << file_size("Test/Data.txt")
 << " bytes." << endl;
 boost::filesystem::ifstream File("Test/Data.txt");
 string Data;
 while (! File.eof()) {
 File >> Data;
 cout << Data << " ";
 }
 cout << endl;

Bo
os

ti
ng

 u
p

a
St

ep

CHAPTER 5 Boosting up a Step 867

 File.close();
 } else
 cout << "File Data.txt Doesn't Exist!" << endl;

 if (exists("Test/Data.txt")) {
 remove(path("Test/Data.txt"));
 cout << "Deleted Data.txt" << endl;
 }

 if (exists("Test")) {
 remove(path("Test"));
 cout << "Deleted Test" << endl;
 }

 return 0;
}

The first feature you should notice about this example is that it constantly checks
to verify that the file or directory exists using the exists() function. Your appli-
cations should follow this pattern because you can’t know that a file or directory
will exist when you need to work with it, even if your application created it. A user
or external application can easily delete the file or directory between the time you
create it and when you need to work with it again.

To create a directory, you use create_directory(), which accepts a path as input.
You create a path object using path(). Many of the other Filesystem library calls
require a path object as well. For example, when you want to remove (delete)
either a file or directory, you must supply a path object to remove(). Interestingly
enough, remove() does remove a file without creating a path object, but it won’t
remove a directory. The inconsistent behavior can make an application that incor-
rectly uses remove() devilishly difficult to debug.

Notice that the example uses the boost::filesystem::ofstream and
boost::filesystem::ifstream classes. If you try to compile the application
without using the fully qualified name of the classes, you get an ambiguous ref-
erence error from Code::Blocks. Using the Boost version of the classes ensures
maximum compatibility and fewer errors. Here is what you see when you run this
application:

Created Directory Test
Created File Data.txt

868 BOOK 7 Advanced Standard Library Usage

Data.txt contains 15 bytes.
This is a test!
Deleted Data.txt
Deleted Test

One final element to look at in this example is file_size(), which reports
the size of the file in bytes. The Filesystem library provides a number of help-
ful statistics that you can use to make your applications robust and reliable.
As previously mentioned, you want to spend time working with this library
because it contains so many helpful additions to the standard capabilities that
C++ provides.

Index 869

Symbols
- (subtraction symbol), 60
-- (minus minus)

decrement operator, 84, 92
prefix/postfix operators, 85
switch prefix, 166

! (bang), 92
!= (not equal to) operator,

107–108
(pound), 92, 96
% (percent sign) modulus

operator, 86
& (ampersand), 92

reference operator, 197, 220,
496, 501, 505, 510, 647

&& (and) operator, 110–111
() (parentheses), 65–66,

92, 202
* (star; asterisk), 92, 501

dereference operator, 201
multiplication symbol, 60, 84
pointer variables, 205, 220

. (dot) operator, 92, 250, 555

... (ellipsis)
general exception catcher, 567
variadic operator, 422

/ (forward slash), 92
division symbol, 60, 86
in pathnames, 688, 729
switch prefix, 166

/* */ (delimiters), 271
// (double slash), 270–271
: (colon)

conditional operators and
comparisons, 99

range operator, 128
:: (two colons)

classes and functions, 337,
575, 583, 593

scope resolution operator, 238
; (semicolon), 59, 153, 234
? (question mark), 99
@ (at sign), 92
[] (square brackets), 92, 388
\ (backslash), 66, 90–92,

688, 734
^ (caret), 93
{ } (curly braces), 53, 55, 92–93
|| (or) operator, 110–111
~ (tilde), 92
+ (addition symbol), 60, 78, 97
++ (plus plus)

increment operator, 81, 92
prefix/postfix operators, 85

++i (pre-increment)
operator, 126

+= (plus equal) notation,
81, 96

< (less than)
less than operator, 108–109
operator function,

653–654, 668
< > (angle brackets), 93,

181–182
<< (insertion) operator, 59–60,

102, 223, 300, 661, 672,
698–699, 726, 738–741

<= (less than or equal to)
operator, 108

= (equals sign), 75, 417–418
= 0 (pure specifier), 333–334
== (equal equal), 92

equal to operator, 108–109
<=> (spaceship) operator,

109–110, 216
> (greater than) operator,

108–109
-> (arrow) operator, 245, 247,

250, 555, 608

>= (greater than or equal to)
operator, 108

>> (extraction) operator, 102,
223, 277, 284, 712–714,
738, 741

" " (double quotes), 59, 67, 90,
93, 181–182

' ' (single quotes), 88, 90
\0 (null) character, 89

A
absolute paths, 846, 853
abstract classes, 333–334
abstract virtual methods, 334
Acronym Finder, 48
AddFiles example, 170
AddInteger example, 78–79
AddInteger2 example, 79–81
addition symbol (+), 60, 78, 97
AddOne example, 149
AddOne() function, 149–153
AIDE (Android IDE), 33–34
Alexander, Christopher, 336
algorithms, Standard Library,

755–757
allocating/deallocating memory

defined, 205
using new operator, 208

American National Standards
Institute (ANSI), 515–516

ampersand (&), 92
reference operator, 197, 220,

496, 501, 505, 510, 647
and (&&) operator, 110–111
Android IDE (AIDE), 33–34
AndroidForums, 42
angle brackets (< >), 93,

181–182
anonymous functions, 398

Index

870 C++ All-in-One For Dummies

ANSI (American National
Standards Institute),
515–516

APIs (Application Programming
Interfaces), 316

application flow, 105–138
conditions, 107–115

defined, 105
evaluating, 107–111
evaluating multiple, 110–111
evaluating with if

statements, 111–115
in for loops, 118–122
operators, 108–110
satisfying, 107

decisions, 106–107
if statements, 111–115

defined, 105
with else keyword, 112–115
example of, 111–112

loops, 115–138
breaking, 133–135
continuing, 133, 135–136
defined, 105–106
do-while loops, 116–117,

132–133
for loops, 116–130
nesting, 136–138
while loops, 116–117,

130–132
Application Programming

Interfaces (APIs), 316
arguments. See parameters
Array01 example, 484–485
Array02 example, 486
Array03 example, 487
Array04 example, 488
Array05 example, 498
Array06 example, 498
ArrayLoop example, 303
ArrayPassing example,

306–307
ArrayPointer example,

304–305

arrays, 302–308, 482–498
accessing, 302–304
adding and subtracting

pointers, 307–308
allocating on heap, 494
array names, 484, 486
arrays of arrays, 495–498
arrays of pointers, 304–305,

495–498
command-line parameters

and, 492–494
constant, 498
declaring, 303–304, 482–484
defined, 167, 208, 302
deleting from heap, 494–495
external declarations, 485–487
inner and outer, 496
members, 496
multidimensional arrays,

488–492
overcoming limitations of,

642–643
passing pointers to, 484–485
passing to functions, 306–307
pointer types, 487–488
sorting, 494–495
string arrays using pointers,

503–504
arrow (->) operator, 245, 247,

250, 555, 608
ASCII table, 88
assembly code, 452–454

defined, 473
tracing through, 475

AssignLambda example,
420–421

assignments, 108
asterisk (*), 92, 501

dereference operator, 201
multiplication symbol, 60, 84
pointer variables, 205, 220

at sign (@), 92
atomic operations, 757–759
attr element, 400

Auto example, 388–389
auto keyword, 388–390

lambda expressions, 404–405
pointing to functions, 506

automata programming, 312
automatic type determination

functions, 146
lambda expressions, 401–404
for loops, 129–130

B
backslash (\), 66, 90–92,

688, 734
bang (!), 92
BasicString example, 786
begin() function, 388, 655
BestFriends example, 589–590
Bitcoin, 820
body element, 401
boolalpha flag, 702–703
Boole, George, 100
Boolean expressions, 101
Boolean variables, 100–101

defined, 100
size and range, 516
using with conditional

operators, 101
Boost, 817–868

AutoIndex utility, 834
bcp (Boost copy) utility, 833,

843–845
BOOST_FOREACH macro,

862–864
BOOST_REVERSE_FOREACH

macro, 863
BoostBook format, 833, 840
Boost.Build, 833–837
building date/time application,

846–848
building libraries, 825–827
compiler support, 822
downloading, 821, 823

Index 871

features backported to
Standard Library, 818–819

features of, 821
Filesystem library, 864–868
folders, 824
header-only libraries, 825
Inspect utility, 833, 837–840
installing, 823–824
installing on 64-bit systems,

828, 852
licensing, 822
numeric conversion, 858–861
paid support, 823
QuickBook add-on, 833,

841–843
RegEx library, 850–857
smart pointers, 191
Standard Library vs., 819–820
testing, 827, 829–833
tokenizer, 857–858
tools, 833–835
Wave utility, 834, 845

BoostPro Computing, 823
break statements, 133–135,

137, 296, 299
breakpoints, 454, 457–467

defined, 457–458
enabling/disabling, 460–463
inspecting variables, 463–467
setting in Code::Blocks,

459–460
Breakpoints example, 458–450
Breakpoints2 example,

463–464
BuggyProgram example, 444
bugs, 429–442

anticipating and avoiding,
432–442

creating objects, 441–442
forgetting deleted

objects, 441
indexes, 441
menus, 432–435

new and delete, 441
string processing, 437–440
textual input, 435–436

debugging, 443–456
Code::Blocks debugger,

444–455
command-line

arguments, 456
Dev-C++ debugger, 456
gdb debugger, 456
programming with

debuggers, 444–453
stacks, 469–478
Visual C++ debugger, 455

features that resemble bugs,
430–432

myth of bulletproof
applications, 440

origin of term, 429
built-in literals, 780–781

C
C compatibility headers, 759
C++ 20, 269–308

application flow, 105–138
arrays, 302–308, 482–498
bugs, 429–442
characteristics of, 1
cin object, 277–281
classes, 227–268, 571–599
code editing, 53–55
comments, 270–272
compiling (building), 57, 67–68
conditional operators, 98–101
constants, 292–295
constructors, 542–563
design patterns, 335–366
desktop configuration, 9–26
destructors, 548–550, 558–563
directories, 727–736
exceptions, 563–569

executing (running), 52–53,
67–68

functional programming, 312,
369–395

functions, 139–168
linking, 67
mobile configuration, 27–43
namespaces, 534–539
objects, 309–334
pointers, 187–223, 498–510
popularity of, 45
preprocessor directives,

282–291
random numbers, 300–302
references, 510–513
saving code, 62
source code files, 169–186
Standard Library, 637–680,

753–778
streams, 683–726
strings, 93–98
structures, 515–539
switch statements, 295–298
templates, 795–815
type conversion, 272–277
User-Defined Literals, 779–794
variables, 69–91
wrapping enum types, 298–299

C++ Shell IDE, 35
C4Droid IDE, 29, 33
captures element, 400
caret (^), 93
CarParts example, 354–357
carriage return (\r) character,

90–91, 281
casting data, 520–529
const_cast, 528–529
converting data vs., 521–522
dynamic_cast, 524–527
narrowing casts, 523
static_cast, 527

CastOrConvert example, 521

872 C++ All-in-One For Dummies

catch blocks
catching any exception,

567–568
multiple, 565–566
try...catch blocks, 558,

563–565
.cbp files, 20
ChangePointer example,

203–204
ChangeVariable example, 74
character variables, 88–91

carriage return character, 90
defined, 88
initializing, 88
newline character, 89–90
nonprintable characters, 89
null character, 89
size and range, 516
tab character, 90
values, 88

Cheesecake example, 597–598
CheeseClass example, 253–254
Church, Alonzo, 398
cin (console input) object,

102–103, 277–281
class definitions, 230

defined, 234, 241
separating method code, 238

class keyword, 232
classes, 227–268, 571–599

accessing members, 241–244
class definitions, 230

defined, 234, 241
separating method code, 238

const parameters, 251–252
constructors

adding parameters to,
263–264

overview, 259–261
with stack variables, 262

creating with templates,
601–636

creating templates,
605–607

deriving templates, 623–630
function templates, 630–636
including static members in

templates, 611–612
need for, 602–605
parametering templates,

612–622
separating templates from

function code, 609–611
template keyword, 607–608
typedefs for templates,

622–623
types, 602

defined, 230, 240
destructors, 260–262
friend classes, 588–591
header files

class names and, 230
defined, 241
properties of, 232

hierarchies of, 264–267
implementing, 232–237
inheritance, 571–591

access adjustment, 574–575
avoiding polymorphism,

573–574
avoiding variable naming

conflicts, 575–576
class-based access

adjustment, 575–576
friend classes and functions,

588–591
multiple inheritance,

581–584
overriding functions, 577–580
polymorphism, 572
virtual inheritance, 584–588

instances
of classes, creating, 234–237
defined, 230
of objects, creating, 237

lambda expressions with,
407–408

making streamable classes,
737–749

methods, 232
defined, 241
naming, 238–239
overloading, 256–259
running, 235–236
separating code for, 237–240

modeling, 232
names and filenames, 230
nesting, 591–596
object aliases, 267–268
objects

capabilities of, 228–229
defined, 240
overview, 227–229
passing to functions,

249–251
parts of, 240–241
persistent classes, 738
properties, 231

accessing, 235
defined, 241

raw pointers and, 244–248
singleton, 230
smart pointers and, 248–249
source files, 240

defined, 241
method code, 230

structures vs., 530
this pointer, 252–256
types within, 597–599

ClassFromTemplate example,
624–625

ClassTemplate example,
804–806

close() method, 689
Code::Blocks IDE, 9–25

auto indentation, 60–61
Boost

building libraries, 825–827
testing, 827, 829–833

breakpoints, 454
enabling/disabling, 460–463
setting, 459–460

Index 873

command-line arguments, 168
copy of C++ included with, 9
CppDroid vs., 39–40
creating multiple source code

files, 170–177
debugger, 445–455

application stack, 471
assembly language version of

code, 452–454
basic functionality,

450–453
breakpoints, 454
call stack, 454, 471–473
CPU registers, 454, 478
current stack frame

information, 455
debug and symbol

information, 445
Disassembly window,

452–454, 475–476
FPU status, 455
initial run, 446–448
instruction pointer, 447,

450–451
line-by-line code review,

449–450
loaded libraries, 455
memory dump, 454, 496
parts of, 453–455
running threads, 454
signal handling, 455
stepping into functions, 449
targets and files, 455
watches, 454, 465

defined, 11
downloading, 11
error reports, 57–58
features of, 17–25
file associations, 18
installing, 11–17

in Linux, graphical
installation, 15–17

in Linux, standard
installation, 14–15

in Mac OS/X, 13–14
storage location, 11–12, 19
in Windows, 12–13

libraries, 809–815
configuring, 812–813
defining, 810–812
support for, 809–810

projects, 45–52
application types, 46–49
building and executing

applications, 52–53
creating, 46
defined, 46–47
defining, 47–52
elements of, 46
naming, 49–50
storage location, 49–50

recommended version of,
10–11

sample projects source code,
19–20

selecting compiler, 24–25
smart pointers, 212
starting for first time, 18–19
support for application types,

46–49
tip dialog boxes, turning on/

off, 18–19
user interface, 21–24

CodeChef IDE, 35
CodeLite IDE, 26
colon (:)

conditional operators and
comparisons, 99

range operator, 128
two colons (::)

classes and functions, 337,
575, 583, 593

scope resolution
operator, 238

Combine example, 161–162
Command Line Tools for

Xcode, 14
Command Prompt, 167
command-line arguments,

166–168
in Code:Blocks, 168
debugging with command-line

arguments, 456
defined, 166

command-line parameters
accessing, 167
arrays and, 492–494

CommandLineParameters
example, 167

CommandLineParams example,
492–493

comments, 270–272
delimiters, 271
double slash, 270–271
utility of, 270

compilers, 9–10
defined, 10
IDEs vs., 10
selected at Code::Blocks IDE

install, 13
compiling (building), 63

defined, 57, 67
shortcuts for, 68

complex numbers, 788
ComplexNumber example,

788–789
CompoundData example, 533
concatenating strings, 96–97
concepts, Standard Library,

759–760
concurrency, 767
conditional expressions, 99
conditional operators, 98–101

defined, 98
using with Boolean

variables, 101

874 C++ All-in-One For Dummies

conditions, 107–115
defined, 105
evaluating, 107–111
evaluating multiple, 110–111
evaluating with if statements,

111–115
in for loops, 118–122
operators, 108–110
satisfying, 107

ConnectNames example,
154–155

Console Application, 48
console input (cin) object,

102–103, 277–281
console output (cout) object, 58,

72–73, 300
const parameters, 251–252, 292
constant casts (const_

cast), 527
constant expressions

(constexpr), 378–380
ConstantExpression

example, 379
constants, 251–252, 292–295

accessing shortcuts to math
constants, 294–295

creating, 292–293
creating with #define

directive, 283, 285–286
Constants example, 292–293
ConstCast example, 528–529
consteval specifier, 416–417
constexpr (constant

expressions), 378–380
Constructor01 example,

542–543
Constructor02 example,

546–547
Constructor03 example, 547
Constructor04 example, 549
Constructor05 example, 551
Constructor06 example, 552
Constructor07 example,

552–553
Constructor08 example,

555–556

constructors, 542–563
adding and removing items in,

347–349
adding parameters to,

263–264
calling one constructor from

another, 553–554
copy constructors, 555–557
defined, 542
errors, 557–558
functional constructors,

550–553
as initialization functions, 260
initializing members, 542–548

accessing base constructors,
545–546

adding initializers to
classes, 544

default values, 547–548
overloading constructor,

546–547
passing variables, 544–545

ordering, 562
overloading, 542–543, 546–547
overview, 259–261
with stack variables, 262

container adapters, 419
container classes, 638–674

comparing instances, 649–654
copying, 648–649, 673–674
defined, 638
double-ended queues,

669–670
fixed-size arrays, 642–643
intersections, 662–664
iterators, 655–658
lists, 664–669
mapping data, 643–644
Pair template class, 658
pointers, 644–649
queues, 670–672
references, 644–648
sets, 658–664
stacks, 670–672

Standard Library, 760
storing instances, 644–649
streams and, 692–693
unions, 662–664
vectors, 639–642

continue statements, 133,
135–137

control characters, 88, 784
conversion UDLs, 792
Convert example, 858–860
converting data

built-in conversions, 522
casting data vs., 521–522

cooked literals, 784–785
CoolHolder example, 605–607
CopiedFiles example,

173–174
copy command, 734
copy constructors, 555–557
CopyContainer example,

673–674
CopyVariable example, 75
coroutines, 760
cout (console output) object, 58,

72–73, 300
.cpp files, 20, 638
CppDroid IDE, 27–32, 35–43

advantages of, 29
alternatives to, 29, 32–35
Code::Blocks vs., 39–40
downloading and installing,

31–32
examples and tutorials, 37,

42–43
features of, 30–31
free vs. paid versions, 28,

30–31
help resources, 40–42
projects, 37–39

accessing samples, 37–38
closing, 39
creating, 39
creating source code, 38–39
deleting, 39

Index 875

opening existing, 39
saving, 39

user interface, 35–36
CrackingDiamonds example,

584–585
CrackingDiamonds2

example, 587
CreateMacro example, 405–406
CreateString example, 93
curly braces ({ }), 53, 55, 92–93
cursor, 53–54
custom type UDLs, 793
CustomManipulator example,

745–747
CustomUDL01 example, 792
CustomUDL02 example, 793
CxxDroid IDE, 29

D
data packs, 422
debug versions, 286–287
debugging, 443–456

Code::Blocks debugger,
444–455

application stack, 471
basic functionality, 450–453
debug and symbol

information, 445
initial run, 446–448
line-by-line code review,

449–450
parts of, 453–455

command-line arguments, 456
debuggers, defined, 444
Dev-C++ debugger, 446, 456
gdb debugger, 446, 456
selecting at Code::Blocks

install, 13
stacks, 469–478

application stack, 470
defined, 470
popping data off of, 470

pushing data onto, 470
registers, 470
stack frames, 473, 476–477
stack pointer, 470
storing local variables,

473–475
tracing through assembly

code, 475–478
viewing threads, 475

Visual C++ debugger, 455
dec flag, 702–703
declarations

defined, 382
functions vs., 383–384
removing side effects,

385–387
side effects of, 383–384

Declarative example, 387
declarative programming, 370,

373, 387–388
decltype() operator, 415, 418
deep copies, 250
default constructors, 548–550
#define directive, 283,

285–286, 294
delete operator, 209, 441,

676–677
delimiters, 94, 271
deque (double-ended queue)

class, 669–670
DereferencePointer

example, 199
DerivingTwoDiff example, 581
DerivingTwoDiff2

example, 583
deserialization, 738
design patterns, 335–366

defined, 335
Façade pattern, 353
mediator pattern, 349–366

creating example, 354–366
outline of example, 351–354
overview, 350–351

observer pattern, 341–349
automatically adding

observers, 347–349
creating observer pattern

classes, 343–345
overview, 341–343
Standard Library and,

346–347
origin of, 336
reusability and, 336
singleton pattern, 337–340

Design Patterns (Gamma, Helm,
Johnson, and Vlissides), 336

desktop configuration for
C++, 9–26

compilers, 9–11
IDEs, 9–26

alternatives to Code::Blocks,
25–26

downloading
Code::Blocks, 11

features of Code::Blocks,
17–25

installing Code::Blocks, 12–17
installing C++, 9–10

Destructor01 example,
558–559

Destructor02 example, 560
Destructor03 example, 561
destructors, 558–563

adding and removing items in,
347–349

adding default, 548–550
defined, 542
destroying instances, 558–560
as finalization functions, 260
ordering, 562
overview, 260–261
with stack variables, 262
virtually inheriting, 560–563

Dev-C++ debugger, 446, 456
Dev-C++ IDE, 26
diamond-shaped inheritance

problem, 584–588

876 C++ All-in-One For Dummies

directories, 727–736
copying files, 733–734
creating, 728–730
deleting, 730
getting contents of, 731–733
moving, 736
moving files, 736
renaming, 735–736
renaming files, 735–736

DirectoryCheck01
example, 694

DirectX, 29
DisplayEnum example, 298–299
DivideInteger example,

87–88
DLLs (dynamic link libraries),

49, 810
do...while loops, 720
DocBook Document Type

Definition (DTD), 841
DocBook eXtensible Stylesheet

Language (XSL), 841
done variable, 131–132
DoorClass example, 256–258
dot (.) operator, 92, 250, 555
double keyword, 516
double quotes (" "), 59, 67, 90,

93, 181–182
double slash (//), 270–271
double-ended queue (deque)

class, 669–670
do-while loops, 132–133

defined, 116–117
when to use, 117

DoWhileLoop example, 132–133
DTD (DocBook Document Type

Definition), 841
Duration example, 790
dynamic allocation, using raw

pointers for, 188
dynamic arrays, 675–677

creating, 675–676
deleting, 676–677

dynamic casts, 524–527

dynamic link libraries (DLLs),
49, 810

dynamic memory
management, 205

DynamicArray example,
675–676

DynamicCast example, 524–525

E
-E switch, 283
Eclipse IDE, 26
#elif directive, 290
ellipsis (...)

general exception catcher, 567
variadic operator, 422

#else directive, 287
Emacs IDE, 26
emplace() function, 677, 679
encapsulation, 316–322

APIs, 316
process for, 318–319
properties

implementing, 319–322
overview of, 316–317
private vs. protected, 318

end() function, 388, 655–656
end of file (EOF) condition,

715–720
EOF check approach, 718–720
record count approach,

715–718
#endif directive, 290
endl manipulator, 738, 743–744
enumerations (enums)

naming types, 232
overview, 229
wrapping enum types, 298–299

EOF. See end of file condition
eof() function, 720
equal equal (==), 92

equal to operator, 108–109
EqualityCheck example,

99–100

equals sign (=), 75, 417–418
EquateStruct example,

531–532
erase() function, 164–165, 677
escape-sequences, 67
escaping characters, 688
event-driven programming, 312
exception element, 400
Exception01 example, 563–564
Exception02 example, 569
Exception03 example, 570
exceptions, 322, 563–569

catching any exception,
567–568

defined, 563
dynamic casts, 527
multiple catch blocks,

565–566
rethrowing exceptions,

568–569
specifying that lambda

expressions throw, 413–414
standard category

exceptions, 569
throwing direct instances,

566–567
try...catch blocks, 563–565

executable files
creating, 52
defined, 67

executing (running), 52–53,
67–68

shortcuts for, 68
stopping execution, 53

execution policy, 757
extraction (>>) operator, 102,

223, 277, 284, 712–714,
738, 741

F
fabs() function, 143–147
Fabs2 example, 145
Fabs3 example, 146–147
Façade pattern, 353

Index 877

factorial() function, 379–380
fail() method, 694
__FILE__ macro, 288
FileLineCount example,

381–382
FileOutput01 example, 689
FileOutput02 example, 696
FileRead01 example, 690–691,

712–713
FileRead02 example, 715–717
FileRead03 example, 718–719
FileReadWrite01 example, 691
filesystem library, 729
<filesystem> header, 761
FileWrite01 example, 698
FileWrite02 example, 700–701
find() function, 678, 749,

774–776
_findclose() function, 731
_findfirst() function, 731
_findnext() function, 731
FindString example, 774
FirstFunction example, 142
fixed flag, 702–703
floating-point numbers, 70
fabs() function, 143–147
size and range, 516
type conversion, 276–277

flush() function, 692
for loops

automatic type determination,
129–130

changing conditions, 119–122
conditions in, 118–122
counting backward, 122–123
declaring counter variable

within, 120
defined, 116–117
finalizers, 118
initializers, 118
multiple initialization variables,

123–126

placing conditions within
declarations, 128–129

ranges, 126–128
simple, 118–119
when to use, 117

for_each() loops, 408
ForCountdown example,

122–123
ForLoop example, 119
ForLoop2 example, 121
ForLoop3 example, 134
ForLoop4 example, 135–136
ForLoop5 example, 136–137
ForLoop6 example, 137–138
ForLoopComplex example, 125
ForLoopCondition

example, 128
ForLoopCondition2

example, 129
ForLoopMultiVariable

example, 123–126
ForLoopRange example, 127
forward references (function

prototypes), 159–161,
177–178, 237

forward slash (/), 92
division symbol, 60, 86
in pathnames, 688, 729
switch prefix, 166

frankenfunctions, 399
free software vs. paid

software, 28
FreePointer example, 209–210
friend classes and functions,

588–591
friend keyword, 588
front() function, 670
fstream class, 687, 691
func parameter, 508–509, 744
function literals, 398
function prototypes (forward

references), 159–161,
177–178, 237

function templates, 630–636
defined, 630
overloading and, 632–635
templatizing methods,

635–636
functional constructors,

550–553
functional programming, 312,

369–395
auto keyword, 388–390
declarations and functions,

382–388
first-class and higher-order

functions, 373
immutable data, 370–371,

375–380
constant expressions,

378–380
immutability in classes and

structures, 377–378
immutable variables,

375–377
lambda calculus, 373
lambda expressions, 394–425

advantages of, 398–399
assignable stateless, 420–421
automatic type

determination, 401–404
capture clause, 408–411
captures with = and this,

417–418
container adapters, 419
decltype() operator,

415, 418
defined, 394
elements of, 399–401
full version, 399
immediate functions,

416–417
origin of, 398
pack expansions, 422–425
patterns for creating, 401
performing transforms using,

394–395

878 C++ All-in-One For Dummies

function templates (continued)
sorting data, 411–413
specifying to throw

exceptions, 413–414
unevaluated contexts,

418–419
using as macros, 405–406
using auto keyword with,

404–405
using with classes and

structures, 407–408
variadic templates, 416,

422–425
limitations of C++, 374–375
multiprocessing, 371, 375–376
other paradigms vs., 370–373
passing functions to functions,

390–394
pure functions, 371, 374
recursion, 374–375, 379
referential transparency, 374
state, 370–371, 381–382

FunctionFunction example,
391–392

FunctionOverloadingAnd
Templates example, 632

FunctionPointer01
example, 505

FunctionPointer02
example, 508

FunctionPointer03 example,
509–510

functions, 139–168
anonymous functions, 398
automatic type

determination, 146
calling, 144–145
declarations vs., 383–384
defined, 139, 141
defining custom functions,

148–153
division of work, 139–145
forward references, 159–161
frankenfunctions, 399
friend functions, 588–591
inner workings of, 150–151

local variables, 157–159
as machines, 141–142
main() function, 165–168
naming, 150, 152
nested calls, 471–472
operator, 653–654
overriding, 577–580
parameters, 148, 151–156
passing arrays to, 306–307
passing functions to functions,

390–394
passing multiple variables,

147–148
passing objects to, 249–251
passing pointer variables to,

218–221
passing to by reference, 221
passing to by value, 221
passing values of variables to,

146–147
passing values to, 144–145
pointing to, 505–506
public and private, 242–244
return values, 150–152
returning nothing, 156–157
returning pointer variables

from, 221–223
returning references from,

511–513
spelling checks with, 143–144
string functions, 163–165
top-down design, 140–141
two versions of same, 161–162

G
Gamma, Erich, 336
Gang of Four, 336
garbage collection, 206
GCC. See GNU Compiler

Collection
gdb debugger, 446, 456
getch() function and _getch()

function, 280–281, 296–297
getcwd() method, 699

GetDirectoryContents
example, 731–732

getline() function, 724, 726
getters, 316–317

defined, 316
property vs. method

approach, 319
reasons for using, 317

getvolume() function, 803
GetWorkingDirectory

example, 700–703
getx() method, 610, 621–622
GIMP (GNU Image Manipulation

Program) Tool Kit Plus
(GTK+) Project, 48

global variables, 183–185
GlobalVariable example, 184
GNU Compiler Collection (GCC)

version 8.3 compiler, 9–11
configuring to use C++ 17

standard, 126–127
downloading, 11
platform support, 10
selecting and setting as

default, 24–25
verifying installation, 14

GNU Image Manipulation
Program (GIMP) Tool Kit
Plus (GTK+) Project, 48

GoogleCodeExporter, 820
greater than (>) operator,

108–109
greater than or equal to (>=)

operator, 108
Guideline Support Library

(GSL), 523

H
hash map, 770
hashes, 768–771
HashingStrings example, 769
HashMap example, 770
header files, 240

adding header once, 182
class names and, 230

Index 879

defined, 179, 241
properties of, 232
streams and, 686–687
using angle brackets, 182–183
using quotes, 182–183

header wrappers, 185–186
heaps, 192–194

arrays
allocating on, 494
deleting from, 494–495

defined, 192
dynamic arrays, 675
dynamic memory

management, 205
Helm, Richard, 336
hex flag, 702–703
hexadecimal (hex) numbers

converting between decimal
numbers and, 195–196

overview, 190
hierarchies of classes, 264–267

creating, 265–266
types of inheritance, 266–267

hierarchies of objects, 322–334
abstract classes, 333–334
establishing, 322–324
overriding methods, 330–332
polymorphism, 332–333
protecting members when

inheriting, 324–330

I
i++ (post-increment)

operator, 126
Ideone IDE, 35
IDEs. See Code::Blocks IDE;

CppDroid IDE; Integrated
Development Environments

if statements, 111–115
defined, 105
with else keyword, 112–115
example of, 111–112

#ifdef directive, 287, 290
IfElse example, 112–113

IfElse2 example, 113–114
IfElse3 example, 114–115
ifstream class, 687, 718,

720–721
ImFree example, 609–610
immutable data, 370–371,

375–380
constant expressions, 378–380
immutability in classes and

structures, 377–378
immutable variables, 375–377

Immutable example, 376
Immutable2 example,

377–378
imperative programming,

371–372
ImplementProperties

example, 319–321
#include directive, 294–295
indentation, 30, 60–61
indexes, 95, 302–303, 441, 482
IndividualCharacter

example, 94
IndividualCharacter2

example, 94
inheritance, 571–591

access adjustment, 574–575
avoiding polymorphism,

573–574
avoiding variable naming

conflicts, 575–576
class-based access adjustment,

575–576
defined, 265
friend classes and functions,

588–591
multiple inheritance, 581–584
overriding functions, 577–580
polymorphism, 572
protection during, 324–330
types of, 266–267
virtual inheritance, 584–588

InheritedMembers example,
325–328

Initializer example, 208
initializers

adding to classes, 544
creating raw pointers, 206–208
for loops, 118
setting up properties, 544

inner class definitions, 594–596
insert() function, 163, 165,

665, 677–679
insertion (<<) operator, 59–60,

102, 223, 300, 661, 672,
698–699, 726, 738–741

insertion point, 89
integer overflow, 64–65
integer variables, 78–88

adding, 78–82
creating, 70–73
defined, 70
dividing, 86–88
multiplying, 84, 86
size and range, 516
subtracting, 82–84
type conversion, 272–278

Integrated Development
Environments (IDEs). See
also Code::Blocks IDE;
CppDroid IDE

AIDE, 33–34
alternative, 25–26
C++ Shell, 35
C4Droid, 29, 33
CodeChef, 35
CodeLite, 26
compilers vs., 10
CxxDroid, 29
Dev-C++, 26
Eclipse, 26
Emacs, 26
Ideone, 35
JDoodle, 34
Netbeans, 26
OnlineGBD, 35
Qt Creator, 26
RepLit, 35
Rextester.com, 35
TutorialsPoint, 35

880 C++ All-in-One For Dummies

internal flag, 702–703
International Standards

Organization (ISO), 753–754
Internet connections, 558
invoking constructors, 208
ios class and flags, 689,

695–696, 702–703
is_same() function, 410
ISO (International Standards

Organization), 753–754
istream class, 691, 718,

720, 741
IteratorPointer example, 657
iterators

categories and, 761–762
containers and, 655–658
defined, 382
random access iterator,

771–774
Standard Library, 761–762

Iterators example, 656

J
JDoodle IDE, 34
Johnson, Ralph, 336

L
lambda abstractions, 398
lambda calculus, 373, 398
Lambda example, 394–395
lambda expressions, 255–256,

394–425
advantages of, 398–399
assignable stateless, 420–421
capture clause, 408–411
captures with = and this,

417–418
container adapters, 419
decltype() operator,

415, 418
defined, 255, 394
elements of, 399–401

full version, 399
immediate functions, 416–417
origin of, 398
pack expansions, 422–425
patterns for creating, 401
performing transforms

using, 394
sorting data, 411–413
specifying to throw exceptions,

413–414
unevaluated contexts, 418–419
using as macros, 405–406
using auto keyword with,

404–405
using this pointers in,

255–256
using with classes and

structures, 407–408
variadic templates, 416,

422–425
LambdaForClass example,

407–408
left flag, 702–703
length() function, 202–203
less than (<)

less than operator, 108–109
operator function, 653–

654, 668
less than or equal to (<=)

operator, 108
libraries

Boost, 817–868
defined, 818
Standard Library, 3, 374–375,

386–387, 637–680, 753–778
static libraries, 809, 813–814
template libraries, 809–815

line markers, 283
Linux, installing Code::Blocks IDE

flavor support, 14–15
graphical installation, 15–17
lack of Boost support, 15
standard installation, 14–15

LISP, 398

list class, 664–668
adding items to, 665
defined, 664
vector class vs., 669

Lists example, 665–667
literals. See User-Defined

Literals
localization, Standard

Library, 763
Logs & Others window, in

Code::Blocks IDE, 23–24
long keyword, 516
loops, 115–138
for_each() loops, 408
BOOST_FOREACH macro,

862–864
BOOST_REVERSE_FOREACH

macro, 863
breaking, 133–135
continuing, 133, 135–136
declaring and accessing arrays,

302–303
defined, 105–106
do-while loops, 132–133, 720

defined, 116–117
when to use, 117

for loops
automatic type

determination, 129–130
changing conditions, 119–122
counting backward, 122–123
declaring counter variable

within, 120
defined, 116–117
multiple initialization

variables, 123–126
placing conditions within

declarations, 128–129
ranges, 126–128
simple, 118–119
when to use, 117

nesting, 136–138
while loops, 130–132,

655, 724

Index 881

conditions in, 130–131
defined, 116–117
done variable, 131–132
when to use, 117

lvalue term, 517–519
LValueAndRValue example,

518–519

M
M_PI constant, 294–295
Mac OS/X

Command Line Tools for
Xcode, 14

Gatekeeper error, 14
installing Code::Blocks IDE,

13–14
macros

creating with #define
directive, 283, 285–286

predefined, 288
using lambda expressions as,

405–406
main() function, 165–168

command-line arguments,
166–167

defined, 55
Management window, in

Code::Blocks IDE, 22–23
Files tab, 23
FSymbols tab, 23
Projects tab, 23
Resources tab, 23
Symbols tab, 23

manipulators, 738
defined, 742–744
writing, 744–749

map class, 579–580
associating objects with,

643–644
key and value, 658
storing in, 645–648

Maps example, 643–644
Maps2 example, 645–646

math, 60–66, 77
adding and subtracting

pointers, 308
common symbols, 60
integer overflow, 64–65
integers

adding, 78–82
dividing, 86–88
multiplying, 84, 86
remainder (modulus), 78
subtracting, 82–84

lambda calculus, 373, 398
mathematical constants,

294–295
orders of operation, 63–64
parentheses, 65–66

MathTemplate example,
799–800

MATLAB, 370
mediator pattern, 349–366

creating example, 354–366
outline of example, 351–354
overview, 350–351

MemberFunctionTemplate
example, 635–636

memory leaks, pointers
and, 190

menus, anticipating and
avoiding bugs, 432–435

methods
accessing properties, 317
defined, 241, 309–310
naming, 238–239
overloading, 256–259
overriding, 330–332
pointing variables to, 506–509
separating code for, 237–240
templatizing, 635–636

minus minus (--)
decrement operator, 84, 92
prefix/postfix operators, 85
switch prefix, 166

mkdir() function, 728–730

mobile configuration for C++,
27–43

AIDE, 33–34
C4Droid, 33
CppDroid, 27–32, 35–43

advantages of, 29
downloading and installing,

31–32
examples and tutorials, 37,

42–43
features of, 30–31
free vs. paid versions, 28,

30–31
help resources, 40–42
projects, 37–39
user interface, 35–36

web-based IDEs, 34–35
modulus (remainder), 78, 86
monadic operations, 191
move() function, 214
Move() template function, 668
multidimensional arrays,

488–492
bounds, 491
data types, 489
declaring, 488–489
initializing, 490
passing, 490–492

multiple inheritance,
581–584

access adjustment, 582
employing, 581–582
issues with, 582–584
polymorphism with, 588

MultipleParameters example,
616–618

MultipleSourceFiles
example, 178

MultipleSourceFiles2
example, 180

multiprocessing, 371,
375–376

MultiTask example,
408–409

882 C++ All-in-One For Dummies

N
\n (newline) character, 89–91
Named Return Value

Optimization (NRVO), 192
Namespace example, 538
namespaces, 534–539

creating, 534–535
creating in many places, 537
defined, 179
putting variables in, 537
using namespace line,

535–537
using part of, 538–539

nargs() function, 422
narrowing casts, 523
nested loops, 136–138
break and continue

statements inside, 137
defined, 136

NestedCalls example, 471–472
nesting classes, 591–596

inner class definitions,
594–596

issues with, 592–594
Netbeans IDE, 26
new operator, 188, 206–211,

245, 441, 494, 676
newline (\n) character, 89–91
noexcept() function, 414
NonTypeParm example, 619–621
NoSideEffects example,

385–386
not equal to (!=) operator,

107–108
(nothrow), 676
NRVO (Named Return Value

Optimization), 192
null (\0) character, 89
NULL, setting pointers to, 211
null pointers, 190, 615
nullable references

optional pointers for, 191
raw pointers for, 189

nullopt object, 216–217
numeric conversion, 858–861

O
object aliases, 267–268

creating, 266–267
defined, 266

ObjectAlias example, 266–267
object-oriented programming

(OOP), 227–268, 312, 316
arrays, 302–308
cin object, 277–281
classes, 227–268

accessing members, 241–244
class definitions, 230, 234,

238, 241
const parameters, 251–252
constructors, 259–264
defined, 230, 240
destructors, 260–262
header files, 230, 232,

240–241
hierarchies of, 264–268
implementing, 232–237
instances, 230, 234–237
methods, 232, 235–241,

256–259
modeling, 232
names and filenames, 230
object aliases, 267–268
objects, 227–229, 240,

249–251
parts of, 240–241
properties, 231, 235, 241
raw pointers and, 244–248
singleton, 230
smart pointers and, 248–249
source files, 230, 240–241
this pointer, 252–256

comments, 270–272
constants, 292–295
defined, 372

design patterns, 335–366
mediator pattern, 349–366
observer pattern, 341–349
origin of, 336
singleton pattern, 337–340

functional programming
vs., 371

objects, 309–334
collection objects, 311–313
defined, 309–310
encapsulation, 316–322
hierarchies of, 322–334
mailbox system example,

310–315
naming, 311

passing functions to
functions, 371

preprocessor directives,
282–291

random numbers, 300–302
switch statements, 295–298
type conversion, 272–277

objects, 309–334
collection objects, 311–313
defined, 141, 240, 309–310
encapsulation, 316–322

APIs, 316
defined, 316
process for, 318–319
properties, 316–322

hierarchies of, 322–334
abstract classes, 333–334
establishing, 322–324
overriding methods, 330–332
polymorphism, 332–333
protecting members when

inheriting, 324–330
mailbox system example,

310–315
classes and instances, 314
Mailbox objects, 314–315
Mailboxes collection object,

311–313

Index 883

necessity of other
objects, 315

methods, defined, 309–310
naming, 311
passing to functions, 249–251
properties, defined, 309–310
using pointers with, 247

observer pattern, 341–349
automatically adding

observers, 347–349
creating observer pattern

classes, 343–345
overview, 341–343
Standard C++ Library and,

346–347
oct flag, 702–703
ofstream class, 687
omanip class, 743–744
online resources

absolute values, 143
Acronym Finder, 48
AMD 128 bit processor, 859
area and volume

equations, 800
ASCII table, 88
author’s blog, 5–6, 12–14,

456, 822
author’s email, 5
author’s website, 5
automata programming, 312
bcp utility, 844
Bitcoin, 820
Boolean variables, 100
Boost, 818–823, 828, 836–837,

849–851, 858, 861
BoostBook format, 840–841
C++ compiler support, 9
C++ creator’s web page, 80
Cheat Sheet (companion to

book), 5
Code::Blocks IDE, 28

checking compiler in, 13
Linux, 15
Mac OS/X, 13

resetting configuration, 13
Windows, 11

companion files for book, 5
complex numbers, 788
concepts, 759
concurrency, 767
converter template, 861
coroutines, 760
CppDroid IDE

AndroidForums, 42
Reddit, 41
SourceForge, 41
StackOverflow, 42

debugging
with command-line

arguments, 456
techniques for, 443

design patterns, 336
DTD, 841
event-driven

programming, 312
exception catching by

value, 565
exception categories, 565
extending structured bindings

to be more like variable
declarations, 418

filesystem library, 729
<filesystem> header, 761
for_each algorithm, 862
function pointers, 744
GoogleCodeExporter, 820
GTK+ Project, 48
Guideline Support Library, 523
hexadecimal conversion, 195
IDEs

AIDE, 33
C++ Shell, 35
Code::Blocks, 11
CodeChef, 35
CodeLite, 26
CppDroid vs. C4Droid, 33
Dev-C++, 26

Eclipse, 26
Emacs, 26
Ideone, 35
JDoodle, 34
Netbeans, 26
OnlineGBD, 35
Qt Creator, 26
RepLit, 35
Rextester.com, 35
TutorialsPoint, 35

Inspect utility, 840
Kipling, 857
lambda calculus, 373
lambda expressions, 256
libraries, 818
Mac Gatekeeper error, 14
machine learning and deep

learning, 369
mathematical constants, 294
monadic operations, 191
Named Return Value

Optimization, 192
null pointers, 615
numeric conversion, 861
numeric header, 387
numerics library, 295
object lifetimes and

pointers, 256
obvious ideas, 799
OpenGL, 29
optional object, 216
pattern language, 336
predefined macros, 288
programming paradigms, 372
property approach, 319
Qt, 29
QuickBook add-on, 841
ranges, 679
range-v3 library, 764
reactive programming, 312
RegEx library, 851
registers, 470
Return Value Optimization, 192

884 C++ All-in-One For Dummies

online resources (continued)
ROOT, 30
shallow vs. deep copying, 250
Simple DirectMedia Layer, 29
spaces in paths, 12
Standard Library, 752–753, 785
Standard Library

Extensions, 755
std::array class, 482
templates, 796
TIOBE Index, 45
tokenizer, 858
Tronic, 820
Unified Modeling

Language, 324
unique_ptr pointer, 216
Unity, 29
Unreal, 29
updates to book, 5
User-Defined Literals, 780, 785
Visual Studio Code, 28
volatile keyword, 528
Waka Waka Bang Splat

poem, 93
Wandbox, 415, 679, 729
Wave utility, 845
Windows Calculator, 195
Wine, 29
wxSmith tutorial, 23
XSL, 841

OnlineGBD IDE, 35
OOP. See object-oriented

programming
OpenGL, 29
operands, 79
OperatingOnStrings example,

164–165
operator functions, 653
operator overloading, 300
operators, 79
Optional example, 216–217
optional object, 216–217
or (||) operator, 110–111

orders of operation, 63–64
ostream class, 691, 694
output streams, 697–710

creating fields, 707–710
flags, 700–703
insertion operator, 698–699
setting width, 700, 707–710
specifying precisions, 700,

704–707
OutputVector example,

692–693
OvenClass example, 242–243
OverloadedFunctionTemplate

example, 633–634
overloading

constructors, 542–543,
546–547

functions, 632–635
methods, 256–259
operators, 300

overriding methods, 330–332
OverridingDerived example,

578–579

P
parameters (arguments), 148,

151–152
adding to constructors,

263–264
defined, 151
functions with multiple,

153–156
functions with none, 153–154

params element, 400
parentheses (()), 65–66,

92, 202
Pattern Language, A

(Alexander), 336
pause command, 734
PenClass example, 232–234
PenClass2 example, 239–

240, 246
PenClass3 example, 246
PenClass4 example, 252

percent sign (%) modulus
operator, 86

persistent classes, 738
plus equal (+=) notation, 81, 96
plus plus (++)

increment operator, 81, 92
prefix/postfix operators, 85

pointer variables
accessing values through,

199–200
changing variables using,

198–199
declaring, 198
declaring two of same type,

204–205
defined, 197
passing to functions, 218–221
pointing to parts of

strings, 202
pointing to something else and

back again, 203–204
pointing to strings, 200–203
returning from functions,

221–223
type of, 198

Pointer01 example, 499
Pointer02 example, 500
Pointer03 example, 502
Pointer04 example, 503–504
PointerArithmetic

example, 308
pointers, 187–223, 498–510

adding and subtracting,
307–308

arrays of, 304–305, 495–498
changes to in C++ 20, 188–192
dereferencing, 189, 199, 206
external declarations, 485–487
finding variable addresses,

196–198
heaping variables, 192–194
null, 190, 615
passing to arrays, 484–485
pointer variables

Index 885

accessing values through,
199–200

changing variables using,
198–199

declaring, 198
declaring two of the same

type, 204–205
defined, 197
passing to functions, 218–221
pointing to parts of

strings, 202
pointing to something else

and back again, 203–204
pointing to strings, 200–203
returning from functions,

221–223
type of, 198

pointing to functions, 505–506
pointing to pointers, 500–501
pointing to static methods,

509–510
pointing variables to methods,

506–509
problems with, 190–191
raw

creating using initializers,
206–208

creating using new keyword,
206–208

defined, 188
freeing (deleting), 209–211
problems with, 189–191
uses for, 188–189

smart, 191, 211–217
creating, 212–216
defining nullable values

using, 216–217
stacking variables,

192–194, 196
string arrays, 503–504
type differentiation, 487–488
typedefs

avoiding, 501–502
using, 499–500
using multiple, 502–503

polling, 342
polymorphism, 332–333, 572

avoiding, 573–574
multiple inheritance, 588

pop_front() function, 670
post-increment (i++)

operator, 126
pound (#), 92, 96
pow() function, 147–148
Pow1 example, 148
powers of ten, 147–148
precision, 700, 704–707
precision() function, 704–707
PrecisionFunction

example, 705
prefixes

prefix operator, 85
User-Defined Literals, 781–784

PrefixesAndSuffixes
example, 782–783

pre-increment (++i)
operator, 126

preprocessor directives, 186,
282–291

basic, 288–291
conditional compilation,

286–287
#define directive, 283,

285–286
inner workings of, 283–284
overview, 282–283

Preprocessor example, 284
Preprocessor2 example,

288–289
PriceController example,

613–614
PrintName() function, 157–160
PrintName example, 157–158
PrintName2 example, 158–159
PrintName3 example, 160
PriorityQueue example,

418–419
private constructors, 337, 339
private derived classes,

324–325, 329–330

private destructors, 339
private keyword, 242
private members, 316, 318,

590–591
procedural programming,

312, 372
programming paradigms, 369,

372–373. See also names of
specific paradigms

projects, defined, 169
properties

defined, 241, 309–310
implementing, 319–322
private vs. protected, 318
read-only, read/write, and

write-only properties, 317,
319–321

protected constructors, 337
protected derived classes,

324–325, 329, 574, 576–577
protected members, 266–267,

316, 318, 590–591
ProtectingEmbedded example,

595–596
protocols, defined, 714
pseudorandom numbers, 300
public derived classes, 324–325,

328, 574–577, 582
public keyword, 233, 242
public members, 316
pure functions, 371, 374

creating, 375
defined, 374

pure specifier (= 0), 333–334

Q
Qt, 29
Qt Creator IDE, 26
question mark (?), 99
queues, 670–672

defined, 670
operations with, 671
specialized, 804–806

quotient, 86

886 C++ All-in-One For Dummies

R
\r (carriage return) character,

90–91, 281
rand() function, 223, 301–302
random access iterator, 771–774
random number generators,

776–777
random numbers, 223, 300–302
RandomAccess example,

771–772
RandomNumber example, 301
RandomNumberGenerator

example, 776
ranges, 679–680

defined, 679
range adapters, 680
Standard Library, 764–765

Ranges example, 679–680
ranges::size() method,

679–680
raw literals, 784–785
raw pointers

classes and, 244–248
creating using initializers,

206–208
creating using new keyword,

206–208
defined, 188
freeing (deleting), 209–211
problems with, 189–191
uses for, 188–189

RawAndCooked example, 784
reactive programming, 312
ReadConsoleData example,

278–280
ReadPointer example, 200
ReadString example, 102–103
recursion, 374–375, 379,

423–424
Reddit, 41
Reference01 example, 511
Reference02 example, 512

references, 510–513
defined, 512
forward references, 159–

161, 237
nullable references

optional pointers for, 191
raw pointers for, 189

reference variables, 510–511
relative references, 246
returning from functions,

511–513
referential transparency, 374
RegEx example, 855–856
regular expressions

parsing strings with, 850
adding RegEx library,

851–855
creating code, 855–857
pattern matching, 850–851

Standard Library, 766
reinterpret_cast, 523
relative paths, 846, 853
relative references, 246
remainder (modulus), 78, 86
rename() function, 736
RenameFile example, 735–736
replace() function, 164–165
RepLit IDE, 35
requires element, 401
reset() function, 215–216,

248–249
ret element, 400
Return Value Optimization

(RVO), 192
return values

defined, 150–151
type of, 152

ReturnDeduction example,
401–402

ReturnPointer example,
221–222

reverse_copy() function,
642–643, 655

reverse-assembly, 783
Rextester.com IDE, 35
right flag, 702–703
rmdir() function, 730
ROOT, 30
runtime libraries, 208
runtime polymorphism, using

raw pointers for, 189
rvalue term, 517–519
RVO (Return Value

Optimization), 192

S
SayHello project, 55–60
scalars, 497
scientific flag, 702–703
SDL (Simple DirectMedia

Layer), 29
seekg() function, 692
semicolon (;), 59, 153, 234
serialization, 738
set class, 658–661
set_intersection() function,

663–664
set_union() function, 664
setf() method, 700–701,

707, 709
sets, 658–661

intersecting, 662–664
looking up items, 659–661
maps vs., 661
unionizing, 662–664
unordered, 677–679

creating, 677
manipulating, 677–679

Sets example, 658–661
Sets2 example, 662–663
setters, 316–317

defined, 316
property vs. method

approach, 319
reasons for using, 317

Index 887

SetUserName example, 156–157
SetUserName() function,

156–157
setw() method, 708, 710
setx() method, 621–622
SGI (Silicon Graphics, Inc.), 753
shallow copies, 250
shared_ptr pointer, 212,

214–215
SharedPtr example, 214–215
shift-left (SHL) instructions, 478
short keyword, 516
showbase flag, 702–703
showpoint flag, 702–703
showpos flag, 702–703
signed keyword, 516
Silicon Graphics, Inc. (SGI), 753
Simple DirectMedia Layer

(SDL), 29
SimpleCast example, 520
SimpleNamespace example,

534–535
SimpleVariable example,

71–73
single quotes (' '), 88, 90
Singleton example, 338
singleton pattern, 337–340

creating singleton pattern
classes, 338–340

existing patterns, 337–338
sizeof() function, 304
sizeof operator, 484
skipws flag, 702
slicing problem, 566
smart pointers, 191, 211–217

classes and, 248–249
creating, 212–216
defining nullable values using,

216–217
SmartPtr example, 248
sort() function, 413, 668
SortList example, 411–412
source code files, 19–20,

169–186

.cbp and .cpp files, 20
creating multiple, 170–179

adding new files, 170–173
creating projects with

multiple existing files,
173–177

interaction of multiple files,
177–179

removing existing files, 173
downloading, 19
header wrappers, 185–186
opening projects, 19–20
sharing variables among,

183–185
sharing with header files,

179–183
source files, 240

defined, 241
method code, 230

SourceForge, 11, 13, 41
spaceship (<=>) operator,

109–110, 216
specifiers element, 400
SQL (Structured Query

Language), 370
square brackets ([]), 92, 388
SquirrelClass example,

263–264
srand() function, 301
StackAndQueue example,

671–672
StackOverflow, 42
stacks, 192–194, 196, 469–478,

670–672
application stack, 470
defined, 192–193, 470, 670
operations with, 671
overflowing, 306
popping data off of, 196, 470
pushing data onto, 194, 470
registers, 470
stack frames, 193–194, 473,

476–477
stack pointer, 470

storing local variables,
473–475

tracing through assembly
code, 475–478

viewing threads, 475
Standard Library, 3, 374–375,

386–387, 637–680, 753–778
architecture of, 638
Boost vs., 818–819
categories, 755–768

algorithms, 755–757
atomic operations, 757–759
C compatibility headers, 759
concepts, 759–760
containers, 760
coroutines, 760
<filesystem> header, 761
input/output, 761
iterators, 761–762
localization, 763
numerics, 763–764
ranges, 764–765
regular expressions, 766
strings, 766
thread support, 767
utilities, 767–768

container classes, 638–674
comparing instances,

649–654
copies, 648–649
copying, 673–674
defined, 638
double-ended queues,

669–670
fixed-size arrays, 642–643
intersections, 662–664
iterators, 655–658
lists, 664–668
mapping data, 643–644
Pair template class, 658
pointers, 644–648
queues, 670–672
references, 644–648

888 C++ All-in-One For Dummies

Standard Library (continued)
stacks, 670–672
storing in sets, 658–661
storing instances, 644–648
unions, 662–664
vectors, 639–642

documentation, 754
dynamic arrays, 675–677
features backported from

Boost, 818–819
find() algorithms, 774–776
hashes, 768–771
origin of, 753
random access iterator,

771–774
random number generators,

776–777
ranges, 679–680
Standard Template Library

vs., 637
temporary buffers, 777–778
unordered sets, 677–679

creating, 677
manipulating, 677–679

User-Defined Literals, 785–791
std::basic_string class,

785–787
std::chrono::duration

class, 789–791
std::complex class,

788–789
Standard Library

Extensions, 755
Standard Template Library (STL),

637, 753
star (*). See asterisk
Start Here window, in

Code::Blocks IDE, 21–22
Create a New Project

option, 21
Open an Existing Project

option, 21
Recent Projects option, 22
Report a Bug or Request a

New Feature option, 22

Tip of the Day option, 22
Visit the Code::Blocks forums

option, 22
state, 370–371, 381–382

avoiding direct use of, 381–382
defined, 381
effects of lack of, 381

static casts (static_cast), 527
static libraries, 48, 809, 813–814
static methods, 506

defined, 509
pointing to, 509–510
singleton pattern, 337–338

static_cast (static casts), 527
StaticCast example, 528
StaticMembers example,

611–612
std namespace, 179, 539
std::array class, 482, 642–643
StdArray example, 642–643
std::basic_string class,

785–787
std::chrono::duration class,

789–791
std::complex class, 788–789
STL (Standard Template Library),

637, 753
streams, 102, 273, 683–726

closing files, 685
containers, 692–693
defined, 683
end of file (EOF) condition,

715–720
EOF check approach,

718–720
record count approach,

715–718
error handling, 693–695
header files, 686–687
input, 711–726

EOF condition, 720–721
extraction operator, 712–714
types, 721–726

ios flags, 695–696

making streamable classes,
737–749

manipulating, 742–749
need for, 684–685
opening files, 687–690
output, 697–710

creating fields, 707–710
flags, 700–703
insertion operator, 698–699
setting width, 700, 707–710
specifying precisions, 700,

704–707
paths and filenames, 690
reading from files, 690–692

extraction operator, 712–714
issues with, 720–721
strings, 721–724
structured data, 724–726

text formatting, 738–741
writing to files

insertion operator, 698–699
placing data in specific

folders, 699
randomly, 685
sequentially, 685
strings, 721–724
structured data, 724–726
without closing first, 691–692

string class, 237
string functions, 163–165

inserting strings into, 163
removing parts of strings, 164
replacing parts of strings, 164
using multiple together,

164–165
stringify() function, 807–809
StringifyInt example,

807–808
StringPointer example, 201
StringPointer2 example, 202
StringProcess example,

437–439
strings, 93–98

Index 889

accessing individual characters
within, 94–95

adding characters to, 96–97
adding strings, 97–98
breaking into tokens, 857–858
changing characters within, 95
defined, 58, 70, 93
parsing with regular

expressions, 850
adding RegEx library,

851–855
creating code, 855–857
pattern matching, 850–851

processing to reduce bugs,
437–440

Standard Library, 766
type conversion, 272–276

stringstream string, 273
Stroustrup, Bjarne, 82, 530, 754
Structured Query Language

(SQL), 370
structures, 515–539

in C vs. C++, 529–530
casting data, 520–521
const_cast, 528–529
converting data vs., 521–522
dynamically, 524–527
narrowing casts, 523
statically, 527

character types, 516
classes vs., 530
as component data types, 531
equating, 531–532
immutability in, 377–378
lambda expressions and,

407–408
left/right side of assignment

statement, 518–520
returning compound data

types, 532–534
testing maximum type values,

517–518
StructureTemplate example,

801–802

StructureTemplate2 example,
803–804

subtraction symbol (-), 60
SubtractVariable example,

82–84
suffixes
std::chrono::duration

class, 791
std::complex class, 789
User-Defined Literals, 781–784

sum() function, 603, 607–608
swap() function, 214, 216
switch statements, 295–299
switches, defined, 166–167
SwitchStatement example,

296–297
system() function, 734

T
tab (\t) character, 90
tab spaces, 66
template keyword, 607–608
TemplateFromClass example,

626–627
TemplateFromTemplate

example, 628–629
templates, 601–636, 795–815

class templates, 798, 804–807
creating templates, 605–607
defined, 601
deriving templates, 623–630

deriving classes from
templates, 623–625

deriving templates from
classes, 626–627

deriving templates from
templates, 627–630

elements of, 797–799
function templates, 630–636,

798–801
overloading and, 632–635
templatizing methods,

635–636

including static members in
templates, 611–612

math templates, 799–801
need for, 602–605
parametering templates,

612–622
including multiple

parameters, 616–619
non-type parameters,

619–622
putting different types in

parameter, 613–615
separating templates from

function code, 609–611
specialized, 807–809
structure templates, 798,

801–804
template instantiation, 623
template keyword, 607–608
template libraries, 809–815

coding, 813–814
configuring, 812–813
defining, 810–812
using, 815

typedefs for templates,
622–623

types, 602
when to create, 796–797

temporary buffers, 777–778
TemporaryBuffer example,

777–778
Terminal window, 167
terminate() function, 565
textual input, 435–436
this operator, 417–418
this pointer, 252–256

changes to in C++ 20, 255–256
defined, 253
defining usage of, 253–255

threads
defined, 475
Standard Library support

for, 767
viewing, 475

890 C++ All-in-One For Dummies

throw() function, 413–414
throw statements, 566–568
ticks, defined, 790
tilde (~), 92
time() function, 301
TIOBE Index, 45
tokenizers, 857–858
tokens, 94
Tokens example, 857–858
toString() method, 239
tparams element, 400
Transform example, 393
transforms, 375, 390

performing using lambda
expressions, 394–395

using on data points, 393–394
Tronic, 820
try...catch blocks, 558,

563–565
TutorialsPoint IDE, 35
TypeConvert example, 273–275
typedefs, 375, 391–392,

437, 579
avoiding, 501–502
templates, 622–623
using, 499–500
using multiple, 502–503

typeid() function, 389, 809
typename keyword, 616

U
Ubuntu Software Center, 15–17
UDLs. See User-Defined Literals
#undef directive, 294
Unified Modeling Language

(UML), 324
unique_ptr pointer, 212–214
UniquePtr example, 213
unitbuf flag, 702
Unity, 29
unordered sets, 677–679

creating, 677
manipulating, 677–679

UnorderedSet example,
677–678

Unreal, 29
unsetf() method, 700
unsigned keyword, 516
uppercase flag, 703
use_count() function, 215
UseAuto example, 404–405
UseNew example, 207
User-Defined Literals (UDLs),

779–794
cooked literals, 784–785
developing, 791–794
need for, 780–781
prefixes and suffixes,

781–784
raw literals, 784–785
in Standard Library, 785–791
std::basic_string class,

785–787
std::chrono::duration

class, 789–791
std::complex class,

788–789
UserName example, 154
Username() function, 154
using namespace line, 535–537
UsingAuto example, 145

V
values

assignment (setting), 72–73
changing, 74
defined, 71
retrieving, 73

VariableAddress example, 197
VariablePointer example, 218
VariablePointer2 example,

219–220
variables, 69–91

aspects of, 70–71
assignment (setting), 72–73
Boolean, 100–101

changing values, 74
characters, 88–91

carriage return character, 90
defined, 88
initializing, 88
newline character, 89–90
nonprintable characters, 89
null character, 89
tab character, 90
values, 88

declaring multiple, 73
defined, 69–70
floating-point numbers, 70
global, 183–185
initializing, 75–76
integers

adding, 78–82
creating, 70–73
defined, 70
dividing, 86–88
multiplying, 84, 86
subtracting, 82–84

naming, 71–72, 76–77
bad names, 77
case sensitivity, 77
length, 77
using My in names, 76

pointing to methods, 506–509
putting in namespaces, 537
setting one variable equal to

another (copying), 74–75
sharing among source files,

183–185
specifying type, 71–72

variadic templates
lambda expressions,

424–425
recursion, 423–424
sending arguments using,

422–425
VariadicTemplate

example, 422
VariadicTemplate2

example, 423

Index 891

VariadicTemplate3 example,
424–425

VarTypes example, 516–517
vector class, 437, 639–642
deque class vs., 669–670
list class vs., 669

vectors
functional programming, 386,

391–392
storing in, 639–642

Vectors example, 639
Vectors2 example, 640–641
Vectors3 example, 648–649
VehicleClass example,

265–266
views::filter() method, 680
virtual inheritance, 584–588
virtual keyword, 330–331, 584

virtual methods, 330–334
Visual C++ debugger, 455
Visual Studio Code, 28
Vlissides, John, 336
volatile keyword, 528

W
WalnutClass example,

260–261
Wandbox, 415, 679, 729
while loops, 130–132, 655, 724

conditions in, 130–131
defined, 116–117
done variable, 131–132
when to use, 117

WhileLoop example, 130–131
WhileLoop2 example, 132

width() method, 707
WidthFunction example,

708–709
Windows, installing Code::Blocks

IDE, 12–13
Windows Calculator, 195–196
Wine, 29
WriteReadString example,

721–723
WriteReadStucture example,

724–726
wxWidgets plug-in, 23

X
XML, 841
XSL (DocBook eXtensible

Stylesheet Language), 841

About the Authors
Luca Massaron is a data scientist and a marketing research director who special-
izes in multivariate statistical analysis, machine learning, and customer insight,
with over a decade of experience in solving real-world problems and generat-
ing value for stakeholders by applying reasoning, statistics, data mining, and
algorithms. From being a pioneer of web audience analysis in Italy to achieving
the rank of top ten Kaggler on kaggle.com, he has always been passionate about
everything regarding data and analysis and about demonstrating the potentiality
of data-driven knowledge discovery to both experts and non experts. Favoring
simplicity over unnecessary sophistication, he believes that a lot can be achieved
in data science by understanding and practicing the essentials of it. Luca is also a
Google Developer Expert (GDE) in machine learning.

John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 114 books and more than 600 articles to date. The topics
range from networking to artificial intelligence and from database management
to heads-down programming. Some of his current books include discussions
of data science, machine learning, and algorithms. His technical editing skills
have helped more than 70 authors refine the content of their manuscripts. John
has provided technical editing services to various magazines, performed vari-
ous kinds of consulting, and writes certification exams. Be sure to read John’s
blog at http://blog.johnmuellerbooks.com/. You can reach John on the Inter-
net at John@JohnMuellerBooks.com. John also has a website at http://www.
johnmuellerbooks.com/. Be sure to follow John on Amazon at https://www.
amazon.com/John-Mueller/.

Luca’s Dedication
I would like to dedicate this book to my family, Yukiko and Amelia, to my parents,
Renzo and Licia, and to Yukiko’s family, Yoshiki, Takayo and Makiko.

John’s Dedication
Over the years, a great many people have been kind to me and believed in my
work. Otherwise, I wouldn’t have made it to where I am now. This book is for them
in thanks for all they have done.

http://blog.johnmuellerbooks.com/
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com/
http://www.johnmuellerbooks.com/
https://www.amazon.com/John-Mueller/
https://www.amazon.com/John-Mueller/

Luca’s Acknowledgments
My greatest thanks to my family, Yukiko and Amelia, for their support and
loving patience. I also want to thank Simone Scardapane, an assistant professor at
Sapienza University (Rome) and a fellow Google Developer Expert, who provided
invaluable feedback during the writing of this book.

John’s Acknowledgments
Thanks to my wife, Rebecca. Even though she is gone now, her spirit is in every
book I write, in every word that appears on the page. She believed in me when no
one else would.

Russ Mullen deserves thanks for his technical edit of this book. He greatly added
to the accuracy and depth of the material you see here. Russ worked exception-
ally hard helping with the research for this book by locating hard-to-find URLs
and also offering a lot of suggestions. The code was also exceptionally difficult to
check in this book and I feel he did an amazing job doing it.

Matt Wagner, my agent, deserves credit for helping me get the contract in the first
place and taking care of all the details that most authors don’t really consider.
I always appreciate his assistance. It’s good to know that someone wants to help.

A number of people read all or part of this book to help me refine the approach,
test application code, verify the extensive text, and generally provide input that all
readers wish they could have. These unpaid volunteers helped in ways too numer-
ous to mention here. I especially appreciate the efforts of Eva Beattie who provided
general input, read the entire book, and selflessly devoted herself to this project.

Finally, I would like to thank Katie Mohr, Susan Christophersen, and the rest of
the editorial and production staff.

Publisher’s Acknowledgments

Associate Publisher: Katie Mohr

Project and Copy Editor: Susan Christophersen

Technical Editor: Russ Mullen

Editorial Assistant: Matthew Lowe

Production Editor: Tamilmani Varadharaj

Cover Image: © Terminator3D / Getty Images

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Book 1 Getting Started with C++
	Chapter 1 Configuring Your Desktop System
	Obtaining a Copy of C++ 20
	Obtaining Code::Blocks
	Installing Code::Blocks
	Working with Windows
	Working with Mac OS X
	Using the standard Linux installation
	Using the graphical Linux installation

	Touring the Essential Code::Blocks Features
	Starting Code::Blocks for the first time
	Opening the sample projects
	Viewing the essential windows

	Using Other IDEs

	Chapter 2 Configuring Your Mobile System
	Obtaining CppDroid
	Understanding why CppDroid is such a great choice
	Getting your copy of CppDroid
	Ensuring you get a good install

	Considering Other Alternatives
	Working with C4Droid
	Getting multiple language support with AIDE
	Using web-based IDEs

	Touring the Essential CppDroid Features
	Getting started with CppDroid
	Accessing an example
	Working with a simple online project
	Accessing your source code
	Considering differences with the desktop environment

	Obtaining CppDroid Help
	Working with the Help documentation
	Getting community support
	Using the free examples
	Accessing the tutorials

	Chapter 3 Creating Your First C++ Application
	Code::Blocks Creating a Project
	Understanding projects
	Defining your first project
	Building and executing your first application

	Typing the Code
	Starting with Main
	Showing Information
	Doing some math
	Tabbing your output

	Let Your Application Run Away

	Chapter 4 Storing Data in C++
	Putting Your Data Places: Variables
	Creating an integer variable
	Declaring multiple variables
	Changing values
	Setting one variable equal to another
	Initializing a variable
	Creating a great name for yourself

	Manipulating Integer Variables
	Adding integer variables
	Subtracting integer variables
	Multiplying integer variables
	Dividing integer variables

	Characters
	Null character
	Nonprintable and other cool characters

	Strings
	Getting a part of a string
	Changing part of a string
	Adding onto a string
	Adding two strings

	Making Decisions Using Conditional Operators
	Telling the Truth with Boolean Variables
	Reading from the Console

	Chapter 5 Directing the Application Flow
	Doing This or Doing That
	Evaluating Conditions in C++
	Finding the right C++ operators
	Combining multiple evaluations

	Including Evaluations in C++ Conditional Statements
	Deciding what if and also what else
	Going further with the else and if

	Repeating Actions with Statements That Loop
	Understanding how computers use loops
	Looping situations

	Looping for
	Performing a simple for loop
	Using multiple initialization variables
	Working with ranges
	Placing a condition within the declaration
	Letting C++ determine the type

	Looping while
	Doing while
	Breaking and continuing
	Breaking
	Continuing

	Nesting loops

	Chapter 6 Dividing Your Work with Functions
	Dividing Your Work
	Calling a Function
	Passing a variable
	Passing multiple variables

	Writing Your Own Functions
	Defining the AddOne() function
	Seeing how AddOne() is called
	Taking the AddOne() Function apart
	Considering the AddOne() parameter
	Understanding the AddOne() name and type

	Improving On the Basic Function
	Using multiple parameters or no parameters
	Returning nothing
	Keeping your variables local
	Forward references and function prototypes
	Writing two versions of the same function

	Calling All String Functions
	Inserting a string into a string
	Removing parts of a string
	Replacing parts of a string
	Using the string functions together

	Understanding main()

	Chapter 7 Splitting Up Source Code Files
	Creating Multiple Source Files
	Adding a new source code file
	Removing an existing source code file
	Creating a project with multiple existing files
	Getting multiple files to interact

	Sharing with Header Files
	Adding the header only once
	Using angle brackets or quotes

	Sharing Variables among Source Files
	Using the Mysterious Header Wrappers

	Chapter 8 Referring to Your Data Through Pointers
	Understanding the Changes in Pointers for C++ 20
	Avoiding broken code
	Considering the issues
	Writing cleaner and less bug-prone code

	Heaping and Stacking the Variables
	Getting a variable’s address
	Changing a variable by using a pointer
	Pointing at a string
	Pointing to something else
	Tips on pointer variables

	Creating New Raw Pointers
	Using new
	Using an initializer

	Freeing Raw Pointers
	Working with Smart Pointers
	Creating smart pointers using std::unique_ptr and std::shared_ptr
	Defining nullable values using std::optional and std::nullopt

	Passing Pointer Variables to Functions
	Returning Pointer Variables from Functions

	Book 2 Understanding Objects and Classes
	Chapter 1 Working with Classes
	Understanding Objects and Classes
	Classifying classes and objects
	Describing methods and data
	Implementing a class
	Separating method code
	The parts of a class

	Working with a Class
	Accessing members
	Using classes and raw pointers
	Using classes and smart pointers
	Passing objects to functions
	Using const parameters in functions
	Using the this pointer
	Overloading methods

	Starting and Ending with Constructors and Destructors
	Starting with constructors
	Ending with destructors
	Sampling constructors and destructors
	Adding parameters to constructors

	Building Hierarchies of Classes
	Creating a hierarchy in C++
	Understanding types of inheritance

	Creating and Using Object Aliases

	Chapter 2 Using Advanced C++ Features
	Filling Your Code with Comments
	Converting Types
	Understanding how int and string conversions work
	Seeing int and string conversions in action
	Considering other conversion issues

	Reading from the Console
	Understanding Preprocessor Directives
	Understanding the basics of preprocessing
	Creating constants and macros with #define
	Performing conditional compilation
	Exercising the basic preprocessor directives

	Using Constants
	Using Switch Statements
	Supercharging enums with Classes
	Working with Random Numbers
	Storing Data in Arrays
	Declaring and accessing an array
	Arrays of pointers
	Passing arrays to functions
	Adding and subtracting pointers

	Chapter 3 Planning and Building Objects
	Recognizing Objects
	Observing the Mailboxes class
	Observing the Mailbox class
	Finding other objects

	Encapsulating Objects
	Considering the Application Programming Interface
	Understanding properties
	Choosing between private and protected
	Defining a process
	Implementing properties

	Building Hierarchies
	Establishing a hierarchy
	Protecting members when inheriting
	Overriding methods
	Specializing with polymorphism
	Getting abstract about things

	Chapter 4 Building with Design Patterns
	Delving Into Pattern History
	Introducing a Simple Pattern: the Singleton
	Using an existing pattern
	Creating a singleton pattern class

	Watching an Instance with an Observer
	Understanding the observer pattern
	Defining an observer pattern class
	Observers and the Standard C++ Library
	Automatically adding an observer

	Mediating with a Pattern
	Defining the mediator pattern scenario
	Outlining the car example
	Creating the car example

	Book 3 Understanding Functional Programming
	Chapter 1 Considering Functional Programming
	Understanding How Functional Programming Differs
	Defining an Impure Language
	Considering the requirements
	Understanding the C++ functional limitations

	Seeing Data as Immutable
	Working with immutable variables
	Working with immutability in classes and structures
	Creating constant expressions

	Considering the Effects of State
	Eliminating Side Effects
	Contrasting declarations and functions
	Associating functions with side effects
	Removing side effects
	Creating a declarative C++ example

	Understanding the Role of auto
	Passing Functions to Functions
	Seeing a simple example of function input
	Using transforms

	Using Lambda Expressions for Implementation

	Chapter 2 Working with Lambda Expressions
	Creating More Readable and Concise C++ Code
	Defining the Essential Lambda Expression
	Defining the parts of a lambda expression
	Relying on computer detection of return type
	Using the auto keyword with lambda expressions
	Using lambda expressions as macros

	Developing with Lambda Expressions
	Using lambda expressions with classes and structures
	Working with the capture clause
	Sorting data using a lambda expression
	Specifying that the lambda expression throws exceptions

	Chapter 3 Advanced Lambda Expressions
	Considering the C++ 20 Lambda Extensions
	Defining an immediate function
	Using = and this in captures
	Finding other changes

	Working in Unevaluated Contexts
	Using Assignable Stateless Lambda Expressions
	Dealing with Pack Expansions
	Considering the template
	Processing the variables using recursion
	Processing the variables using a lambda expression

	Book 4 Fixing Problems
	Chapter 1 Dealing with Bugs
	It’s Not a Bug. It’s a Feature!
	Make Your Application Features Look Like Features
	Anticipating (Almost) Everything
	Considering menus
	Dealing with textual input
	Performing string processing

	Avoiding Mistakes, Plain and Simple

	Chapter 2 Debugging an Application
	Programming with Debuggers
	Running the debugger
	Recognizing the parts of the Code::Blocks debugger

	Debugging with Different Tools
	Debugging a Code::Blocks Application with Command-Line Arguments

	Chapter 3 Stopping and Inspecting Your Code
	Setting and Disabling Breakpoints
	Setting a breakpoint in Code::Blocks
	Enabling and disabling breakpoints

	Watching, Inspecting, and Changing Variables
	Watching the variables
	Changing values

	Chapter 4 Traveling About the Stack
	Stacking Your Data
	Moving about the stack
	Storing local variables

	Debugging with Advanced Features
	Viewing threads
	Tracing through assembly code

	Book 5 Advanced Programming
	Chapter 1 Working with Arrays, Pointers, and References
	Building Up Arrays
	Declaring arrays
	Arrays and pointers
	Using multidimensional arrays
	Arrays and command-line parameters
	Allocating an array on the heap
	Deleting an array from the heap
	Storing arrays of pointers and arrays of arrays
	Building constant arrays

	Pointing with Pointers
	Becoming horribly complex
	Pointers to functions
	Pointing a variable to a method
	Pointing to static methods

	Referring to References
	Reference variables
	Returning a reference from a function

	Chapter 2 Creating Data Structures
	Working with Data
	The great variable roundup
	Expressing variables from either side
	Casting a spell on your data
	Comparing casting and converting
	Casting safely with C++

	Structuring Your Data
	Structures as component data types
	Equating structures
	Returning compound data types

	Naming Your Space
	Creating a namespace
	Employing using namespace
	Using variables
	Using part of a namespace

	Chapter 3 Constructors, Destructors, and Exceptions
	Constructing and Destructing Objects
	Overloading constructors
	Initializing members
	Adding a default constructor
	Functional constructors
	Calling one constructor from another
	Copying instances with copy constructors
	When constructors go bad
	Destroying your instances
	Virtually inheriting destructors

	Programming the Exceptions to the Rule
	Creating a basic try. . .catch block
	Using multiple catch blocks
	Throwing direct instances
	Catching any exception
	Rethrowing an exception
	Using a standard category

	Chapter 4 Advanced Class Usage
	Inherently Inheriting Correctly
	Morphing your inheritance
	Avoiding polymorphism
	Adjusting access
	Avoiding variable naming conflicts
	Using class-based access adjustment
	Returning something different, virtually speaking
	Multiple inheritance
	Virtual inheritance
	Friend classes and functions

	Using Classes and Types within Classes
	Nesting a class
	Types within classes

	Chapter 5 Creating Classes with Templates
	Templatizing a Class
	Considering types
	Defining the need for templates
	Creating and using a template
	Understanding the template keyword

	Going Beyond the Basics
	Separating a template from the function code
	Including static members in a template

	Parameterizing a Template
	Putting different types in the parameter
	Including multiple parameters
	Working with non-type parameters

	Typedefing a Template
	Deriving Templates
	Deriving classes from a class template
	Deriving a class template from a class
	Deriving a class template from a class template

	Templatizing a Function
	Overloading and function templates
	Templatizing a method

	Chapter 6 Programming with the Standard Library
	Architecting the Standard Library
	Containing Your Classes
	Storing in a vector
	Working with std::array
	Mapping your data
	Containing instances, pointers, or references
	Working with copies
	Comparing instances
	Iterating through a container
	A map of pairs in your hand

	The Great Container Showdown
	Associating and storing with a set
	Unionizing and intersecting sets
	Listing with list
	Stacking the deque
	Waiting in line with stacks and queues

	Copying Containers
	Creating and Using Dynamic Arrays
	Working with Unordered Data
	Using std::unordered_set to create an unordered set
	Manipulating unordered sets

	Working with Ranges

	Book 6 Reading and Writing Files
	Chapter 1 Filing Information with the Streams Library
	Seeing a Need for Streams
	Programming with the Streams Library
	Getting the right header file
	Opening a file
	Reading from a file
	Reading and writing a file
	Working with containers

	Handling Errors When Opening a File
	Flagging the ios Flags

	Chapter 2 Writing with Output Streams
	Inserting with the << Operator
	Formatting Your Output
	Formatting with flags
	Specifying a precision
	Setting the width and creating fields

	Chapter 3 Reading with Input Streams
	Extracting with Operators
	Encountering the End of File
	Using the record count approach
	Using the EOF check approach

	Reading Various Types
	Understanding data reading issues
	Writing and reading string-type data
	Writing and reading structured data

	Chapter 4 Building Directories and Contents
	Manipulating Directories
	Creating a directory
	Deleting a directory

	Getting the Contents of a Directory
	Copying Files
	Copying with windows
	Using the quick-and-dirty method

	Moving and Renaming Files and Directories

	Chapter 5 Streaming Your Own Classes
	Streaming a Class for Text Formatting
	Understanding the process
	Considering the insertion implementation
	Considering the extraction implementation

	Manipulating a Stream
	What’s a manipulator?
	Writing your own manipulator

	Book 7 Advanced Standard Library Usage
	Chapter 1 Exploring the Standard Library Further
	Considering the Standard Library Categories
	Algorithms
	Atomic operations
	C Compatibility
	Concepts
	Containers
	Coroutines
	Filesystem
	Input/Output
	Iterators
	Localization
	Numerics
	Ranges
	Regular Expressions
	Strings
	Thread Support
	Utilities

	Parsing Strings Using a Hash
	Obtaining Information Using a Random Access Iterator
	Locating Values Using the Find Algorithm
	Using the Random Number Generator
	Working with Temporary Buffers

	Chapter 2 Working with User-Defined Literals (UDLs)
	Understanding the Need for UDLs
	Prefixes and suffixes
	Differentiating between raw and cooked

	Working with the UDLs in the Standard Library
	std::basic_string
	std::complex
	std::chrono::duration

	Creating Your Own UDLs
	Developing a conversion UDL
	Developing a custom type UDL
	Using a custom UDL for side effects

	Chapter 3 Building Original Templates
	Deciding When to Create a Template
	Defining the Elements of a Good Template
	Creating a Basic Math Template
	Building a Structure Template
	Developing a Class Template
	Considering Template Specialization
	Creating a Template Library
	Defining the library project
	Configuring the library project
	Coding the library

	Using Your Template Library

	Chapter 4 Investigating Boost
	Considering the Standard Library Alternative
	Understanding why the Standard Library contains Boost features
	Defining the trade-offs of using the Standard Library

	Understanding Boost
	Boost features
	Licensing
	Paid support

	Obtaining and Installing Boost for Code::Blocks
	Unpacking Boost
	Using the header-only libraries
	Building the libraries
	Testing the installation

	Creating the Boost Tools
	Using Boost.Build
	Getting a successful build
	Creating your own example

	Using Inspect
	Understanding BoostBook
	Using QuickBook
	Using bcp
	Using Wave
	Building Your First Boost Application Using Date Time

	Chapter 5 Boosting up a Step
	Parsing Strings Using RegEx
	Adding the RegEx library
	Creating the RegEx code

	Breaking Strings into Tokens Using Tokenizer
	Performing Numeric Conversion
	Creating Improved Loops Using Foreach
	Accessing the Operating System Using Filesystem

	Index
	EULA

G+

